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1 Introduction

A pooled analysis of 1,108 population-representative studies published in 2024 noted

that type 2 diabetes mellitus (T2DM) affects 828 million adults worldwide (1). Researchers

recognize diabetes-associated cognitive dysfunction (DACD) as a critical comorbidity

of T2DM, reflecting the intersection of metabolic dysfunction and neurodegeneration.

Demographic trends for DACD very closely resemble those seen in diabetes mellitus (2).

A systematic review and meta-analysis encompassing >25 original studies with millions of

participants, estimates that the relative risk (RR) for all types of cognitive dysfunction is

1.73 (95% CI 1.65–1.82) for people with diabetes compared with people without diabetes

(3). DACD shares pathological features overlapping with Alzheimer’s disease (AD),

including insulin resistance, chronic neuroinflammation, and amyloid-β accumulation (4).

While existing therapies focus primarily on glycemic control, few interventions target

the brain-specific consequences of T2DM, such as cognitive impairment. The Memory

in Diabetes (MIND) sub-study of the Action to Control Cardiovascular Risk in Diabetes

(ACCORD) trial is the largest intervention study of cognitive impairment in diabetes

mellitus to date, found no benefit of intensive glycemic control on cognitive function (5).

Therefore, “novel” interventions to address DACD are urgently needed.

Intermittent fasting (IF), a dietary regimen alternating periods of fasting and feeding,

has emerged as a promising intervention to mitigate both metabolic and cognitive deficits

in T2DM (6). IF—encompassing regimens like time-restricted feeding and 5:2 fasting

(7)—induces metabolic switching from glucose to ketone metabolism, activating pathways

that may counteract neurodegeneration (8, 9). The objective of this opinion article is to

examine whether IF can improve T2DM-associated cognitive dysfunction by enhancing

insulin sensitivity, reducing neuroinflammation, mitigating oxidative stress, and restoring

gut microbiota homeostasis, and thoroughly analyzed the potential challenges associated

with the clinical translation of IF.
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2 Pathological links between T2DM
and cognitive dysfunction

Evidence exists of a link between type 2 diabetes mellitus

(T2DM), cognitive decline, and dementia (10). Given the

complexity of the phenotype of T2DM and cognitive dysfunction,

we will address the potential pathomechanistic links between the

two in the following key areas.

2.1 Insulin resistance

All brain cell types express insulin receptors, with the

highest densities localized to the olfactory bulb, hypothalamus,

hippocampus, cerebral cortex, striatum, and cerebellum (11,

12). Emerging evidence indicates that insulin influences cerebral

bioenergetics, enhances synaptic viability and dendritic spine

formation, increases the turnover of neurotransmitters, and

facilitates clearance of amyloid β peptide while modulating tau

phosphorylation (13, 14). T2DM, the predominant form of diabetes

mellitus, is generally characterized by chronic hyperglycemia,

hyperinsulinemia, dyslipidemia, as well as lipotoxicity, which result

in progressive deterioration of insulin secretion and insulin action

(15–18). Insulin resistance (IR) is defined as the lack or decreased

response of the target tissues to insulin (19, 20). Notably, evidence

has shown that peripheral IR results in loss of brain function,

which in turn is strongly associated with brain degeneration,

cognitive dysfunction, depression, and AD (21–24). Similarly, brain

insulin resistance (bIR) can be defined as the failure of brain

cells to respond to insulin as they normally would, resulting

in impairments in synaptic, metabolic, and immune response

functions (25). Individuals with relatively diminished brain insulin

sensitivity have a particularly high risk for an AD-like brain

pattern (26). Indeed, preclinical and clinical findings support

the hypothesis that bIR underlies the basic neuropathological

mechanism of cognitive impairment in the aging-related, T2DM-

associated, and neurodegenerative context (26). Through these

multiple pathways, we hypothesize that insulin resistance could

contribute to neurodegeneration, which in turn mediates and

promotes the development of AD, vascular cognitive impairment,

and other dementias. Notably, metabolites of the intestinal flora,

such as bile acids (BAs), short-chain fatty acids (SCFAs) and

amino acids (AAs) may influence to some extent the decreased

insulin sensitivity associated with T2DM dysfunction and regulate

metabolic as well as immune homeostasis (27).

2.2 Gut-brain axis dysregulation

The gut microbiome is known for playing a major role in

human health as well as being increasingly recognized as being

involved in the pathogenesis of metabolic diseases. Accumulating

preclinical and clinical data over the past years has shown that

alterations in the gut microbiota affect many organs involved in

T2DM and the clinical onset of hyperglycemia (28, 29). Multi-

omics (OMICs) studies have shown that single-dose streptozotocin

(STZ) -induced hyperglycemia (HG) is sufficient to induce

and exacerbate intestinal dysbiosis through modulation of the

cecum metabolite pool by analyzing the taxonomic composition,

transcriptional activity, and small molecule libraries of the cecum

(30). A two-stage case-control metagenome-wide association study

(MGWAS) based on deep next-generation shotgun sequencing

showed that patients with T2DM were characterized by gut

microbial dysbiosis, a decrease in the abundance of some

universal butyrate-producing bacteria and an increase in various

opportunistic pathogens, as well as an enrichment of other

microbial functions conferring sulfate reduction and oxidative

stress resistance (31). Intestinal dysbiosis promotes insulin

resistance and inflammation, exacerbating diabetes; diabetes

further worsens the intestinal dysbiosis, creating a mutually

reinforcing mechanism. GM dysbiosis synergistically results in (i)

a general increase in pro-inflammatory bacteria and a decrease

in anti-inflammatory bacteria; (ii) impair intestinal tight junction

integrity by increasing production of inflammatory metabolites

and intestinal inflammation; and (iii) induced neuroinflammation,

accelerated Aβ fibrillogenesis and parenchymal plaque burden

(32). Several studies report that a variety of intestinal bacteria

responsible for the production of lipopolysaccharides (LPS),

a neurotoxin that disrupts paracellular barriers by cleaving

intercellular proteins, such as E-cadherin in epithelial cells, leading

to the “leaky gut” phenomenon (33, 34). LPS activatesmicroglia and

astrocytes, triggering neuroinflammation that promotes amyloid

precursor protein accumulation, Aβ42 fibrillogenesis, plaque

formation, and ultimately neuronal loss—a key pathway in

neurodegeneration (35–37). Dysbiosis of gut microbiota promotes

the harmful intestinal substances enter the systemic circulation

through a compromised intestinal barrier, triggering systemic

inflammation, which in turn destroys the blood–brain barrier and

activates the TLR4/NF-κB signaling pathway in the brain, causing

neuroinflammation (38, 39).

2.3 Oxidative stress and neuroinflammation

An increasing number of studies have indicated that increased

oxidative stress is associated with neuronal damage and is a key

factor contributing to the onset and progression of DCAD (40–42).

ROS are normally produced as by-products of oxygen metabolism,

but various factors can elevate its production. Among them,

diabetes is a major cause of increased ROS generation by auto-

oxidation of glucose, protein glycation, and through the polyol

pathway (43). Oxidative stress has been shown to be a major

causal factor compromising neuronal loss and synaptic disruption

by impairing brain mitochondrial homeostasis, as seen in diabetic

mice models, ultimately having deleterious effects on cognitive

performance (44). In addition, a wide range of clinical studies

have noted that oxidative stress is contribute significantly to the

pathogenesis and progression of cognitive dysfunction (23, 45–

47). On the other hand, oxidative stress has also been shown to

be a facilitator of neuroinflammation, which is another primary

contributor to the progression of cognitive decline in T2DM (48).

During T2DM, influenced by HG, microglial activation

can exacerbate cytotoxicity and neuronal damage. Previous

studies have revealed that in T2DM rat models, microglia
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activation in the brain is evident, resulting in overexpression

of proinflammatory cytokines in the brains of these model rats,

along with a marked decline in their learning and memory

abilities (49). In contrast, treatment of T2DM model mice with

drugs significantly suppressed the over-activation of microglia

in the CNS, accompanied by a notable downregulation of

pro-inflammatory cytokines and a significant amelioration of

cognitive impairment symptom in the mice (50, 51). In the

CNS, the functions of microglia are highly dynamic and can

adopt different phenotypes based on the microenvironmental

signals they receive. This ability to change phenotype, known as

polarization, is a key characteristic of microglia, enabling them to

adapt to various physiological and pathological conditions (52).

However, they are generally classified into two main phenotypes:

M1 and M2 (53). M1 phenotype microglia are typically considered

pro-inflammatory, playing a key role in immune responses and

inflammatory reactions. On the other hand, M2 phenotype

microglia are mainly involved in neuroprotection and anti-

inflammatory responses. In db/db diabetic mouse model, microglia

are polarized into a pro-inflammatory M1 phenotype, along with

low levels of a neuroprotective M2 phenotype, and significant

cognitive impairment was observed through the Morris water

maze test (54). The link between regulatory T (Treg) function

and microglia polarization is well established in the brain

(55), dipeptidyl peptidase-4 (DPP4)-mediated impairment of

Tregs function polarize microglia toward a pro-inflammatory

phenotype and subsequently lead to neuroinflammation and

cognitive dysfunction in T2DM patients (54). In the T2DM

mouse model, the pharmacological intervention inhibited the

overactivated microglia and reversed the polarization of microglial

phenotypes under T2DM conditions, shifting them from the

proinflammatory M1 type to the anti-inflammatory M2 type,

with concomitant improvement of cognitive impairment in

T2DM mice (56, 57). IF, gut flora dysbiosis, neuroinflammation,

and oxidative stress form a self-reinforcing network that

underlies DACD.

3 Mechanisms of intermittent fasting
in neuroprotection

IF is defined as a dietary pattern that restricts the time of eating,

rather than the amount or composition of food, in the absence

of malnutrition. Popular intermittent fasting diets involve daily

time-restricted feeding or intermittent full-day fasting for 2 to 4

days per week. After an 8- to 12-h period of fasting, the liver

starts to break down fatty acids to produce ketone bodies, which

play a neuroprotective role by improving brain neuronal function,

decreasing inflammatory expression and reactive oxygen species

(ROS) production, activating brain-derived neurotrophic factor

(BDNF) expression in neurons, and restore neuronal metabolism

(58, 59). A clinical study in overweight adults suggests that

IF increases BDNF levels and may have anti-aging effects (60).

Moreover, studies suggest that IF-induced alterations in brain

energy metabolism favor the modulation of microglial polarization

from the M1 to the M2 phenotype and play an important

role in degenerative diseases (61). Studies in diabetic mice have

demonstrated that a 28-day IF treatment alleviated diabetes-

induced cognitive dysfunction via a microbiota-metabolites-

brain axis, benefiting from comprehensive investigations on

diabetic mice behavior/synaptic structure, mitochondrial/energy

metabolism-related signaling, and an integrated analysis of multi-

OMICs (6). Clinical studies on the 5:2 intermittent fasting

(IF) and the USDA healthy living (HL) diet have shown that

both regimens are effective in improving peripheral IR, lipid

metabolism, and cognition (62, 63). Emerging evidence suggests

positive relationship between energy limitation, human health and

cognition (7). A recent human intervention study showed that

IF may influence memory function possibly through modulating

adult hippocampal neurogenesis with the potential to be used as

an intervention to prevent or boost cognitive decline (64). Ooi

and colleagues found that a 3-year IF diet enhanced cognitive

functioning in older adults with mild cognitive impairment

compared to age-matched adults who irregularly practice IF and

age-matched adults who do not practice IF (65). Moreover, in a

randomized clinical trial conducted by Kapogiannis et al., both the

5:2 IF regimen and HL diet approaches were effective in reducing

brain insulin resistance and improving memory and executive

function in in patients with AD, and the improvements were more

pronounced in the IF group (66). Interestingly, IF can also reduce

the level of circulating insulin in the blood, thereby improving the

sensitivity of insulin receptors and upregulating the insulin/IGF-1

signaling pathway, which ultimately enhances the absorption and

utilization of glucose by neurons and ameliorates hypometabolism

in neurodegenerative disorders (59, 67). In addition, other studies

have shown that IF changes the structure of the gut microbiota,

increases the abundance of anti-inflammatory bacterial strains,

and decreases the level of proinflammatory endotoxins in the

gut and serum (68); and leads to increased diversity of gut

bacteria, and leads to an increase in the diversity of intestinal

bacteria, as well as an enhancement of several antioxidant microbial

metabolic pathways (69). Overall, it is strongly hypothesized

that IF regimens may be effective in exerting neuroprotection

through a variety of pathways, including reduction of insulin

resistance, oxidative stress, immune-inflammatory responses,

and modulation of intestinal flora dysbiosis, which ultimately

ameliorates cerebral energy metabolism and the symptoms of

neurocognitive dysfunction.

4 Conclusions and future directions

The prevalence of T2DM-associated cognitive dysfunction

is increasing due to the extension of the human lifespan,

and there is currently no cure. It is important to identify

preventive interventions and treatment strategies to ameliorate

the progression of neurodegenerative disorders. IF regimens may

be effective in exerting neuroprotection through a variety of

pathways, including reduction of insulin resistance, oxidative

stress, immune-inflammatory responses, and modulation of

intestinal flora dysbiosis, which in turn improves symptoms of

neurocognitive disorders such as dementia. Pilot study shows

neuroprotective effects of IF, but limited research on T2DM-related

cognitive dysfunction. In addition, there are no reliable studies

indicating the optimal duration of IF programs in T2DM-related
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research, nor have determined whether there is heterogeneity

in IF strategies across individuals and their long-term safety.

Considering that diabetic patients are subject to strict glycemic

control, the administration of hypoglycemic drugs during IF

may cause hypoglycemia and its more serious complications. In

addition, specific biomarkers to monitor the efficacy of IF have also

not been identified.

Given the existing research gaps in non-pharmacological

interventions for DACD, we propose a phased investigation.

Systematically translate basic science into generalizable

interventions through repeated tests of efficacy and effectiveness.

Stage I (Intervention Optimization) will focus on identifying

the dose-response relationship of intermittent fasting (IF),

including optimal intervention duration (e.g., 12-h vs. 16-h daily

fasting) and frequency (e.g., alternate-day vs. 5:2 regimens).

Mechanistic outcomes such as insulin sensitivity, inflammatory

biomarkers, and feasibility metrics such as adherence rates and

adverse events will be prioritized. Stage II (Efficacy Evaluation)

will involve a multicenter, randomized, controlled, stratified

pilot trial to assess the preliminary efficacy of the optimized

IF protocol.
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