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Therapeutic targeting of cancer stem cells
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Recent breakthroughs in translational oncology are opening new perspectives for the treatment of 
cancer. The advent of targeted therapies has provided the proof-of-concept to selectively turn-off 
deregulated oncogenic proteins, while the identification and validation of predictive biomarkers 
of response has allowed to improve, at least in some cases, their performance. Moreover, a 
subpopulation of tumor-propagating cells has been identified from many solid and hematological 
tumors. These cells share functional properties of normal stem cells, and are commonly referred 
to as cancer stem cells (CSCs). It is emerging that CSCs are defended against broadly used 
anticancer agents by means of different, partly interconnected, mechanisms. However, CSCs 
rely on specific pathways involved in self-renewal that can be pharmacologically antagonized 
by experimental molecular targeted agents, some of which have recently entered early phases 
of clinical development. Here, we discuss the spectrum of pharmacological strategies under 
clinical or preclinical development for CSCs targeting.
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tumor-supportive ability of the microenvironment by  participating 
in tumor vasculogenesis through the direct differentiation into vas-
cular cells (El Hallani et al., 2010; Ricci-Vitiani et al., 2010; Wang 
et al., 2010b; Soda et al., 2011). If many functional properties of 
CSCs are thought to account for the limited efficacy of chemo-
therapy, the refinement of knowledge on adult stem cells and their 
malignant counterparts is revealing unexpected ways for developing 
innovative anticancer agents (Figure 1).

StrategieS to revert chemoreSiStance
Adult stem cells maintain tissue function throughout life. To accom-
plish this function, stem cells are protected from endogenous or 
exogenous insults to avoid exhausting their replicative function. For 
instance, evidence indicates that adult stem cells survive cytotoxic 
injuries and then reconstitute the damaged tissue (Dekaney et al., 
2009). Growing evidence indicates that CSCs possess similar stem 
cell properties that protect them against chemotherapy.

It is known that cancer cells improperly activate DNA repair path-
ways to overcome chemotherapy-induced cell death (Hoeijmakers, 
2001). Key effectors of the DNA damage response machinery have 
been evaluated in clinical studies to determine the benefit of cancer 
patients from chemotherapy, even though the predictive value of 
DNA damage repair-linked biomarkers remains to be addressed 
(Vilmar and Sørensen, 2009). It has been demonstrated that glio-
blastoma stem-like cells (GBM-SCs) repair ionizing radiation-
induced DNA lesions more readily that differentiated glioma cells 
through the activation of ataxia telangiectasia mutated (ATM) and 
checkpoint kinase 1 (Chk1; Bao et al., 2006). Likewise, both colon 
(Gallmeier et al., 2011) and lung (our unpublished data) CSCs 
aberrantly exploit the ATR/Chk1 axis to escape chemotherapy 
cytotoxicity, as demonstrated by the observation that Chk1 inhi-
bition sensitized CSCs to different chemotherapeutic agents induc-
ing mitotic catastrophe. Agents interfering with DNA repair have 
recently entered clinical development. The molecular background 

the cancer Stem cellS concept
The idea that cancer originates from stem cells traces back to the 
“embryonal rest theory,” asserting that cancer arises from embry-
onic remnants persisting in adult tissues. However, the “cancer stem 
cell model” has captured great interest only in recent years following 
the isolation of a rare cellular fraction of leukemia-initiating cells 
with stem cell-like features (Bonnet and Dick, 1997). Ever since, this 
concept has been corroborated by the isolation of cancer stem-like 
cells, commonly referred to as cancer stem cells (CSCs), from many 
solid tumors ranging from highly prevalent cancers (Al-Hajj et al., 
2003; Ricci-Vitiani et al., 2007; Eramo et al., 2008) to less common 
neoplasms such as glioblastoma multiforme (Singh et al., 2003; 
Galli et al., 2004) and thyroid cancer (Todaro et al., 2010). This 
new paradigm implies that oncogenesis has its epicenter in a tissue-
resident stem cell. Thus, a tumor is hierarchically organized, similar 
to adult tissues, with a CSC at the top of the pyramid that serves 
as a precursor of the whole population. The discovery of CSCs has 
questioned the “clonal evolution model” which, tracing its roots 
to the Darwinian evolutionary principle, postulated that different 
mutant clones acquire a survival advantage as a consequence of the 
natural competition with other clones. However, the hierarchical 
and clonal evolution models are not mutually exclusive as recently 
demonstrated by the genetic heterogeneity of cancer propagating 
cells, which suggests a clonal evolution within the stem cell pool 
(Anderson et al., 2011). It is conceivable that transformed stem cells 
maintain, although in a distorted manner, stem cell traits such as 
defensive ability against chemicals and mechanisms involved in 
self-renewal. Consistent with this, chemotherapy-induced death 
stimuli are constrained in a multifaceted way, such as through 
increased DNA repair ability and high expression of multidrug 
resistance (MDR) efflux pumps (Eyler and Rich, 2008). Conversely, 
the pharmacological inhibition of self-renewal-related pathways 
selectively depletes CSCs in different preclinical models (Bar et al., 
2007; Hoey et al., 2009). Moreover, CSCs directly contribute to the 
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breast cancer (O’Shaughnessy et al., 2011). The synthetic lethality 
concept could be also exploited for developing Chk1 inhibitors. 
When exposed to DNA-damaging agents, p53-deficient cells are 
unable to undergo G1 arrest and rely on Chk1 to activate cell cycle 
checkpoints (Zhou and Elledge, 2000). Thus, the pharmacologi-
cal abrogation of Chk1 could selectively kill cancer cells with p53 
defects. Chk1 inhibitors have recently entered clinical trials com-
bined with different antiblastic compounds, although clinical data 
are not yet available.

underlying the development of these compounds is a modality of 
gene–gene interaction known as synthetic lethality. According with 
this model, the co-occurrence of two events, the first genetic and the 
second pharmacological, results in the inhibition of two redundant 
pathways that finally lead to cell death. Poly-ADP ribose polymerase 
(PARP) inhibitors are the DNA repair-interfering agents at the 
most advanced stage of clinical development for the treatment of 
breast (Tutt et al., 2010) and ovarian (Audeh et al., 2010) cancers 
carrying BRCA1 or BRCA2 germline mutations and triple-negative 

Figure 1 | emerging pharmacological strategies for CSCs targeting include 
self-renewal pathway antagonists and chemoresistance-reverting agents. 
Self-renewal-linked signals (left) such as Hedgehog, Notch, and Wnt/β-catenin 
pathways can be antagonized by molecular targeted agents including ligand-
binding molecules, receptor antagonists, or agents inhibiting intracellular 
effectors. Chemosensitivity (right) could be restored by inhibiting MDR efflux 

pumps that extrude chemotherapeutic agents of natural origin, or by interfering 
with the DNA repair machinery that removes DNA-alkylating agent adducts. 
CSCs, cancer stem cells; GSKβ, glycogen synthase kinase 3β; APC, 
adenomatosis polyposis coli; TCF/LEF, T-cell transcription factor/lymphoid 
enhancer-binding factor; DLL4, delta-like ligand 4; SMO, smoothened; PTCH1, 
patched; GLI, glioma-associated oncogene homolog; MDR, multidrug resistance.
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known that a considerable percentage of patients with  apparent 
organ-confined disease will experience distant recurrence years 
later radical surgery and adjuvant systemic therapy. Thus, it is 
conceivable that disseminated cancer cells are able to remain 
quiescent for years (“tumor dormancy”), thus making CSCs the 
ideal candidate for explaining this temporal pattern of recurrence. 
Hematological malignancies are representing the benchmark for 
the development of anticancer agents forcing dormant cancer cells 
to proceed through the cell cycle. Recent studies have revealed that 
some cytokines, such as interferon-alpha and granulocyte colony-
stimulating factor, or arsenic trioxide efficiently promote cycling 
of dormant leukemic stem cells, thus representing a promising way 
for restoring chemosensitivity (Essers and Trumpp, 2010). Others 
drugs that could be exploited for inducing exit from quiescence 
are histone deacetylase inhibitors (HDACis). These compounds act 
at the epigenetic level producing different effects spanning from 
apoptosis to differentiation, and the first-in-class HDACi vorinostat 
has been approved for treating refractory cutaneous T-cell lym-
phoma (Lane and Chabner, 2009). It has been demonstrated that, 
unlike imatinib alone, HDACis combined with imatinib induce 
apoptosis in quiescent chronic myelogenous leukemia stem cells 
(Zhang et al., 2010). However, it is important to underline that 
chemotherapy and molecular targeted agents are significantly 
more active in hematological malignancies than in solid tumors. 
In this latter case, pharmacological strategies for breaking tumor 
dormancy should be carefully evaluated, especially when developed 
in the adjuvant setting in the attempt to eradicate minimal residual 
disease. Paradoxically, maintaining disseminated cancer cells in a 
quiescent state may represent an alternative way for achieving long-
lasting recurrence-free interval in solid tumors, the priority goal 
in the adjuvant setting.

targeting Self-renewal pathwayS
The aberrant activation of self-renewal-linked signals is thought 
to be the main determinant of CSCs fate. The Hedgehog (Hh), 
Notch, and Wnt/β-catenin are the most studied and character-
ized pathways.

rationale and StrategieS for targeting the hedgehog 
pathway
The Hh pathway plays a crucial role during mammalian devel-
opment and becomes later silenced in adult tissues (Ingham and 
McMahon, 2001). The interest on Hh in cancer biology comes from 
evidences demonstrating the inappropriate reactivation of its signal-
ing in many tumors (Merchant and Matsui, 2010). In the absence of 
ligand stimulation the transmembrane-spanning receptor patched 
(PTCH1) maintains the pathway in the “off” state by repressing 
the activity of the serpentine receptor smoothened (SMO). Upon 
ligand binding, PTCH1 inhibition on SMO is relieved, allowing 
SMO to engage downstream effectors consisting in glioma-asso-
ciated oncogene homolog (GLI) transcription factors. Target genes 
are involved in many cellular functions such as proliferation, sur-
vival, metastatization, and pathway auto-regulation.

The tumor-enhancing activity of aberrant Hh signaling occurs 
through different and tumor-specific modalities. Among these, the 
mutation-driven manner is the best characterized, resulting from 
the constitutive activation of the transduction machinery as the 

DNA repair pathways compete with apoptotic signaling to 
decide the fate of damaged cells. However, CSCs display a ten-
dency toward an anti-apoptotic state that favors cell survival fol-
lowing chemotherapy (Signore et al., 2011). For instance, it has 
been demonstrated that interleukin-4 (IL-4) is associated with the 
overexpression of anti-apoptotic mediators and induces a chemore-
sistant phenotype in colon CSCs (Todaro et al., 2007). Since IL-4 
is overexpressed in many epithelial cancers (Todaro et al., 2008), it 
is conceivable that other types of CSCs exploit IL-4 as a defensive 
mechanism.

The combination of differentiation-inducing agents and chemo-
therapy can cure the majority of patients affected by acute pro-
myelocytic leukemia (Sanz et al., 2004). The use of differentiation 
therapy may not be limited to leukemia. Recently, a randomized 
phase II trial demonstrated an increased response rate in non-small 
cell lung cancer patients when all-trans retinoic acid was associated 
with platinum-containing therapy (Arrieta et al., 2010). The iden-
tification of CSCs has fostered the identification of molecules with 
pro-differentiation effects. The pro-apoptotic/pro-differentiative 
bone morphogenetic protein 4 (BMP4) sensitizes colon CSCs to 
5-fluorouracil and oxaliplatin, and eradicates CSC-derived tumors 
in animal models (Lombardo et al., 2011). Likewise, GBM-SCs 
exposed to BMP4 displayed reduced clonogenic ability coupled 
with an increased expression of neural differentiation markers 
(Piccirillo et al., 2006).

Next, both adult stem cells and CSCs may express high levels of 
MDR pumps (Moitra et al., 2011). This protective system extrudes 
from cancer cells a broad range of amphiphilic compounds includ-
ing taxanes, anthracyclines, and vinca alkaloids. The ability to pump 
out different chemicals is currently exploited for the HOECHST dye 
efflux assay, a technique used for CSCs isolation that define them as 
side population (SP). Acute myeloid leukemia SP (Wulf et al., 2001) 
and neuroblastoma SP (Hirschmann-Jax et al., 2004) are character-
ized by a greater ability in extruding different chemotherapeutic 
agents compared with the non-SP. Moreover, long-term exposure 
of breast cancer cells to doxorubicin resulted in the acquisition of 
stem-like and chemoresistant properties (Calcagno et al., 2010), 
as documented by the overexpression of both self-renewal-related 
and MDR-related genes. Although first and second generation ABC 
inhibitors failed to demonstrate a clinical benefit, more potent third 
generation antagonists have been synthesized and are undergoing 
clinical development (Wu et al., 2008). However, it has been dem-
onstrated that the SP does not always enrich for stem-like cells, at 
least when evaluating GBM cell lines and primary cells (Broadley 
et al., 2011), confirming previous findings indicating that chem-
oresistance of GBM-SCs is independent of the activity of ABC 
transporters (Eramo et al., 2006).

Quiescence physiologically defends adult stem cells against 
harmful insults and avoids the exhaustion of their replicative 
potential (Wilson et al., 2008). Likewise, CSCs usually exhibit a 
slow proliferation kinetics as demonstrated by label-retaining 
approaches, which revealed that label-retaining cells meet the 
operative criteria to be defined CSCs and survive chemotherapy, 
unlike the non-label-retaining population (Dembinski and Krauss, 
2009; Gao et al., 2010). Since chemotherapy is active against rap-
idly dividing cells, it is conceivable that prolonged exit from cell 
cycle enables CSCs to survive chemo-radiotherapy. Moreover, it is 
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cytostatic, rather than cytotoxic, effects. Thus, it is arguable that 
the evaluation of parameters of rapid tumor response in proof-
of-concept studies might underestimate the benefit from this class 
of drugs when evaluated in patients whose tumors display wild-
type Hh effectors. Based on this assumption, the pharmacological 
inhibition of Hh could offer greater opportunities as adjuvant 
therapies in order to prevent distant recurrence. An attractive 
hypothesis could be that while during early phases of the natural 
history of tumors (i.e., the adjuvant setting) cancer cells may rely 
on a tumor-supportive microenvironment, later phases (i.e., the 
metastatic setting) could be biologically characterized by the self-
sufficiency of cancer cells. Such acquired ability of cancer cells to 
thrive in a microenvironment-independent manner could result 
in insensitivity to molecular targeted agents acting by depriving 
cancer cells of paracrine-acting stimuli. Moreover, GDC-0449 
pharmacokinetics is influenced by several factors, including solu-
bility-limited absorption, slow rate of metabolic elimination and 
interaction with plasma proteins. In particular, both total level 
and genetic variants of the plasma protein alpha-1-acid glycopro-
tein (AAG) seem to account for the interindividual variability of 
GDC-0449 bioavailability (Graham et al., 2011), thus suggesting 
that alternative schedules should be investigated in clinical tri-
als. The disappointing results from the studies mentioned above 
raise the need for alternative strategies of Hh inhibition. Since 
Hh transduction machinery converges on the GLI transcription 
factors, small-molecule inhibitors of GLI proteins (GANT61 and 
GANT58; Lauth et al., 2007) or, although less specific, indirect 
inhibitors of GLI activity (PI3K/AKT inhibitors) could allow a 
deeper inhibition of Hh signaling. Alternatively, ligand inhibition 
through neutralizing antibodies (5E1 antibody) or ligand-binding 
molecules (robotnikinin) have been proposed to avoid blocking 
Hh pathway in the whole spectrum of its developmental func-
tions (Yauch et al., 2008; Stanton et al., 2009), which is of utmost 
importance when treating young patients. In summary, while Hh 
inhibition is emerging as a new opportunity in cancer therapy, 
early clinical data are conflicting and mirror the heterogeneity 
of mechanisms sustaining pathway activation. Thus, the tumor-
dependent activity of Hh signaling has to be fully dissected for 
optimal clinical testing of Hh pathway inhibitors.

rationale and StrategieS for targeting the notch pathway
Notch is a short-range-acting communication system that exerts its 
function via cell-to-cell contact. The developmental Notch pathway 
has been implicated in various pro-tumorigenic activities spanning 
from cell survival to motility (Koch and Radtke, 2007). In mammals, 
the pathway is composed by four transmembrane receptors (Notch 
1–4) and five ligands [delta-like ligand (DLL) 1, 3, 4, Jagged 1, and 
2]. The pairing of Notch ligand-receptor leads to conformational 
changes in the receptor that undergoes two sequential cleavages 
operated by the “A disintegrin and metallopeptidase” 10 and 17 
and gamma-secretase enzymes. The resulting Notch intracellular 
domain (Nic) is released and translocates to the nucleus where it 
interacts with co-activators to finally generate the Notch tran-
scriptional complex. Moreover, Notch communicates with other 
oncogenic signals including the NFkB pathway, the hypoxia sen-
sor HIF1α and the estrogen receptor alpha (Pannuti et al., 2010). 
The four Notch paralogs are also endowed of tumor-suppressive 

consequence of loss- or gain-of-function mutations in negative or 
positive controllers, respectively (Xie et al., 1997, 1998). Germline 
mutations in PTCH1 underpin the Gorlin syndrome (Hahn et al., 
1996), a condition associated with the predisposition to develop 
multiple basal cell carcinoma. Moreover, many sporadic forms of 
basal cell carcinoma are characterized by a comparable mutation 
pattern (Daya-Grosjean and Couvé-Privat, 2005). Likewise, PTCH1 
knockout mice revealed that aberrant Hh pathway activation causes 
unrestricted proliferation of cerebellar stem cells that results in 
the onset of medulloblastoma (Yang et al., 2008). Consistent with 
this, genome-wide expression profiles unveiled that up to one-third 
of medulloblastoma patients carry somatic mutations in SMO, 
PTCH1, or downstream effectors (Thompson et al., 2006). While 
activating/inactivating mutations sustain aberrant Hh activation 
in a niche of tumors, a dual paracrine model is probably the main 
modality of Hh activation in many cancers (Dierks et al., 2007; 
Yauch et al., 2008). Accordingly, the overproduction of Hh ligands 
by cancer cells activates the stromal compartment that responds 
with the production of growth factors. Alternatively, ligands 
secreted by stromal cells exert their activity on recipient cancer 
cells. To further complicate this picture, pathway trans-activation 
via the PI3K/AKT axis (Riobo et al., 2006), KRAS (Ji et al., 2007), 
and TGF-β (Dennler et al., 2007) has been documented.

Increasing evidence is connecting the Hh pathway with CSCs. 
The control of the self-renewal by Hh has been documented in 
chronic myeloid leukemia (Zhao et al., 2009) and, through the 
modulation of Bmi-1, in breast CSCs (Liu et al., 2006). In multiple 
myeloma a marked asymmetry has been reported in Hh pathway 
components distribution and sensitivity to pathway inhibition 
between B-cell-like progenitors and mature myelomatous plasma 
cells (Peacock et al., 2007). Moreover, Hh pathway inhibition sig-
nificantly hampers GBM-SCs clonogenicity (Bar et al., 2007) and 
preferentially depletes pancreatic CSCs (Feldmann et al., 2007).

The first evidence suggesting that Hh signaling could be phar-
macologically antagonized came from the identification of the 
teratogenic steroidal alkaloid cyclopamine (Chen et al., 2002). 
Subsequently, high-throughput screening of small-molecule 
libraries led to the identification of several SMO antagonists 
(Frank-Kamenetsky et al., 2002). The first-in-class oral SMO 
inhibitor GDC-0449 was initially tested in a phase I study enroll-
ing 33 patients with locally advanced or metastatic basal cell 
carcinoma, demonstrating good activity and acceptable safety 
profile (Von Hoff et al., 2009). Moreover, a massive tumor regres-
sion has been reported in an adult patient with a plurimetastatic 
PTCH-mutant medulloblastoma, even though disease restaging 
revealed tumor progression associated with the onset of a resist-
ance-conferring SMO mutation (Rudin et al., 2009). Despite this 
encouraging activity in tumors carrying mutations in Hh pathway 
effectors, a comparable efficacy did not emerge against tumors 
with wild-type Hh components. In fact, both a phase II rand-
omized study comparing chemotherapy with or without GDC-
0449 in metastatic colorectal cancer patients (Berlin et al., 2010) 
and a placebo-controlled trial with GDC-0449 as maintenance 
therapy in advanced ovarian cancer patients (Kaye et al., 2010) 
failed to reach the primary endpoint. It is worth considering that 
Hh pathway, when unaffected by somatic mutations, is activated 
in a paracrine manner and, therefore, its inhibition could lead to 
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DNA-damaging agents. Beside GSIs, anti-DLL4 agents are in phase 
I clinical development. Even though safety data are still unavail-
able, antibody-mediated inhibition of Notch pathway has been con-
nected in preclinical models with the onset of vascular tumors and 
liver histopathological alterations such as sinusoidal dilation and 
centrilobular hepatocyte atrophy (Li et al., 2010; Yan et al., 2010). 
Liver gene expression of DLL4-treated mice revealed a significant 
up-regulation of endothelium-specific genes, indicating that DLL4 
signaling is crucial for maintaining endothelial cells in a quiescent 
state. Similar alterations were noted with a Notch 1-specific inhibi-
tory antibody and the GSI dibenzazepine, thus indicating that these 
changes represent a class effect of DLL4 inhibition. In summary, 
optimal clinical development of Notch antagonists must take into 
account the complexity of the pathway. In particular, the opposite 
effects of Notch receptors observed in different tumor types raise 
the need for more selective modalities of Notch inhibition.

rationale and StrategieS for targeting the wnt pathway
The canonical Wnt/β-catenin signaling is by far the best charac-
terized among Wnt pathways. This signaling is mainly regulated 
at the level of β-catenin, a protein maintained at low cytoplasmic 
concentration by a destruction complex. Upon activation of the 
Wnt pathway, the inhibition of the β-catenin destruction com-
plex allows β-catenin to translocate to the nucleus, leading to the 
expression of target genes involved in several cellular processes 
encompassing proliferation, motility and stem cell maintenance 
(Moon et al., 2002).

The role of the Wnt pathway in cancer has been recognized 
since the Vogelstein’s “adenoma to carcinoma sequence,” which 
identified mutations in adenomatosis polyposis coli (APC) gene 
as a critical event during colorectal carcinogenesis. The most direct 
evidence linking the Wnt pathway with CSCs comes from a recent 
study demonstrating that high Wnt activity identifies the colon 
CSC population (Vermeulen et al., 2010). Moreover, myofibroblast-
secreted factors instructed differentiated colon cancer cells to acti-
vate the β-catenin-dependent transcription, leading to the gain of 
a stem-like phenotype. Although in a less direct way, the increased 
nuclear level of β-catenin that characterizes the switch from chronic 
phase to blast crisis in chronic myelogenous leukemia suggests the 
influence of Wnt on leukemia stem cells (Jamieson et al., 2004).

A number of Wnt modulators or inhibitors have been identi-
fied (de Sousa et al., 2011). COX-2 inhibitors such as celecoxib 
and rofecoxib seem to exert modulatory activity on Wnt through a 
reduced production of prostaglandin E2, a molecule able to prevent 
the degradation of β-catenin. c-MET inhibitors have been also 
indicated as indirect Wnt antagonists. The rationale underlying the 
anti-Wnt activity of these compound comes from the mitigation 
of the activity of c-MET downstream machinery, which relieves 
the inhibition on glycogen synthase kinase 3β, a key enzyme of 
the destruction complex. Finally, high-throughput drug screen-
ing has allowed the identification of a variety of Wnt inhibitors 
acting at various level of the pathway, including compounds sta-
bilizing key components of the destruction complex, transcrip-
tion factor antagonists and molecules inhibiting Wnt secretion. 
However, the majority of direct Wnt antagonists are in preclinical 
development, and only few of these have recently entered phase I 
dose-finding studies.

properties. Notch 2 expression correlates with better prognosis in 
breast cancer (Parr et al., 2004), while in mesothelioma counteracts 
the pro-survival effects of Notch 1 (Graziani et al., 2008).

Breast cancer represents a benchmark for studying the influ-
ence of Notch pathway on CSCs. Consistent with this, a signifi-
cant reduction of mammosphere-forming efficiency has been 
achieved with a gamma-secretase inhibitor (GSI) or a Notch 
4-neutralizing antibody in ductal carcinoma in situ of the breast 
(Farnie et al., 2007). Since a similar effect was seen with the EGFR 
tyrosine kinase inhibitor gefitinib, it is conceivable that the dual 
inhibition of Notch and EGFR may exert a synergistic effect. The 
HER2 gene is amplified in approximately 20% of human breast 
cancers and, more recently, has been implicated in breast CSCs 
maintenance and expansion (Cicalese et al., 2009; Magnifico et al., 
2009). Evidence connecting Notch with HER2 comes from the 
demonstration that the HER2 promoter contains Notch-binding 
sequences, while Notch signaling activation has been documented 
in HER2-overexpressing cells (Korkaya and Wicha, 2009). Notably, 
Notch inhibition through small interfering RNA or a GSI impaired 
mammosphere formation and determined HER2 down-regulation 
(Magnifico et al., 2009). Finally, human breast cancer mammos-
pheres have been shown to acquire an hypoxia-resistant pheno-
type following Notch 3 induction by IL-6 (Sansone et al., 2007). 
Since cancer cells cultured under hypoxic condition gain stem-like 
properties (Li et al., 2009), it is conceivable that Notch pathway 
and the hypoxia-sensing machinery dynamically cooperate in con-
trolling the CSC pool. Accordingly, GBM-SCs are characterized 
by high Notch activity that confers resistance to ionizing radia-
tion, whereas Notch inhibition depleted GBM-SCs and reverted 
radioresistance (Fan et al., 2010; Wang et al., 2010a). GBM-SCs 
exposed to the differentiation-inducing agent retinoic acid under-
went both growth arrest and expression of lineage-specific dif-
ferentiation markers (Ying et al., 2011). Consistently, microarray 
analysis of retinoic acid-treated cells revealed a molecular profile 
characterized by the down-regulation of Notch components, while 
the constitutive activation of Nic rescued GBM-SCs from retinoic 
acid-induced differentiation and subsequent depletion. Finally, 
the Notch pathway has been also implicated in colon cancer. In 
this model, the inhibition of the DLL4 combined with irinotecan 
has been associated with a reduction of KRAS-mutant colon CSCs 
frequency (Fischer et al., 2011). Given that KRAS mutations are 
detectable in approximately 40% of colorectal tumors and con-
fer resistance to anti-EGFR therapy, Notch antagonists should be 
exploited for improving the management of the large segment of 
patients unsuitable for cetuximab and panitumumab.

The inhibition of Notch pathway is undergoing early clinical 
trials aimed at determining the safety profile and optimal schedule 
of GSIs. Since hormone receptor-positive breast cancer relies on 
Notch activation when hormonal signaling are pharmacologically 
inhibited (Rizzo et al., 2008), different clinical trials are evaluating 
the combination of GSIs with anti-estrogen therapy. Moreover, a 
phase I study combining the GSI RO4929097 with carboplatin and 
paclitaxel as neoadjuvant therapy in stage II and III triple-nega-
tive breast cancer patients is currently enrolling. Triple-negative 
breast cancers harbor CSC-like characteristics and are deficient 
in DNA repair (Perou, 2011). Thus, this study will provide valu-
able information given the potential synergism between GSIs and 
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