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Background: The American Heart Association recently introduced the concept 
of Cardiovascular-Kidney-Metabolic Syndrome (CKM), emphasizing the interplay 
between metabolic disorders, cardiovascular diseases, and kidney diseases. 
Although insulin resistance (IR) and chronic inflammation are core drivers 
of CKM, the relationships causing imbalance have not been fully evaluated. 
Emerging biomarkers (RAR, NPAR, SIRI, Homair) offer multidimensional 
prediction capabilities by simultaneously assessing nutritional metabolism, 
cellular inflammation, and insulin resistance in diabetes.

Methods: This study included data from 19,884 participants in the National 
Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The 
study developed novel indices (RAR, NPAR, SIRI, Homair) and assessed their 
CKM predictive value through: Multivariable logistic/Cox regression; Restricted 
cubic splines; Machine learning (XGBoost, LightGBM); Decision curve analysis. 
Subgroup analyses were conducted to assess interactive effects on specific 
populations.

Results: After weighted analysis, multi-model logistic regression showed 
that RAR, SIRI, NPAR, and Homair remained strongly correlated with CKM 
after adjusting for various factors (p < 0.05), with RAR showing the most 
pronounced relationship (OR: 2.73, 95% CI: 2.07–3.59, p < 0.001). RCS 
curves revealed nonlinear relationships between these factors and outcomes 
(nonlinear p < 0.05). In multi-model Cox regression, RAR, SIRI, and NPAR were 
associated with all-cause mortality (p < 0.05), and RAR was linked to all-cause, 
cardiovascular disease (CVD), and kidney disease mortality (p < 0.05), with the 
strongest link (OR: 2.38, 95% CI: 1.98–2.88, p < 0.001). Machine learning ranked 
RAR, SIRI, and Homair as top predictors for CKM diagnosis. The DCA model 
further validated these three Lasso-selected variables, showing clinical utility. 
The model combining RAR, diabetes mellitus (DM), and age demonstrated 
outstanding performance (AUC = 0.907), offering clinical reference value.

Conclusion: This study demonstrates significant relationship between RAR, 
NPAR, SIRI, and Homair with the five stages of CKM, with RAR showing the robust 
association. DCA-confirmed RAR demonstrates high clinical translatability as a 
standalone predictor for CKM risk stratification.
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Introduction

CVD: CVD (1) is a leading cause of global morbidity and 
mortality, responsible for approximately 31% of all deaths worldwide. 
Risk factors include hypertension, dyslipidemia, smoking, and 
diabetes. The burden of CVD is expected to rise, particularly in 
low-and middle-income countries due to aging populations and 
increased prevalence of risk factors. CVD plays a key part to the global 
healthcare burden (2), with high costs related to treatment, 
hospitalizations, and long-term care.

Diabetes Mellitus (3) (DM): Diabetes mellitus, including both 
type 1 and type 2, is a chronic metabolic condition characterized by 
impaired insulin action or secretion. The global prevalence of diabetes 
has rapidly increased, with over 400 million people affected 
worldwide. Type 2 diabetes, driven by obesity and insulin resistance, 
accounts for approximately 90–95% of all diabetes cases. Diabetes 
increases the risk of cardiovascular disease, kidney failure, and 
neuropathy, contributing to a significant global health burden (4) and 
reduced quality of life.

Cardiovascular-Kidney-Metabolic Syndrome (5) (CKM): An 
emerging clinical syndrome characterized by the complex interaction 
of metabolic disorders, chronic inflammation, and multi-organ 
damage. Although the American Heart Association (AHA) clinical 
framework introduced CKM staging criteria in 2023, the current 
system mainly relies on traditional single-dimensional indicators: 
HbA1c for assessing metabolic control, and estimated glomerular 
filtration rate (eGFR) for reflecting kidney function. While these 
indicators are widely used, they have significant limitations—they 
cannot capture the dynamic imbalance among metabolism, 
inflammation, and nutrition, which is the core driving force behind 
CKM progression (6).

Against this backdrop, we have chosen the Red Cell Distribution 
Width-to-Albumin Ratio (RAR), Neutrophil-to-Total Protein Ratio 
(NPAR), Systemic Inflammation Response Index (SIRI), and Homair 
insulin resistance index as the focus of our study due to their unique 
multidimensional value.

The RAR (7) [RDW (%)/ALB (g/dL)] integrates oxidative stress 
(where increased RDW reflects disturbed red blood cell production 
and endothelial dysfunction) and the balance of nutrition and 
inflammation (low albumin levels suggest chronic inflammatory 
depletion). It can simultaneously assess vascular damage and protein-
energy malnutrition, and has been shown to predict mortality in 
various diseases, including acute myocardial infarction, diabetes, and 
chronic kidney disease. This is more aligned with the chronic disease 
progression of CKM, compared to CRP, which primarily reflects 
acute inflammation.

The NPAR (8) [Neutrophil Percentage (%)/Albumin (g/dL)] 
combines innate immune activation with nutritional status, addressing 
the limitation of other indicators, such as NLR, that cannot assess the 
nutritional-metabolic imbalance. This index holds potential value in 
evaluating chronic diseases related to inflammation-nutrition 
imbalance, such as metabolic syndrome (9) and cardiovascular 
diseases (10).

The SIRI (11) is calculated from the counts of neutrophils, 
monocytes, and lymphocytes, and is used to quantify systemic 
inflammation levels. It dynamically monitors the imbalance between 
innate immunity (neutrophils/monocytes) and adaptive immunity 
(lymphocytes). Increased SIRI is closely associated with the risk and 
prognosis of inflammation-related diseases, such as infections, cancer, 
and cardiovascular diseases (12). It is commonly used as a marker for 
chronic low-grade inflammation and is more capable of identifying 
the low-grade sustained inflammation characteristic of CKM 
compared to traditional markers.

The Homair (13) index is based on fasting blood glucose and 
insulin levels, serving as a measure of insulin resistance. It is an 
important predictor of metabolic syndrome, type 2 diabetes, and 
obesity-related diseases. Compared to HbA1c, Homair provides a 
more accurate reflection of the heterogeneous insulin resistance 
patterns in CKM patients.

More importantly, these novel biomarkers complement the 
existing AHA staging criteria. Combined with HbA1c and eGFR, they 
play a more significant role. This synchronous evaluation of multiple 
pathological processes is a critical gap in current CKM clinical 
practice that urgently needs to be addressed.

The innovation of this study lies in the first systematic validation 
of these combined biomarkers’ predictive value across the entire 
spectrum of CKM-related diseases. Using the large sample data from 
the National Health and Nutrition Examination Survey (NHANES), 
we not only confirm their correlation with traditional indicators but 
also reveal the incremental prognostic information they provide 
beyond the existing staging system. This will offer essential evidence 
to support the future updates of CKM diagnostic and 
treatment guidelines.

The A-H panels in the Supplementary Figure S1 display the ROC 
curves for two sets of biomarkers, with the left side corresponding to 
traditional biomarkers and the right side corresponding to the newly 
proposed biomarkers. The AUC values (95% CI) for each biomarker 
are shown in the figure, reflecting their discriminative ability. It is 
evident that there is a significant difference in diagnostic accuracy 
between the old and new biomarkers for the outcome. This 
comparison indicates that the clinical relevance of the new biomarkers 
is acceptable.

Methods

Data source and study population

The National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative cross-sectional study 
designed to assess the health and nutritional status of the civilian, 
non-institutionalized population in the United  States, using a 
complex, stratified, multistage probability sampling method. The 
study adheres to the ethical principles of the Declaration of Helsinki 
and was approved by the Ethics Review Board of the National Center 
for Health Statistics. Written informed consent was obtained from all 
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participants. Complete details of the NHANES study design and data 
are publicly available at www.cdc.gov/nchs/nhanes/. This study 
analyzed data from six NHANES cycles spanning 1999 to 2018.

Participants were excluded based on the following criteria: lack of 
data required to define cardiovascular-kidney-metabolic (CKM) 
syndrome (n = 80,978); age <20 years or current pregnancy (n = 454). 
After applying these exclusion criteria, the final analytical sample 
included 19,884 adults aged ≥20 years (Supplementary Figure S2).

Variables

Metabolism-associated markers
During the research process, we included the following indicators 

for analysis, and here are their calculation formulas:

 1. RAR (Red Cell Distribution Width to Albumin Ratio):

 ( ) ( )=RAR RDW % / ALB g / dL

 2. NPAR (Neutrophil Percentage to Albumin Ratio):

 ( ) ( )=NPAR NCP % / ALB g / dL

 3. SIRI (Systemic Immune-Inflammation Index):

 

( ) ( )
( )

µ µ
µ

= ×SIRI NC 1,000 cells / MCC 1,000 cells / /
LCC 1,000 cells /

L L
L

 4. Homair (Homeostatic Model Assessment for Insulin  
Resistance):

 ( ) ( )= ×Homair FIN mU / L FBG mmol / L / 22.5

 5. eGFR (14) (Estimated Glomerular Filtration Rate):

 ( ) ( )
− −= × × ×

×

1.154 0.203GFR 175 Standardized Scr Age
1.212 if black 0.742 if female

To validate the relationship between RAR, NPAR, SIRI, and 
Homair with CKM while excluding other influencing factors, 
we performed quartile grouping for these four biomarkers. Specifically, 
the data were divided into four groups based on the weighted values 
of each factor, with each group containing 25% of the data points. The 
quartile cutoffs for each factor were determined based on the 25th, 
50th, and 75th percentiles, ensuring clear and consistent grouping.

Definition of outcome variables

In this study, cardiovascular disease (CVD) was defined based on 
self-reported conditions in NHANES participants, including. 
Covariates included diabetes mellitus (DM), hypertension (HBP), and 

chronic kidney disease (CKD), defined by clinical history, medication 
use, or laboratory criteria (Supplementary Table S1). Cardiovascular-
kidney-metabolic [CKM (15)] syndrome was categorized into stages 
(0 to 4) based on the presence of risk factors, metabolic abnormalities, 
CKD, and cardiovascular damage or events (Table  1). Detailed 
definitions and grouping criteria are provided in Supplementary  
Table S2.

Data collection

Based on our research, we have collected relevant demographic 
data, physical examinations, laboratory tests, lifestyle habits, and 
medical conditions from NHANES.

Demographics
RACE, EDU (education) (16), GENDER, AGE, MARRY, PIR 

(Poverty Income Ratio), SOMKING (17), DRINKING (18), 
SPORT (19).

Examinations
FINS (Fasting Insulin, uU/mL), ALB (Albumin, g/dL), UA (Uric 

Acid, mg/dL), CR (Creatinine, mg/dL), FBG (Fasting Blood Glucose, 
mg/dL), HbA1c (Hemoglobin A1c, %), WBC (White Blood Cell 
Count, 103 cells/μL), NCP (Neutrophil Count Percentage, %), NC 
(Neutrophil Count, 103 cells/μL), RDW (Red Cell Distribution Width, 
%), TC (Total Cholesterol, mg/dL), TG (Triglycerides, mg/dL), WC 
(Waist Circumference, cm), Egfr (Estimated Glomerular Filtration 
Rate), LYC (Lymphocyte Count, 103 cells/μL), MCC (Monocyte 
Count, 103 cells/μL), PLT (Platelet Count, 103 cells/μL), BMI (Body 
Mass Index, kg/m2), UACR (20) (Urine Albumin-to-Creatinine Ratio, 
mg/g). Questionnaires: Use of antihypertensive medications, use of 
antidiabetic medications, use of insulin, use of statins (Supplementary  
Table S1).

Ascertainment of mortality

To ascertain the mortality status of the follow-up population, 
we utilized the NHANES Public Use Linked Mortality File, with data 
current through December 31, 2019. Mortality follow-up 
information in NHANES, coded according to the International 
Classification of Diseases, 10th Edition (ICD-10), is accessible via the 
Public Use Linked Mortality File. The primary causes of death were 
classified based on ICD-10 codes. We evaluated all-cause mortality, 

TABLE 1 CKM syndrome staging definitions and clinical significance.

Stage Core definition Clinical significance

0 No risk factors Baseline health reference

1 Adiposity dysfunction only Early metabolic 

dysregulation

2 Metabolic risk factors or moderate 

CKD

Intermediate-risk population

3 High CVD risk or advanced CKD Preclinical organ damage

4 Established CVD Highest event risk
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as well as mortality attributed to cardiovascular diseases, such as 
Diseases of the heart (I00–I09, I11, I13, I20–I51), Nephritis, 
nephrotic syndrome, and nephrosis (N00–N07, N17–N19, N25–
N27), Diabetes mellitus (E10–E14), and Cerebrovascular diseases 
(I60–I69).

Detailed methodologies for measuring these variables are publicly 
available on the NHANES website: www.cdc.gov/nchs/nhanes/.

Statistical analysis

All statistical analyses were performed using R software (version 
4.2.2) and Python (version 3.12.7). Continuous variables were 
analyzed based on the normality results from the Shapiro–Wilk test. 
The data were weighted according to the NHANES guidelines and are 
presented as means with standard errors. Categorical variables are 
presented as frequencies with percentages.

For baseline characteristics and univariate analysis, comparisons 
were made according to CKM staging. Normally distributed variables 
were analyzed using ANOVA, while non-normally distributed 
variables were analyzed using the Kruskal-Wallis test. Categorical 
variables were analyzed using the chi-square test or Fisher’s exact test. 
In univariate logistic regression (stepwise method), variables with 
p < 0.05 were considered potential covariates for subsequent analyses.

For multivariate logistic regression, three nested models were 
used to analyze four biomarkers (RAR, NPAR, SIRI, Homair). Model 
1 was unadjusted; Model 2 adjusted for demographic covariates (age, 
sex, and race); and Model 3 further adjusted for clinical/metabolic 
factors (HbA1c, eGFR, UACR, BMI, smoking status). Odds ratios 
(OR) and 95% confidence intervals (CI) were calculated. The dose–
response relationship was evaluated using quartile classification.

To explore the nonlinear relationship between biomarkers and 
CKM risk, a restricted cubic spline (RCS) analysis with four knots was 
performed. The optimal cutoff values were determined using the RCS 
curve based on Model 3, and these values were subsequently used for 
binary logistic regression.

Survival analysis was conducted using Kaplan–Meier curves and 
log-rank tests to evaluate the relationship between RAR quartiles and 
all-cause/cardiovascular/kidney disease mortality. Cox proportional 
hazards models were used to calculate hazard ratios (HR), and the 
proportional hazards assumption was tested using Schoenfeld  
residuals.

To ensure reproducibility, a fixed random seed (random_
state = 42) was set for all steps involving randomness, including 
data splitting and model training. For the train-test split, 
we categorized CKM stages 0–3 as 0 and CKM stage 4 as 1, using 
stratified sampling (stratify = y) to maintain consistent distribution 
across both sets, with a 70:30 ratio. Hyperparameter tuning was 
performed with grid search (GridSearchCV) for each model’s 
predefined search space.

Feature selection was conducted using LASSO regression with 
10-fold cross-validation (1-SE criterion), resulting in 14 key predictive 
variables. The model was developed by training 15 algorithms, 
including XGBoost, LightGBM, and neural networks, on the 70:30 
train-test split, with hyperparameters optimized via grid search. 
Model performance was evaluated using AUC, accuracy, recall, 
precision, RMSE, and MAE. To enhance model interpretability, SHAP 
values and partial dependence plots were utilized. Ensemble strategies, 

including weighted averaging and stacking, were applied to optimize 
AUC and recall.

Clinical applicability was evaluated using decision curve analysis 
(DCA), quantifying the net benefit of the prediction model across a 
range of threshold probabilities (0.08–0.91). Calibration curves were 
used to assess the consistency between predicted and observed risks.

Sensitivity and subgroup analyses were performed by testing 
interaction terms between RAR and covariates (e.g., diabetes, 
hypertension) in stratified logistic regression models. Multiple 
imputations by chained equations (MICE) were compared with the 
missing data handling method in LightGBM to assess the robustness 
of the results.

Software packages used include glmnet (LASSO), rms (RCS), 
xgboost, lightgbm, scikit-learn (machine learning), survminer 
(survival analysis), and shap (SHAP visualization). A two-sided 
p-value of < 0.05 was considered statistically significant.

Results

Baseline characteristics

Based on the disease staging of CKM, participants’ basic 
information and clinical characteristics were grouped and statistically 
analyzed. The study included a total of 19,884 participants, among 
which 1,881 participants (9.46%) had CKM stage 0, 2,666 participants 
(13.41%) had stage 1, 11,712 participants (58.90%) had stage 2, 1,298 
participants (6.53%) had stage 3, and 2,327 participants (11.70%) had 
stage 4. The differences in FINS, ALB, UA, CR, FBG, HbA1c, WBC, 
NCP, NC, RDW, RAR, NPAR, TC, TG, WC, AGE, MARRY, PIR, Egfr, 
UACR, LYC, MCC, SIRI, Homair, GENDER, RACE, and EDU among 
the five groups were statistically considerable (p < 0.05), while the 
difference in PLT was not meaningful (p > 0.05) (Table  2). After 
confirming that RAR, NPAR, SIRI, and Homair were all associated 
with CKM, we  further performed univariate logistic regression 
analysis using DM (21) and Heart Failure (22) as grouping factors, 
which confirmed that these associations were indeed statistically 
significant (p < 0.05) (Supplementary Tables S3, S4).

Multimodal logistic regression analysis

After baseline data analysis, to validate the relationship between 
RAR, NPAR, SIRI, and Homair with CKM while excluding other 
influencing factors, we grouped each biomarker into quartiles based 
on their weighted values, using the 25th, 50th, and 75th percentiles as 
cutoffs (Supplementary Table S5) and then conducted multimodal 
logistic regression analysis (Table  3). The results showed that all 
variables exhibited a clear dose-dependent effect in the unadjusted 
model (Model 1), meaning that as the variable levels increased, the 
odds ratio (OR) markedly increased (p < 0.05). In Model 3, after 
stepwise adjustment for confounding factors, all factors maintained 
substantial differences (p < 0.05), with RAR being the most significant 
(OR: 2.73, 95% CI: 2.07–3.59, p < 0.001), indicating that its association 
with the outcome was independent of the adjusted confounding 
factors and may be a key independent predictor. NPARQ, SIRIQ, and 
HomairQ showed certain changes after adjustment: NPARQ in Model 
3 had an OR of 1.41 (1.13–1.77, p = 0.003); although the effect size 
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TABLE 2 The baseline characteristics of NHANES 1999–2018 participants, stratified by CKM syndrome stages 0–4, weighted for representativeness.

Variable Total 
(n = 19,884)

0 
(n = 1881)

1 
(n = 2,666)

2 
(n = 11,712)

3 
(n = 1,298)

4 
(n = 2,327)

Statistic P

FINS, Mean 

(SE)
12.78 (0.14) 5.97 (0.14) 11.12 (0.25) 14.36 (0.19) 10.32 (0.42) 15.60 (0.44) F = 356.30 <0.001

ALB, Mean 

(SE)
4.25 (0.01) 4.36 (0.01) 4.26 (0.01) 4.26 (0.01) 4.21 (0.01) 4.07 (0.01) F = 435.94 <0.001

UA, Mean 

(SE)
329.37 (0.87) 277.81 (2.07) 316.35 (2.22) 340.36 (1.06) 317.77 (2.94) 352.39 (2.76) F = 356.32 <0.001

CR, Mean 

(SE)
77.98 (0.31) 71.92 (0.43) 75.12 (0.41) 76.46 (0.28) 88.47 (2.75) 91.61 (1.49) F = 165.02 <0.001

FBG, Mean 

(SE)
106.61 (0.29) 91.99 (0.33) 104.53 (0.22) 109.34 (0.42) 98.42 (0.77) 116.79 (1.02) F = 415.79 <0.001

HbA1c, Mean 

(SE)
5.63 (0.01) 5.21 (0.01) 5.45 (0.01) 5.71 (0.01) 5.40 (0.02) 6.04 (0.03) F = 586.48 <0.001

WBC, Mean 

(SE)
6.83 (0.03) 6.11 (0.06) 6.64 (0.05) 6.97 (0.03) 6.79 (0.08) 7.16 (0.06) F = 186.74 <0.001

NCP, Mean 

(SE)
57.98 (0.11) 56.32 (0.30) 57.02 (0.23) 58.20 (0.12) 58.27 (0.29) 59.88 (0.26) F = 96.69 <0.001

NC, Mean 

(SE)
4.03 (0.02) 3.51 (0.04) 3.85 (0.03) 4.12 (0.02) 4.02 (0.06) 4.33 (0.04) F = 191.42 <0.001

RDW, Mean 

(SE)
13.08 (0.02) 12.88 (0.04) 13.13 (0.03) 12.96 (0.02) 13.25 (0.03) 13.90 (0.06) F = 193.18 <0.001

RAR, Mean 

(SE)
3.11 (0.01) 2.98 (0.01) 3.10 (0.01) 3.07 (0.01) 3.17 (0.01) 3.47 (0.03) F = 388.47 <0.001

NPAR, Mean 

(SE)
13.74 (0.03) 13.01 (0.09) 13.48 (0.06) 13.75 (0.03) 13.89 (0.08) 14.89 (0.09) F = 250.37 <0.001

PLT, Mean 

(SE)
249.56 (0.80) 240.80 (1.84) 243.06 (1.63) 255.79 (0.87) 237.33 (1.93) 240.58 (2.29) F = 0.48 0.491

TC, Mean 

(SE)
5.07 (0.01) 4.63 (0.03) 4.86 (0.02) 5.29 (0.02) 4.74 (0.04) 4.76 (0.03) F = 25.27 <0.001

TG, Mean 

(SE)
136.41 (1.26) 70.96 (0.78) 83.24 (0.71) 167.35 (1.85) 86.85 (1.45) 141.82 (2.90) F = 614.97 <0.001

WC, Mean 

(SE)
99.07 (0.22) 78.98 (0.19) 96.83 (0.45) 102.34 (0.22) 100.06 (0.51) 106.57 (0.55) F = 1943.84 <0.001

AGE, Mean 

(SE)
48.35 (0.22) 36.99 (0.47) 44.76 (0.37) 49.84 (0.22) 42.90 (0.67) 62.52 (0.54) F = 1151.55 <0.001

PIR, Mean 

(SE)
2.96 (0.03) 3.11 (0.06) 3.03 (0.05) 3.00 (0.03) 2.85 (0.08) 2.54 (0.06) F = 44.57 <0.001

Egfr, Mean 

(SE)
95.99 (0.35) 107.75 (0.72) 102.21 (0.66) 95.76 (0.37) 94.03 (1.24) 78.12 (0.67) F = 955.84 <0.001

UACR, Mean 

(SE)
87.59 (10.30) 31.51 (5.07) 13.54 (2.01) 80.56 (8.43) 199.24 (80.34) 224.52 (50.54) F = 19.54 <0.001

LYC, Mean 

(SE)
2.01 (0.01) 1.88 (0.02) 2.01 (0.02) 2.05 (0.01) 2.00 (0.02) 1.96 (0.03) F = 6.49 0.012

MCC, Mean 

(SE)
0.54 (0.00) 0.50 (0.01) 0.53 (0.00) 0.55 (0.00) 0.53 (0.01) 0.59 (0.01) F = 145.06 <0.001

SIRI, Mean 

(SE)
1.21 (0.01) 1.02 (0.02) 1.14 (0.02) 1.22 (0.01) 1.17 (0.02) 1.54 (0.03) F = 195.82 <0.001

Homair, Mean 

(SE)
65.01 (0.86) 24.88 (0.65) 52.66 (1.28) 74.21 (1.22) 47.55 (2.49) 88.81 (3.96) F = 266.05 <0.001

(Continued)
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TABLE 2 (Continued)

Variable Total 
(n = 19,884)

0 
(n = 1881)

1 
(n = 2,666)

2 
(n = 11,712)

3 
(n = 1,298)

4 
(n = 2,327)

Statistic P

GENDER, 

n (%)
χ2 = 184.39 <0.001

  Male 10,013 (49.93) 777 (38.83) 1,344 (50.96) 6,139 (52.84) 540 (42.21) 1,213 (49.49)

  Female 9,871 (50.07) 1,104 (61.17) 1,322 (49.04) 5,573 (47.16) 758 (57.79) 1,114 (50.51)

RACE, n (%) χ2 = 196.99 <0.001

  1 3,418 (8.01) 189 (5.14) 514 (10.68) 2,234 (8.14) 202 (9.94) 279 (5.08)

  2 1718 (5.48) 146 (5.55) 273 (6.01) 1,001 (5.30) 132 (7.93) 166 (3.92)

  3 8,860 (68.15) 811 (68.69) 1,025 (64.36) 5,249 (68.93) 558 (64.61) 1,217 (71.08)

  4 3,917 (11.12) 342 (9.99) 505 (10.64) 2,239 (10.77) 297 (13.07) 534 (13.97)

  5 1971 (7.24) 393 (10.63) 349 (8.31) 989 (6.86) 109 (4.45) 131 (5.95)

EDU, n (%) χ2 = 415.86 <0.001

  1 2,510 (6.47) 103 (3.16) 267 (5.30) 1,609 (6.80) 129 (5.43) 402 (11.10)

  2 2,934 (11.55) 216 (8.58) 392 (10.57) 1771 (12.04) 140 (8.11) 415 (16.17)

  3 4,579 (24.32) 374 (19.72) 597 (23.52) 2,789 (25.27) 270 (22.51) 549 (26.64)

  4 5,540 (30.50) 564 (30.67) 743 (28.84) 3,214 (31.04) 436 (33.81) 583 (27.04)

  5 4,294 (27.16) 624 (37.88) 665 (31.77) 2,313 (24.86) 321 (30.14) 371 (19.06)

SMOKING, n 

(%)

χ2 = 311.64 <0.001

  0 10,613 (52.86) 1,196 (61.22) 1,535 (56.01) 6,083 (51.27) 792 (61.21) 1,007 (41.50)

  1 5,205 (26.12) 257 (15.88) 606 (24.79) 3,200 (27.25) 278 (22.09) 864 (36.65)

  2 4,045 (21.02) 426 (22.90) 522 (19.20) 2,416 (21.48) 227 (16.69) 454 (21.85)

DRINKING, 

n (%)

χ2 = 80.32 <0.001

  0 4,853 (25.18) 329 (20.84) 495 (22.87) 3,142 (25.71) 211 (20.75) 676 (31.51)

  1 11,513 (74.82) 965 (79.16) 1,330 (77.13) 7,302 (74.29) 623 (79.25) 1,293 (68.49)

SPORT, n (%) χ2 = 326.52 <0.001

  1 6,516 (34.32) 483 (23.67) 822 (30.60) 3,845 (36.38) 392 (27.77) 974 (47.60)

  2 10,505 (65.68) 1,242 (76.33) 1,668 (69.40) 5,854 (63.62) 816 (72.23) 925 (52.40)

CKD, n (%) χ2 = 1214.64 <0.001

  0 15,228 (93.27) 1,350 (99.10) 1904 (98.89) 9,819 (94.51) 705 (85.39) 1,450 (76.52)

  1 1,493 (6.73) 16 (0.90) 28 (1.11) 726 (5.49) 203 (14.61) 520 (23.48)

CVD, n (%) χ2 = 19884.00 <0.001

  0 15,505 (90.51) 1,430 (100.00) 2016 (100.00) 11,128 (100.00) 931 (100.00) 0 (0.00)

  1 2087 (9.49) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2087 (100.00)

HBP, n (%) χ2 = 8141.03 <0.001

  0 7,307 (46.02) 1,430 (100.00) 2015 (100.00) 2,718 (26.84) 729 (85.87) 415 (22.78)

  1 10,279 (53.98) 0 (0.00) 0 (0.00) 8,409 (73.16) 198 (14.13) 1,672 (77.22)

DM, n (%) χ2 = 6190.19 <0.001

  0 5,677 (33.66) 0 (0.00) 326 (13.59) 4,508 (42.37) 780 (89.40) 63 (3.34)

  1 3,060 (13.35) 0 (0.00) 0 (0.00) 2,252 (16.12) 57 (3.91) 751 (31.89)

  2 8,852 (52.99) 1,430 (100.00) 1,690 (86.41) 4,369 (41.51) 90 (6.70) 1,273 (64.77)

MARRY, 

n (%)

χ2 = 1039.01 <0.001

  1 10,589 (56.59) 822 (46.38) 1,413 (56.84) 6,518 (59.20) 610 (50.12) 1,226 (57.27)
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TABLE 2 (Continued)

Variable Total 
(n = 19,884)

0 
(n = 1881)

1 
(n = 2,666)

2 
(n = 11,712)

3 
(n = 1,298)

4 
(n = 2,327)

Statistic P

  2 1792 (6.35) 61 (1.83) 119 (3.45) 1,055 (6.46) 123 (5.96) 434 (15.89)

  3 2064 (10.19) 129 (6.73) 261 (9.87) 1,270 (10.82) 111 (9.69) 293 (11.41)

  4 655 (2.41) 51 (2.30) 85 (2.20) 410 (2.54) 36 (1.96) 73 (2.39)

  5 3,168 (16.66) 629 (32.07) 529 (18.69) 1,544 (14.09) 273 (21.04) 193 (7.50)

  6 1,457 (7.80) 179 (10.70) 252 (8.95) 791 (6.90) 139 (11.23) 96 (5.55)

BMIQ, n (%) χ2 = 6980.87 <0.001

  1 332 (1.86) 0 (0.00) 166 (6.48) 123 (1.26) 43 (2.76) 0 (0.00)

  2 5,408 (28.98) 1863 (99.23) 644 (24.92) 2,429 (20.77) 78 (4.17) 394 (17.87)

  3 6,474 (32.38) 18 (0.77) 992 (37.71) 4,064 (34.66) 643 (53.40) 757 (33.45)

  4 7,348 (36.78) 0 (0.00) 833 (30.89) 4,941 (43.31) 495 (39.68) 1,079 (48.68)

SE: standard error; F: ANOVA, χ2: Chi-square test. BMIQ: (1) <18 (Underweight), (2) 18–25 (Normal weight), (3) 25–30 (Overweight), (4) ≥ 30 (Obese). CVD (Cardiovascular Disease), DM 
(Diabetes Mellitus), HBP (High Blood Pressure), CKD (Chronic Kidney Disease), FINS (Fasting Insulin), ALB (Albumin), UA (Uric Acid), CR (Creatinine), FBG (Fasting Blood Glucose), 
HbA1c (Hemoglobin A1c), WBC (White Blood Cell Count), NCP (Neutrophil Count Percentage), NC (Neutrophil Count), RDW (Red Cell Distribution Width), TC (Total Cholesterol), TG 
(Triglycerides), WC (Waist Circumference), eGFR (Estimated Glomerular Filtration Rate), LYC (Lymphocyte Count), MCC (Monocyte Count), PLT (Platelet Count), BMI (Body Mass Index), 
UACR (Urine Albumin-to-Creatinine Ratio), EDU (Education), PIR (Poverty Income Ratio), RAR (Red Cell Distribution Width to Albumin Ratio), NPAR (Neutrophil Percentage to Albumin 
Ratio), SIRI (Systemic Immune-Inflammation Index), Homair (Homeostatic Model Assessment for Insulin Resistance), eGFR (Estimated Glomerular Filtration Rate), RCS (Restricted Cubic 
Splines), AUC (Area Under the ROC Curve).

TABLE 3 Multimodal logistic regression analysis of four biomarkers, weighted for representativeness.

Variables Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

NPARQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.23 (1.03 ~ 1.48) 0.026 1.14 (0.93 ~ 1.39) 0.203 1.05 (0.80 ~ 1.37) 0.73

3 1.59 (1.32 ~ 1.92) <0.001 1.28 (1.04 ~ 1.58) 0.021 1.04 (0.79 ~ 1.35) 0.8

4 2.69 (2.26 ~ 3.20) <0.001 1.91 (1.59 ~ 2.30) <0.001 1.41 (1.13 ~ 1.77) 0.003

SIRIQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.21 (1.01 ~ 1.46) 0.049 1.11 (0.90 ~ 1.37) 0.343 1.08 (0.84 ~ 1.41) 0.542

3 1.53 (1.28 ~ 1.83) <0.001 1.28 (1.04 ~ 1.57) 0.022 1.19 (0.92 ~ 1.53) 0.187

4 2.69 (2.30 ~ 3.16) <0.001 1.84 (1.54 ~ 2.20) <0.001 1.47 (1.15 ~ 1.88) 0.003

RARQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.37 (1.09 ~ 1.72) 0.007 1.02 (0.81 ~ 1.28) 0.882 1.15 (0.86 ~ 1.55) 0.34

3 2.05 (1.74 ~ 2.43) <0.001 1.37 (1.15 ~ 1.63) <0.001 1.57 (1.23 ~ 2.00) <0.001

4 4.33 (3.62 ~ 5.18) <0.001 2.53 (2.05 ~ 3.13) <0.001 2.73 (2.07 ~ 3.59) <0.001

HomairQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.33 (1.11 ~ 1.59) 0.002 1.05 (0.85 ~ 1.29) 0.660 1.08 (0.83 ~ 1.40) 0.577

3 1.71 (1.42 ~ 2.06) <0.001 1.18 (0.95 ~ 1.46) 0.131 1.33 (1.00 ~ 1.75) 0.051

4 2.46 (2.03 ~ 2.98) <0.001 1.38 (1.10 ~ 1.71) 0.005 1.52 (1.11 ~ 2.07) 0.009

OR: odds ratio, CI: confidence interval.
Model 1: Crude.
Model 2: Adjust: GENDER, RACE, EDU, AGEQ, MARRY, PIR.
Model 3: Adjust: GENDER, RACE, EDU, SMOKING, DRINKING, SPORT, HBP, DM, AGEQ, BMI, WBC, PIR.
RAR (Red Cell Distribution Width to Albumin Ratio), NPAR (Neutrophil Percentage to Albumin Ratio), SIRI (Systemic Immune-Inflammation Index), Homair (Homeostatic Model 
Assessment for Insulin Resistance).
HomairQ (P25 = 26.1, P50 = 43.44, P75 = 74.389), SIRIQ (P25 = 0.69, P50 = 1, P75 = 1.467), NPARQ (P25 = 12.045, P50 = 13.659, P75 = 15.311), and RARQ (P25 = 2.804, P50 = 3.023, 
P75 = 3.293).
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decreased, it remained robust. SIRIQ in Model 3 had an OR of 1.47 
(1.15–1.88, p = 0.003), also showing a decreased effect size but still 
significant after adjustment. HomairQ in Model 3 had an OR of 1.52 
(1.11–2.07, p = 0.009), with the adjusted effect size decreasing but 
still meaningful.

In summary, RARQ remained prominent with a high effect size 
in all adjusted models, suggesting that it may be a strong independent 
predictor. However, NPARQ, SIRIQ, and HomairQ, although showing 
a decrease in effect size after adjustment, still remained relevant, 
indicating that the associations between these variables and the 
outcome are somewhat independent of confounding factors but may 
still be influenced by some confounding factors. We observed that the 
effect of RAR on CKM was the largest among the indicators studied. 
To further investigate the relationship between RAR and other factors, 
we grouped participants by quartiles of RAR and performed univariate 
logistic regression analysis to examine its relationship with other 
variables (Supplementary Table S6).

RCS and binary logistic regression

Based on the multimodal logistic regression analysis, we plotted 
the restricted cubic spline (RCS) curves for the four biomarkers across 
three models. RAR demonstrated statistical differences in the RCS of 
all three models, with a nonlinear correlation (P for nonlinear: 
<0.001), indicating that the relationship between RAR and CKM is not 
linear, but rather nonlinear (shown in Figures 1G–I). Homair also 
showed statistical differences in all three models (P for overall < 0.05), 
and the correlation between them was nonlinear (P for nonlinear: 
<0.001), as seen in Figures  1J–L. NPAR exhibited a nonlinear 
relationship in Model 1 (Figure 1A) and Model 2 (Figure 1B) (P for 
nonlinear: <0.05), but in Model 3 (Figure 1C), the relationship with 
CKM became linear after adjusting for several covariates. Differences 
were statistically significant in all three models (P for overall <0.001). 
SIRI displayed a similar pattern, with statistical differences between 
groups in Model 1 (Figure 1D), Model 2 (Figure 1E), and Model 3 
(Figure 1F) (P for overall < 0.05). In Models 1 and 3, SIRI showed a 
nonlinear correlation with CKM (P for nonlinear: <0.05), whereas 
Model 2 indicated a linear relationship (P for nonlinear: >0.05).

We determined the optimal cutoff based on the RCS in Model 
3 and then performed a binary logistic regression analysis 
(Supplementary Table S7). The results showed that RAR, NPAR, 
and Homair had statistically significant differences between the 
two groups (p < 0.05). However, for SIRI in Node 1, although the 
OR = 0.52, the p-value was 0.438, indicating that this association 
was not statistically significant, suggesting that the effect of SIRI 
at this node was weak. In contrast, in Node 2, SIRI was 
significantly associated with the outcome (OR = 1.92, p < 0.001), 
indicating that higher SIRI values were associated with the 
occurrence of the outcome, and this relationship was 
statistically significant.

Cox proportional hazards regression and 
Kaplan–Meier survival curves

We performed multimodal Cox proportional hazards regression 
analysis on these four biomarkers based on survival outcomes and 

survival time. The results showed that RAR, SIRI, and NPAR remained 
statistically significant in the fourth quartile after adjusting for factors 
such as GENDER, RACE, EDU, SMOKING, DRINKING, SPORT, 
HBP, DM, AGEQ, BMI, MARRY, WBC, and PIR (p < 0.001), 
indicating a notable relationship with survival outcomes (Table 4).

Based on these statistical results, RAR exhibited a significant 
predictive role for CKM. Therefore, we further conducted survival 
analysis for RAR, including survival curves for all-cause mortality, 
cardiovascular disease mortality, and kidney disease mortality 
(Figure 2). The results showed that as RAR quartiles increased (i.e., as 
risk values increased), survival probability gradually decreased, 
indicating that individuals with higher RAR values had lower survival 
rates during the study period. Specifically, the survival curve analysis 
for RAR and all-cause mortality (Log-rank p < 0.001) (Figure 2A) and 
cardiovascular disease mortality (Log-rank p < 0.001) (Figure 2B) 
demonstrated that the mortality rate in the fourth quartile of RAR was 
substantially higher than in the other groups. Although the survival 
curve for kidney disease mortality did not show clear graphical 
differences, statistical analysis revealed a significant difference (Log-
rank p < 0.001) (Figure 2C). These findings highlight that RAR is a 
strong risk factor associated with mortality risk, and there is a notable 
association between RAR quartiles and survival rates. This further 
underscores the importance of RAR as a survival prediction factor.

Machine learning model selection

To further validate the role of various inflammation-nutritional-
metabolic indicators in this dataset, we performed machine learning 
analysis to confirm their predictive value by studying their importance 
and interactions. First, we conducted LASSO analysis and selected 14 
variables based on the LASSO path plot (Supplementary Figure S3A) 
and cross-validation error curve (Supplementary Figure S3B) using 
the 1se criterion (Supplementary Figure S3C). Subsequently, we used 
these variables for machine learning analysis.

In the machine learning analysis, we  simulated 15 different 
models (Figure 3A) and compared the R2, RMSE, and MAE for the 
test and validation sets (Supplementary Figure S4A). The results 
showed that models such as XGBoost, LightGBM, and Neural 
Network did not exhibit overfitting in the training set 
(Supplementary Figure S4C) and performed well with low error in the 
test set (Supplementary Figure S4B), indicating strong generalization 
ability. Next, we calculated the ROC curve and AUC values for each 
model and, based on the AUC results and the fit, selected LightGBM 
(AUC = 0.92) and XGBoost (AUC = 0.91) for the construction of a 
new model through multi-model combination (Figure 4A).

We first built the model using a weighted approach, determining 
the best 1:1 weighted combination through a grid search, which 
yielded the highest AUC value (0.92) (Figure  4D). Subsequently, 
we stacked the two models, also using a grid search to find the best 
AUC value for the stacked model (0.92) (Figure 4C). Since Recall and 
Precision cannot increase simultaneously (Figure 4E), we chose Recall 
as the primary evaluation metric, setting a minimum Recall of 90% 
for model performance evaluation, in line with the severe prognostic 
nature of CKM disease. Under this condition, LightGBM 
demonstrated the best performance (Figure 4B).

Specifically, LightGBM achieved a Recall rate of 91%, which is 
equal to or higher than other models, effectively reducing the risk of 
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missed diagnoses and ensuring that the majority of affected 
individuals are correctly identified. Additionally, LightGBM excelled 
in accuracy, achieving 0.87, indicating its higher precision in 
classifying healthy versus affected individuals. Meanwhile, LightGBM, 
as an efficient gradient boosting framework, has a significant training 
speed advantage on large datasets, enabling rapid response to model 
updates and prediction tasks. Although its false positive rate was 0.24, 
this value was relatively close among all models, and LightGBM’s 
advantages in Recall and accuracy offset this. Therefore, LightGBM is 
the model that best meets our needs (consistent with other research 
findings (23)).

SHAP analysis

We built a predictive model based on the LightGBM algorithm 
and conducted an analysis. The dataset was split into a training 
set and a test set in a 7:3 ratio, and we applied ten-fold cross-
validation for model training, using the default parameters from 
the R package. The final prediction results were obtained. Since 
the dataset contained missing values, although the LightGBM 
model itself has the ability to handle missing data (missing values 
are represented in grayscale in SHAP analysis), we  decided to  
use the k-nearest neighbors imputation method (knn = 5)  

FIGURE 1

Restricted cubic spline. Based on the results from multiple logistic regression models, we used restricted cubic spline models to examine the 
association between the presence of CKD and four biomarkers in the NHANES (1999–2018) dataset. The odds ratio (OR) (red line) and 95% confidence 
interval (shaded area) were calculated. (A–C) RCS Curve for NPAR and CKM. (D–F) RCS Curve for SIRI and CKM. (G–I) RCS Curve for RAR and CKM. 
(J–L) RCS Curve for HMOAIR and CKM. Model 1: (A,D,G,J). Adjust: Crude. Model 2: (B,E,H,K). Adjust: GENDER, RACE, EDU, AGEQ, MARRY, PIR. Model 
3: (C,F,I,L). Adjust: GENDER, RACE, EDU, SMOKING, DRINKING, SPORT, HBP, DM, AGEQ, BMI, MARRY, WBC, PIR.
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and compare the results with those of the untreated dataset 
(Supplementary Figure S5).

In the analysis without handling the missing values (Figure 3), the 
feature importance plot showed that the top three variables were DM, 
AGE, and RAR (Figure  3A). From the SHAP beeswarm plot 
(Figure  3B), we  can see that the yellowish colors represent larger 
variable values, with high age, diabetes, and high RAR values showing 
deep yellow and being distributed in the positive direction of the 
SHAP values. This indicates that these factors have a positive influence 
on the CKM outcome. This result was similarly confirmed in the 
waterfall plot (Figure 3C).

Moreover, in the dependence plots for RAR-AGE (Figure 3E) 
and RAR-DM (Figure  3D), high RAR values are primarily 
distributed in the positive direction of the SHAP values, and these 
regions are also concentrated with individuals who are older or 
have diabetes. In contrast, low RAR values are mostly distributed 
in the negative direction of the SHAP values, with these 
areas concentrating younger individuals or those who do not 
have diabetes. These results suggest that RAR, age, and diabetes 
status significantly influence CKM outcome prediction, 
and higher RAR values are closely associated with adverse  
outcomes.

DCA (decision curve analysis)

Based on the variables selected by Lasso and kidney metabolic 
indicators (HbA1c and eGFR), these were incorporated into the 
decision curve analysis (DCA) (Figure 5) and subsequently validated 
using a calibration curve (Supplementary Figure S6). In this analysis, 
Model 1 (AUC = 0.741) includes only the traditional variables HbA1c 
and eGFR, Model 2 (AUC = 0.861) includes all Lasso-selected 
variables, and Model 3 (AUC = 0.867) includes all of the above 
indicators. The results show that, compared to the “no intervention” 
and “complete intervention” scenarios, all three prediction models 
provided significant net benefit improvement at certain thresholds of 
CKM (event occurrence), with Model 2 and Model 3 being the most 
outstanding. Moreover, when the threshold probability for CKM 
occurrence was between approximately 0.08 and 0.48, Models 3 and 2 
significantly outperformed Model 1. When the threshold probability 
for CKM occurrence was between approximately 0.08 and 0.875, 
Model 3 showed slightly better overall prediction performance than 
Model 2, suggesting that within this range, our model has clinical 
utility, and the combined use of both new and traditional indicators 
achieves better results. The calibration curve (Supplementary Figure S6) 
analysis shows that the ideal perfect prediction is represented by the 

TABLE 4 Multi-model Cox regression of four biomarkers, weighted for representativeness.

Variables Model1 Model2 Model3

HR (95%CI) P HR (95%CI) P HR (95%CI) P

SIRIQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.23 (1.05–1.43) 0.011 1.02 (0.87–1.19) 0.846 0.92 (0.74–1.16) 0.481

3 1.81 (1.55–2.12) <0.001 1.31 (1.12–1.55) 0.001 1.21 (0.98–1.50) 0.074

4 3.21 (2.78–3.69) <0.001 1.75 (1.50–2.04) <0.001 1.44 (1.19–1.75) <0.001

RARQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.87 (1.62–2.15) <0.001 1.28 (1.12–1.47) <0.001 1.24 (1.04–1.47) 0.014

3 2.69 (2.35–3.08) <0.001 1.48 (1.30–1.69) <0.001 1.36 (1.13–1.64) 0.001

4 4.84 (4.21–5.56) <0.001 2.55 (2.24–2.90) <0.001 2.38 (1.98–2.88) <0.001

NPARQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.33 (1.13–1.57) <0.001 1.15 (0.96–1.38) 0.120 1.10 (0.87–1.38) 0.436

3 1.63 (1.40–1.90) <0.001 1.20 (1.04–1.39) 0.014 1.13 (0.93–1.36) 0.211

4 3.03 (2.64–3.48) <0.001 1.81 (1.58–2.08) <0.001 1.65 (1.37–1.98) <0.001

HomairQ

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.10 (0.97–1.24) 0.152 0.91 (0.80–1.04) 0.161 0.90 (0.76–1.08) 0.265

3 1.09 (0.97–1.24) 0.155 0.87 (0.75–1.01) 0.070 0.92 (0.76–1.11) 0.407

4 1.47 (1.27–1.69) <0.001 1.18 (1.01–1.39) 0.037 0.93 (0.76–1.14) 0.478

HR: hazard ratio, CI: confidence interval.
Model 1: Crude.
Model 2: Adjust: GENDER, RACE, EDU, AGEQ, MARRY, PIR.
Model 3: Adjust: GENDER, RACE, EDU, SMOKING, DRINKING, SPORT, HBP, DM, AGEQ, BMI, MARRY, WBC, PIR.
HomairQ (P25 = 26.1, P50 = 43.44, P75 = 74.389), SIRIQ (P25 = 0.69, P50 = 1, P75 = 1.467), NPARQ (P25 = 12.045, P50 = 13.659, P75 = 15.311), and RARQ (P25 = 2.804, P50 = 3.023, 
P75 = 3.293).
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FIGURE 2

Kaplan–Meier survival curves by RAR groups. Kaplan–Meier survival curves for all-cause mortality (A), cardiovascular disease mortality (B), and kidney 
disease mortality (C) by RARQ groups. RARQ group: 1 (Blue), 2 (Orange), 3 (Red), 4 (Green). (A) All-cause mortality. (B) cardiovascular disease mortality. 
(C) Kidney disease mortality.
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45-degree dashed line. Among all the models, model3 and model2 
have calibration curves that are closest to the dashed line, indicating 
the best prediction accuracy. In contrast, model1 shows a noticeable 
deviation from the line, suggesting relatively poorer performance. The 
proximity of the calibration curve to the dashed line directly reflects 
model performance: the closer the curve is to the line, the more 
consistent the model’s predictions are with actual observations. 
Conversely, the deviation in model1 indicates that this model may 
be experiencing overfitting or underfitting issues. This calibration 
analysis underscores the real-world applicability of the models, as the 
closer they are to the ideal line, the more reliable their predictions for 
real-world scenarios.

Subgroup analysis

We conducted a subgroup analysis to explore the interactions 
between different variables (including GENDER, RACE, education, 
smoking, drinking, sport, HBP, DM, AGE, and BMI) and RAR, and 
further investigate the relationship between RAR and CKM. In 

Supplementary Figure S7, we found that variables such as gender, race, 
sport, BMI, and drinking did not show significant interactions with 
RAR (p > 0.05). Age: The young group (AGEQ = 1) shows the strongest 
response to RAR (OR = 6.82), with the relationship weakening in older 
groups (AGEQ = 3, OR = 2.19). AGE significantly interacts with RAR 
and CKM (P for interaction < 0.001), indicating that age should 
be  considered in interventions and risk prediction. SMOKING: 
Smokers show higher OR values, indicating that smoking and alcohol 
consumption strengthen the RAR-CKM relationship. Smoking 
significantly moderates this relationship (P for interaction = 0.010). 
Education level: Lower education levels make individuals more 
sensitive to RAR (P for interaction = 0.029), suggesting they may 
be  more affected by RAR during CKM progression. HBP: The 
hypertensive group (OR = 4.42) shows a stronger relationship between 
RAR and CKM than the non-hypertensive group (OR = 2.56), with a 
significant interaction (P for interaction < 0.001), indicating heightened 
sensitivity in hypertensive patients. DM: Diabetic patients (OR = 3.75) 
show a stronger RAR-CKM relationship, with higher risks (P for 
interaction < 0.001), suggesting diabetes exacerbates the link between 
RAR and CKM.

FIGURE 3

SHAP analysis of machine learning. (A) Importance of the SHAP representation of CKM. (B) Bee warm SHAP analysis of CKM. (C) Waterfall plot of SHAP 
analysis of CKM. (D) SHAP dependence plot of RAR-DM for CKM. (E) SHAP dependence plot of RAR-AGE for CKM. DM (diabetes mellitus), HBP (high 
blood pressure), WBC (white blood cell count), TC (total cholesterol), WC (waist circumference), MCC (monocyte count), PLT (platelet count), PIR 
(poverty income ratio), RAR (red cell distribution width to albumin ratio), SIRI (systemic immune-inflammation index), Homair (homeostatic model 
assessment for insulin resistance).
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Discussion

This study systematically evaluated the associations and predictive 
value of composite indices like RAR, NPAR, SIRI, and Homair with 
chronic kidney metabolic disease (CKM). Multimodal logistic 
regression (Table  3) showed that RAR consistently maintained a 
significant dose–response relationship across all adjusted models 
(model 3, OR: 2.73, 95% CI: 2.07–3.59, p < 0.001), with its effect size 
much higher than that of other indicators, suggesting that RAR may 
be a potential independent marker of CKM. This result may stem from 
the fact that RAR integrates the dual pathophysiological mechanisms 
of inflammation (24) and nutritional metabolism (25) (e.g., albumin), 
reflecting the synergistic effects of inflammation activation and 
metabolic imbalance in CKM. In model 3, the high exposure groups 
of NPARQ and SIRIQ (Q4) showed independent effects (OR: 1.41, 
95% CI: 1.13–1.77, p < 0.001; OR: 1.47, 95% CI: 1.15–1.88, p < 0.001). 
However, the effects of the low exposure groups might be influenced 
by confounding factors. Restricted cubic spline (RCS) analysis further 
revealed the linear and nonlinear associations between RAR, NPAR, 
SIRI, and Homair in all three models with CKM, indicating that their 
predictive power appears to significantly increase beyond a specific 
threshold (P for overall: < 0.05), providing a theoretical basis for 
clinical risk stratification. In survival analysis, the high RAR group 

was associated with an increased risk for all-cause mortality, kidney 
disease mortality, and cardiovascular mortality. This supports the 
importance of RAR in prognostic evaluation (Log-rank p < 0.001).

Machine learning models [e.g., LightGBM (26)] achieved 
excellent performance (AUC = 0.92) with Lasso-selected variables 
(Supplementary Figure S3). SHAP analysis further identified RAR, 
age, and DM as core predictors (Figure 3). Dependence plots revealed 
concurrent elevations in RAR, age, and DM status. This suggests 
RAR’s role as a biomarker for the metabolic-inflammation vicious 
cycle, where elevated RAR may directly contributes to organ damage. 
In subgroup analysis (Supplementary Figure S7), significant 
interactions between RAR and education level, smoking, hypertension 
(HBP), DM, and age were observed (p < 0.05), indicating that its effect 
might be modulated by social behaviors and metabolic comorbidities, 
which might require differentiated consideration in interventions. The 
DCA curve also indicated that the model composed of these variables 
performed well, with net benefits significantly higher than those of the 
“no intervention” and “full intervention” scenarios at different CKM 
(event occurrence) threshold probabilities.

Previous studies have primarily focused on the association 
between single inflammation or metabolic biomarkers and CKM. For 
example, Yang et al. (27) investigated the relationship between the 
non-high-density lipoprotein cholesterol to high-density lipoprotein 

FIGURE 4

Machine learning model. (A) ROC curve comparison of machine learning models. (B) Model performance on test set, the color ranges from cyan (low 
values) to red (high values). (C) ROC curve – stacked model. (D) ROC curve – weighted ensemble. (E) LightGBM-precision & recall vs. threshold.
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cholesterol ratio (NHHR) and CKM, finding that dyslipidemia and 
lipid metabolism abnormalities could be valuable in identifying high-
risk individuals for CKM syndrome in its early stages. Similarly, Peng 
et al. (28) explored composite indicators like the triglyceride-glucose 
index (TyG), demonstrating that the combination of TG and FBG 
with other clinical data might help to predict the development and 
progression of CKM. Tang et al. (29), in their study of the Planetary 
Health Diet Index (PHDI), highlighted the close relationship between 
diet and CKM. Although many studies have investigated CKM 
prediction, there is limited exploration of integrated inflammation 
and nutritional-metabolic indices (e.g., RAR). This study, for the first 
time, suggests the central role of RAR in CKM risk stratification, 
which aligns with recent theories emphasizing the “inflammation-
metabolism axis (30, 31)” in chronic diseases. Additionally, the 
relationship between other associated factors such as SIRI, NPAR, 
and Homair with CKM is explored, collectively investigating the 
predictive value of multiple biomarkers for CKM.

The innovative aspects of this study are as follows: First, it is the 
first to systematically compare the predictive performance of 
multiple inflammation-nutrition-metabolism composite indicators 
for CKM, identifying RAR as the most robust predictor; Second, it 
integrates traditional statistical methods (multivariable regression, 
RCS) with advanced machine learning techniques (LightGBM, 
SHAP) to validate findings from multiple perspectives, including 
associations, nonlinear effects, and predictive performance, thereby 
enhancing the reliability of the conclusions; and Third, it links 
biomarkers directly to clinical outcomes and decision-making 

benefits through survival analysis and DCA curves, facilitating their 
translation into clinical practice. With a large sample (n = 19,884) 
and rigorous confounder adjustment, this study minimizes potential 
bias and enhances result validity.

This study has several limitations. First, the reliance on retrospective 
self-reported data might introduce information bias and measurement 
errors, potentially leading to misclassification of CKM stages. Second, 
the inclusion of only PREVENT equation-related patients and the use 
of NHANES-derived CKM population limits the generalizability of our 
findings. Third, the cross-sectional design precludes causal inferences, 
necessitating validation in prospective cohorts to confirm the predictive 
value of RAR. Fourth, despite multiple imputations for missing data, 
unmeasured confounders (e.g., diet, medication use) might influence 
the results. Fifth, the machine learning models require external 
validation to confirm their applicability to diverse populations. Finally, 
some subgroup analyses (e.g., sex, race) did not reach statistical 
significance, possibly due to sample heterogeneity or insufficient 
statistical power, warranting further exploration. Future studies should 
address these limitations through prospective validation, external 
cohort testing, and more detailed subgroup analyses.

Conclusion

This study demonstrates that RAR, as a composite inflammation-
nutrition-metabolism indicator, is independently associated with 
CKM risk and prognosis, exhibiting significantly superior predictive 

FIGURE 5

Decision curve analysis.
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performance compared to other biomarkers. By integrating machine 
learning models with the SHAP interpretability framework, RAR, age, 
and DM were identified as key predictors, providing a novel tool for 
early screening and risk stratification of CKM, further validated by 
decision curve analysis (DCA). Future research should focus on 
elucidating the biological mechanisms underlying RAR and exploring 
its clinical utility in dynamic monitoring, while also advancing the 
validation and optimization of multidimensional prediction models 
in real-world settings.
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Glossary

CVD - Cardiovascular Disease

DM - Diabetes Mellitus

HBP - High Blood Pressure

CKD - Chronic Kidney Disease

FINS - Fasting Insulin

ALB - Albumin

UA - Uric Acid

CR - Creatinine

FBG - Fasting Blood Glucose

HbA1c - Hemoglobin A1c

WBC - White Blood Cell Count

NCP - Neutrophil Count Percentage

NC - Neutrophil Count

RDW - Red Cell Distribution Width

TC - Total Cholesterol

TG - Triglycerides

WC - Waist Circumference

Egfr - Estimated Glomerular Filtration Rate

LYC - Lymphocyte Count

MCC - Monocyte Count

PLT - Platelet Count

BMI - Body Mass Index

UACR - Urine Albumin-to-Creatinine Ratio

EDU - Education

PIR - Poverty Income Ratio

RAR - Red Cell Distribution Width to Albumin Ratio

NPAR - Neutrophil Percentage to Albumin Ratio

SIRI - Systemic Immune-Inflammation Index

Homair - Homeostatic Model Assessment for Insulin Resistance

eGFR - Estimated Glomerular Filtration Rate

RCS - restricted cubic splines

AUC - area under the ROC curve
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