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Atherosclerosis (AS) is a chronic, progressive vascular disease marked by lipid

deposition in the arterial intima, vascular wall thickening, luminal narrowing,

and compromised blood flow. Although macrophage-derived foam cells are

well-studied, vascular smooth muscle cells (VSMCs) also substantially contribute

to AS, particularly when they transition into foam cells under oxidative stress.

Accumulating evidence suggests that ferroptosis—an iron-dependent, regulated

cell death mechanism characterized by lipid peroxidation—exacerbates AS

pathology through oxidative damage and vascular dysfunction. Catechin,

a potent antioxidant abundant in green tea, has demonstrated e�cacy in

reducing oxidative stress; however, its role in suppressing VSMC ferroptosis

induced by oxidized low-density lipoprotein (ox-LDL) remains unclear. Here,

we evaluated catechin’s capacity to protect VSMCs against ox-LDL-induced

ferroptosis, focusing on its modulation of the Nrf2/SLC7A11/GPX4 axis.

Mouse vascular smooth muscle (MOVAS) cells were incubated with ox-LDL

to induce foam cell formation and ferroptosis. We assessed intracellular

iron, lipid peroxidation, reactive oxygen species (ROS), and antioxidant

defenses and examined mitochondrial ultrastructure via transmission electron

microscopy (TEM). Ferroptosis-related proteins were measured by Western blot,

immunofluorescence, and qPCR. In vivo, ApoE−/− mice on a high-fat diet

(HFD) underwent partial carotid ligation with local catechin administration to

investigate plaque formation and ferroptosis in arterial tissue. Our results show

that catechin reduced intracellular Fe2+, decreased ROS and malondialdehyde

(MDA) levels, and preserved mitochondrial integrity in ox-LDL-exposed MOVAS

cells. Catechin also enhanced GSH and SOD levels and restored GPX4, SLC7A11,

and Nrf2 expression, thereby reducing foam cell formation. In ApoE–/– mice,

catechin reduced plaque size, mitigated lipid deposition, and upregulated GPX4,

SLC7A11, and Nrf2 in the arterial wall. Collectively, these findings confirm

that catechin prevents ox-LDL-induced ferroptosis in VSMCs by activating the

Nrf2/SLC7A11/GPX4 pathway, highlighting its potential therapeutic value for

atherosclerosis. This study provides additional evidence for the role of dietary

polyphenols in regulating ferroptosis within VSMCs.
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1 Introduction

Atherosclerosis (AS) remains a principal driver of

cardiovascular disease (CVD) (1). Pathologically, it involves

chronic endothelial damage, inflammatory cell infiltration, and

lipid-laden plaque formation within arterial walls (2, 3). While

macrophage-derived foam cells have been intensively studied,

mounting evidence shows that VSMC-derived foam cells also play

a critical role in plaque expansion and destabilization (4). Under

inflammatory conditions and exposure to ox-LDL, VSMCs may

accumulate lipids, form foam cells, and contribute to fibrous cap

formation as well as vulnerability (4–7).

Ferroptosis, discovered relatively recently, is an iron-dependent

mode of regulated cell death typified by lipid peroxidation and

associated with excess reactive oxygen species (ROS) overload (2,

8). Studies indicate that ferroptosis aggravates plaque progression

by promoting foam cell formation and local oxidative stress (9–

12). The antioxidant enzyme glutathione peroxidase 4 (GPX4)

detoxifies lipid peroxides and is a key negative regulator of

ferroptosis (13). SLC7A11 (also called xCT) prevents ferroptosis

by facilitating cystine import, which supports glutathione (GSH)

synthesis (14). Nrf2, a master regulator of cellular redox

homeostasis, can transcriptionally activate GPX4, SLC7A11, and

other antioxidant genes, thus restricting ferroptosis (15–17).

Catechin, a polyphenolic compound abundantly present in

green tea, exerts strong antioxidant effects by scavenging ROS,

enhancing endogenous antioxidant enzymes, and improving lipid

metabolism (18, 19). Although its inhibitory effect on VSMC

ferroptosis under ox-LDL challenge is poorly characterized, we

hypothesized that catechin would reduce ferroptosis through the

Nrf2/SLC7A11/GPX4 axis, thereby diminishing lipid peroxidation

and stabilizing atherosclerotic lesions. Using MOVAS cells and

a partially ligated ApoE−/− mouse model, we investigated

catechin’s ability to inhibit ferroptosis and foam cell formation,

measuring intracellular iron, lipid peroxidation, antioxidant

defenses, mitochondrial integrity, and ferroptosis-related proteins.

Our findings provide novel insights into catechin’s anti-ferroptotic

and plaque-stabilizing effects (20).

2 Materials and methods

2.1 Chemicals and reagents

Catechin (Solarbio Science and Technology Co., Ltd.,

Beijing, China) and ox-LDL (23 nmol MDA/mg protein; Yiyuan

Biotechnologies, Guangzhou, China) were used. Dulbecco’s

modified Eagle’s medium (DMEM), phosphate-buffered saline

(PBS), and fetal bovine serum (FBS) were obtained from

routine suppliers. Cell Counting Kit-8 (CCK-8) was purchased

from Dongren Chemical Technology Co., Ltd. (Dongying,

China). Colorimetric assay kits for superoxide dismutase (SOD),

malondialdehyde (MDA), glutathione (GSH), total cholesterol

(TC), and free cholesterol (FC) were from Jiancheng Biotechnology

(Nanjing, China). FerroOrange (Dojindo, Japan) was used to

detect intracellular Fe2+. Primary antibodies against Nrf2, GPX4,

SLC7A11, and GAPDH were from ABclonal Biotechnology Co.,

Ltd. (Boston, MA, USA).

2.2 Cell culture

Mouse aortic vascular smooth muscle cells (MOVAS, ATCC,

CRL-2797) were obtained from the American Type Culture

Collection and cultured in DMEM supplemented with 10% FBS

at 37 ◦C in a 5% CO2 environment. Cells were subcultured when

reaching∼80% confluence and used within 10 passages (21, 22).

2.3 Animal model

Twenty-eight-week-old ApoE–/– male mice were purchased

from Nanjing Junke Bioengineering Co., Ltd. [Nanjing, China;

license no. SCXK (Su) 2022–0001]. All animal experiments were

approved by the Ethics Committee of Hunan University of Chinese

Medicine (Approval No. SLBH-202401290001). They were used

for the partial carotid ligation model, in which catechin was

administered via local application using hydrogel. Mice were

randomly divided into two groups (n = 10 per group): a mock-

treatment group (Mod), treated locally with a hydrogel containing

normal saline, and a catechin-treated group (CAT), receiving local

application of a hydrogel containing catechin at a concentration

of 1mM. Partial ligation of the left carotid artery (LCA) was

performed by ligating the left external carotid artery (ECA), left

internal carotid artery (ICA) and occipital artery (OA) using

9–0 Ethalin sutures while leaving the superior thyroid artery

(STA) intact. Immediately after ligation, the respective hydrogel

formulation was applied locally around the perivascular region,

followed by wound closure. Postoperatively, mice were placed on

a high-fat diet (21% milk fat and 1.25% cholesterol) for 4 weeks

before further analyses. Ultrasound was used to confirm successful

carotid ligation by measuring changes in blood flow in the LCA.

2.4 Cell viability assay

MOVAS cells (5 × 103 cells/well in 96-well plates) were

incubated with catechin (0, 25, 50, 100, 200, 400µM) for 12–48 h.

Cell viability was measured using the CCK-8 assay at 450 nm.

2.5 Foam cell formation and lipid content

MOVAS cells (1× 105 cells/well in 12-well plates) were serum-

starved for 24 h, then pretreated with catechin (100 or 200µM)

for 24 h before exposure to ox-LDL (0∼100µg/mL) for another

24 h (23). Total cholesterol (TC) and free cholesterol (FC) were

measured by colorimetric kits, and esterified cholesterol (CE) was

calculated as the difference between TC and FC. Oil Red O staining

was performed on cells fixed in 4% paraformaldehyde (24).

2.6 FerroOrange staining for intracellular
iron

MOVAS cells (1 × 106 cells/well in 6-well plates) were treated

with catechin plus ox-LDL. After 24 h, they were incubated in

serum-free, phenol red-free DMEM containing 1µM FerroOrange
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for 30min at 37 ◦C. Fluorescence images were acquired and

quantified with ImageJ (25).

2.7 ROS and oxidative stress markers

Intracellular ROS was measured by flow cytometry using

the fluorescent probe DCFH-DA (10µM, incubated for 20min

at 37◦C). After incubation with DCFH-DA, MOVAS cells were

washed three times with serum-free medium. Unstained cells

served as negative controls for gating. We used MDA levels as an

index of lipid peroxidation. SOD and GSH levels were determined

to evaluate antioxidant capacity (26, 27).

2.8 Transmission electron microscopy
(TEM)

MOVAS cells (1 × 106 cells/well) were fixed in 2.5%

glutaraldehyde for > 24 h, post-fixed in 1% osmium tetroxide, and

dehydrated in graded ethanol. Ultrathin sections were stained with

2% uranyl acetate and lead citrate. Mitochondrial ultrastructure

was observed with a Hitachi H-7500 TEM (28).

2.9 Western blot analysis and
immunofluorescence

Total proteins were lysed in RIPA buffer supplemented with

protease inhibitors. Protein concentration was quantified using a

BCA assay. Equal protein amounts (20–40 µg) were separated by

12% SDS-PAGE and transferred to PVDF membranes. Membranes

were blocked, incubated with primary antibodies overnight

(1:1,000), then secondary HRP-conjugated IgG (1:5,000). Protein

bands were visualized by chemiluminescence and quantified using

ImageJ software.

For immunofluorescence, arterial sections (6–8µm) were

permeabilized with 0.3% Triton X-100, and blocked with 5% BSA.

Primary antibodies against GPX4 (1:200), SLC7A11 (1:200), Nrf2

(1:200), and α-SMA (1:200) were applied overnight at 4◦C, and

then incubated with fluorophore-conjugated secondary antibodies.

Nuclei were stained with DAPI, and images were taken by

confocal microscopy.

2.10 In vivo tissue collection and histology

Two weeks after partial carotid ligation, mice were euthanized

by CO2 asphyxiation. Carotid arteries and aortic tissues were

dissected, fixed in 4% paraformaldehyde, and stained en face with

Oil Red O or embedded in OCT for cryosectioning. Sections were

stained with Oil Red O or H&E for histological assessment. Plaque

area was quantified by ImageJ (29).

2.11 Lipid profile

Serum levels of total cholesterol, triglycerides, HDL-c, and

LDL-c were measured with colorimetric kits as described above,

and absorbances were recorded.

2.12 Statistical analysis

ImagePro Plus 6.0 and GraphPad Prism 5.0 software were used

for image analysis and data visualization, respectively. Statistical

analysis was performed using SPSS 22.0 software. Data are

presented as mean ± standard deviation (x̄ ± s). Differences

among multiple groups were analyzed using one-way ANOVA,

while differences between two groups were analyzed using the t-

test. The Shapiro–Wilk test was used to assess the normality of

data prior to applying t-tests or ANOVA. A P-value < 0.05 was

considered statistically significant.

3 Results

3.1 Titration of catechin concentrations
and optimal ox-LDL dose for foam cell
formation

We first determined the appropriate concentration range of

catechin for MOVAS cells. Lower catechin concentrations (25–

100µM) did not significantly affect cell viability for up to 48 h,

whereas higher concentrations (200 and 400µM) reduced viability

at 36–48 h (p < 0.01; Figure 1A). Based on these findings, 100–

200µMwas selected for subsequent 24-h treatments.

To induce foam cell formation, we tested ox-LDL at 0, 20, 40,

60, 80, and 100µg/mL in MOVAS for 24 h. An esterification ratio

(CE/TC) exceeding 50% indicated successful foam cell formation.

When ox-LDL reached 80µg/mL, the CE/TC ratio surpassed

50%, and 100µg/mL produced a robust foam cell phenotype

(Figures 1B–D). Consequently, 100µg/mL was employed in all

subsequent experiments.

3.2 Catechin decreases lipid accumulation
and foam cell formation

We next examined whether catechin attenuates ox-LDL-

induced lipid accumulation. MOVAS cells were incubated with

100µg/mL ox-LDL, with or without catechin (100 or 200µM),

for 24 h. Catechin significantly lowered total cholesterol, free

cholesterol, and the CE/TC ratio relative to ox-LDL alone (p< 0.01;

Figures 1E–G). Oil Red O staining (Figures 1H, I) confirmed these

biochemical findings; cells treated with ox-LDL alone exhibited

prominent, lipid-laden droplets, whereas catechin co-treatment

markedly mitigated lipid accumulation. These results indicate

that catechin counters ox-LDL-induced foam cell formation in

MOVAS cells.

3.3 Catechin inhibits ferroptosis by
reducing intracellular iron and ROS

To explore whether ferroptosis contributes to ox-LDL-induced

VSMC dysfunction, we assessed intracellular Fe2+, ROS, and

MDA. Excess ferrous iron can promote ROS generation via the

Fenton reaction (30). Compared to controls, Fe2+ levels in ox-

LDL-treated cells rose sharply (p < 0.01), but catechin (100 or
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FIGURE 1

Catechin’s e�ect on MOVAS viability, optimal ox-LDL dose, and foam cell formation. (A) A CCK-8 assay shows that catechin at concentrations

>200µM significantly reduces MOVAS viability at 36–48h. (B–D) Increasing ox-LDL doses (0–100µg/mL) increase total cholesterol (TC), free

cholesterol (FC) levels, as well as the cholesteryl ester to total cholesterol (CE/TC) ratio. At ox-LDL concentrations ≥80µg/mL, ox-LDL induces an

esterification rate (CE/TC), and the CE/TC ratio exceeds 50%, indicating foam cell formation. (E–G) Co-incubation with catechin (100 or 200µM)

lowers total and free cholesterol levels, reducing the esterification CE/TC ratio to below 50%. (H, I) Oil Red O staining shows the extensive lipid

droplets in the ox-LDL group, and this accumulation is reduced by catechin treatment. Data are mean ± SD (n = 5). ns, not significant; *p < 0.05, **p

< 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2

Catechin mitigates iron- and reactive oxygen species (ROS)-dependent oxidative stress in MOVAS cells. (A) FerroOrange staining reveals elevated

Fe2+ in cells treated with 100µg/mL ox-LDL, which is reduced by catechin in a dose-dependent manner. (B) DCFH-DA flow cytometry indicates that

catechin treatment decreases oxLDL-induced ROS levels. (C) MDA levels, a marker of lipid peroxidation, are increased by oxLDL and lowered by

catechin. (D, E) Catechin treatment restores SOD and GSH levels depleted by ox-LDL. (F) Transmission electron micrographs show mitochondrial

condensation with collapsed cristae in the ox-LDL group. These changes are normalized by catechin. Data are mean ± SD (n = 5). *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3

Catechin rescues ferroptosis-related protein expression in MOVAS. Western blot and quantification show that ox-LDL downregulates GPX4 (A),

SLC7A11 (B), and Nrf2 (C). Catechin substantially reverses this e�ect, with the e�ect on Nrf2 being most pronounced at 200µM. Data are mean ± SD

(n = 5). ns, not significant; *p < 0.05, ***p < 0.001, ****p < 0.0001.

200µM) significantly inhibited this increase (Figure 2A). Flow

cytometric analysis with DCFH-DA revealed that ox-LDL elevated

ROS production, which was reversed by catechin co-treatment

(Figure 2B). Consistent with reduced ROS, MDA levels, an index

of lipid peroxidation, were also decreased in the catechin groups

(Figure 2C).

3.4 Catechin enhances antioxidant
defenses and preserves mitochondrial
integrity

We further examined whether catechin increases endogenous

antioxidant capacity by measuring SOD and GSH. Ox-LDL

exposure diminished SOD and GSH, but catechin restored

their levels in a concentration-dependent manner (p < 0.05;

Figures 2D–E). TEM images revealed that mitochondria in the

ox-LDL group were shrunken with disrupted cristae, consistent

with ferroptotic injury. By contrast, mitochondria in catechin-

treated cells were largely intact (Figure 2F). This preservation of

mitochondrial structure underscores catechin’s protective effect

against ferroptosis-associated damage.

3.5 Catechin restores GPX4, SLC7A11, and
Nrf2 expression

To confirm catechin’s anti-ferroptotic mechanism, we

evaluated GPX4, SLC7A11, and Nrf2 by Western blot (Figure 3).

Ox-LDL reduced GPX4 and SLC7A11 in MOVAS cells, whereas

catechin significantly upregulated these proteins (p < 0.01).

Notably, catechin at 200µM also restored Nrf2, suggesting

that higher doses more effectively engage the Nrf2 pathway.

Collectively, these data provide mechanistic support that catechin

abrogates ferroptosis by fortifying the Nrf2/SLC7A11/GPX4 axis.

3.6 Catechin alleviates atherosclerotic
lesions in ApoE–/– mice after partial ligation

We next tested catechin in ApoE−/− mice subjected to

partial LCA ligation and fed a high-fat diet for 2 weeks

(Figure 4A). Ultrasound imaging confirmed reduced flow in the

ligated LCA (Figure 4B). En face Oil Red O staining revealed

substantially smaller plaques in catechin-treated mice, and cross-

sectional H&E and Oil Red O staining indicated decreased lipid

accumulation and lesion size (Figures 4C–G). Systemic lipid levels

remained unchanged, presumably due to local catechin application

(Figure 4H). These data mirror our in vitro findings, indicating

that catechin stabilizes atherosclerotic plaques under disturbed

flow conditions.

3.7 Catechin upregulates
ferroptosis-related proteins in injured
arterial tissue

Immunofluorescence in arterial sections showed α-SMA (red)

colocalized with GPX4, SLC7A11, and Nrf2 (green). Catechin-

treated mice exhibited stronger GPX4/SLC7A11/Nrf2 signals
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FIGURE 4

Catechin reduces atherosclerotic lesion formation in ApoE−/− mice subjected to partial carotid ligation. (A) Schematic of partial ligation and local

catechin delivery, as detailed in the Methods. (B) Ultrasound imaging reveals diminished blood flow and a reduced arterial lumen diameter in the

ligated LCA. (C, D) Representative micrographs showing plaques in carotid arteries (C) and hematoxylin and eosin (H&E) staining of tissue sections (D)

and Oil Red O staining (E, F) en face and of cross sections of ligated arteries demonstrate smaller plaques and reduced lipid accumulation in

catechin-treated (CAT) mice compared to mock-treated (MOD) mice. (G) Shows quantification of lesion burden and lipid content in the ligated

arteries. (H) Serum lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), and low-density

lipoprotein cholesterol (LDL-c), are unchanged. Data are mean ± SD (n = 5). ns, not significant; **p < 0.01.

than the mock treatment, suggesting reduced ferroptotic stress

in the arterial wall (Figure 5). This in vivo upregulation aligns

with the protective effects observed in MOVAS, providing

translational evidence that catechin mitigates ferroptosis

in atherosclerosis.

4 Discussion

Our findings demonstrate that catechin significantly inhibits

ox-LDL-induced ferroptosis and foam cell formation in VSMCs,

thereby reducing atherogenesis. Mechanistically, catechin
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FIGURE 5

Catechin upregulates ferroptosis-related proteins in arteries. (A–C) Immunofluorescence of arterial sections shows alpha-smooth muscle actin

(α-SMA, red) co-expression with GPX4 (A), SLC7A11 (B), or Nrf2 (C) (green) in both mock (Mod) and catechin-treated mice, with stronger

immunoreactivities for these markers in catechin-treated arteries, consistent with reduced ferroptotic stress and more stable lesions. (D–F) Graphs

depicting smooth muscle expression of GPX4, SLC7A11, and Nrf2, presented as the ratio of each marker’s fluorescent signal to that of α-SMA. Data

are mean ± SD (n = 5). *p < 0.05, **p < 0.01.
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decreased intracellular iron and ROS, increased GSH and SOD

levels, and maintained mitochondrial architecture. Consistent

with these outcomes, catechin also restored GPX4, SLC7A11,

and Nrf2—the core ferroptosis defense components. These

multifaceted antioxidant actions likely underlie catechin’s

plaque-reducing effects observed in ApoE−/− mice after partial

carotid ligation.

4.1 Ferroptosis and foam cell
formation—exploring a causal link

An emerging body of work links ferroptosis to foam

cell formation and atherosclerotic lesion progression (10–12,

31). However, the precise cause-effect relationship between

ferroptosis and foam cell generation remains under investigation.

Excess intracellular iron and ROS can oxidize lipids both

within and outside cells, promoting the uptake of ox-LDL

by smooth muscle cells or macrophages (32–34). In this

manner, ferroptosis-associated oxidative stress can accelerate lipid

loading and foam cell formation, suggesting that ferroptosis

may potentiate or contribute to foam cell development. In

addition, foam cell formation can lead to heightened oxidative

stress within the plaque microenvironment—potentially creating

a feedback loop that amplifies ferroptosis. Recent studies in

macrophages have shown that iron accumulation and lipid

peroxidation drive cell death, which in turn releases pro-

inflammatory mediators that exacerbate plaque vulnerability

(9–11). Although direct in vivo evidence mapping ferroptosis

onset to foam cell emergence in VSMCs is limited, our

findings in MOVAS cells indicate that ox-LDL-induced foam

cell formation correlates with ferroptotic features (iron overload,

mitochondrial shrinkage, and GPX4 depletion). Thus, ferroptosis

and foam cell formation may operate in a vicious cycle:

lipid loading triggers an oxidative environment that fosters

ferroptosis, which further drives lipid accumulation and cell

death. This interplay likely contributes to plaque expansion

and destabilization.

4.2 Catechin’s anti-ferroptotic and
plaque-reducing e�ects

Our results demonstrate that catechin effectively attenuates ox-

LDL-induced ferroptosis in VSMCs by lowering intracellular

iron (Fe2+) and ROS, reducing lipid peroxidation, and

upregulating core protective proteins (GPX4, SLC7A11, Nrf2).

Importantly, catechin also inhibited foam cell formation,

suggesting it disrupts the iron-ROS amplification loop that

underpins ferroptosis. In ApoE−/− mice, local delivery of

catechin confirmed these protective effects at the arterial

level, reducing lesion size and plaque lipid content. Hence,

catechin may serve as an adjunct to conventional treatments,

targeting both lipid overload and ferroptosis-mediated vascular

injury (20).

4.3 Mechanistic considerations and future
directions

Several mechanisms may explain how catechin inhibits

ferroptosis and foam cell accumulation. First, catechin’s direct

ROS scavenging and mild iron-chelating properties can reduce

the catalytic drive of the Fenton reaction (9, 35). Second, by

boosting Nrf2 signaling, catechin upregulates key antioxidant

genes (e.g., SLC7A11, GPX4), reinforcing GSH-dependent

detoxification of lipid peroxides (16, 36). Third, broader anti-

inflammatory actions may also stabilize the fibrous cap by

preserving VSMC viability. Future studies should clarify the

precise spatiotemporal relationship between ferroptosis onset and

foam cell formation in VSMCs, potentially utilizing genetic or

pharmacological modulators to dissect how ferroptotic pathways

influence lipid uptake and plaque composition. Additionally,

investigating potential synergies with lipid-lowering or anti-

inflammatory agents reveals complementary therapeutic strategies

for late-stage atherosclerosis.

5 Conclusion

Catechin effectively suppresses ox-LDL-induced ferroptosis

in VSMCs by decreasing intracellular iron overload, ROS, and

lipid peroxidation, while enhancing the Nrf2/SLC7A11/GPX4

ferroptosis defense system. Our data suggest that ferroptosis

contributes to foam cell formation and atherosclerosis progression,

although the exact causal sequence warrants further study. In vivo,

local catechin delivery reduces plaque burden in ApoE−/− mice.

These findings underscore ferroptosis as a promising therapeutic

target in atherosclerosis and identify catechin as a viable anti-

ferroptotic, plaque-stabilizing agent.
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