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Ovarian cancer is the most lethal gynecologic malignancy, with the majority of patients
dying within 5 years of diagnosis. This poor survival of patients diagnosed with this malig-
nancy is attributed to diagnosis at advanced stage, when the tumor has metastasized, and
to chemotherapy resistance, either primary or developing along tumor progression. How-
ever, ovarian carcinomas, constituting the vast majority of ovarian cancers, additionally have
unique biology, one aspect of which is the ability to co-express epithelial and mesenchymal
determinants. epithelial–mesenchymal transition (EMT), a physiological process by which
mesenchymal cells are formed and migrate to target organs during embryogenesis, is
involved in cancer cell invasion and metastasis. However, these changes do not fully occur
in ovarian carcinoma, and are even reversed in tumor cells present in malignant peritoneal
and pleural effusions. This review summarizes current knowledge in this area, including
the characteristics of EMT related to adhesion, transcriptional regulation and chemoresis-
tance, and their clinical relevance, as well as the recently observed regulation of EMT by
microRNA.
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OVARIAN CARCINOMA
Ovarian cancer, consisting predominantly of carcinomas, is the
most lethal gynecologic cancer and currently ranks fifth in caus-
ing cancer-related deaths among women (Siegel et al., 2011).
Ovarian carcinoma is treated by surgery and chemotherapy, the
latter with combination of carboplatin and paclitaxel. Moderate
improvement in the 5-year survival rate of ovarian carcinoma
patients has been observed in recent years, due to more aggres-
sive debulking surgery and improved chemotherapy regimens.
However, the majority of patients still die of their disease, this
being mainly attributed to frequent presentation at advanced
stage (FIGO stage III–IV) and to primary or acquired drug resis-
tance (Agarwal and Kaye, 2003; Cannistra, 2004; Hennessy et al.,
2009).

Ovarian carcinoma and the closely related primary peritoneal
carcinoma and fallopian tube carcinoma metastasize predomi-
nantly within the serosal cavities, forming multiple solid nod-
ules on the surfaces of the abdominal cavity or organs therein,
including the omentum, intestines, genital organs, spleen, and uri-
nary bladder, as well as accumulation of peritoneal effusion fluid
(ascites). The latter occurs through the combined effect of lym-
phatic obstruction by metastatic cancer cells, increased production
of peritoneal fluid by mesothelial cells lining the peritoneal cav-
ity and increased vascular permeability (Hirabayashi and Graham,
1970; Feldman et al., 1972; Nagy et al., 1995). The pleural space
is frequently involved, either at diagnosis or at a later stage, this
anatomic site being the most frequent one defining stage IV dis-
ease (Curtin et al., 1997; Bonnefoi et al., 1999; Akahira et al., 2001).

Lymph node metastases and dissemination to distant organs occur,
but are distinctly less common (Tsuruchi et al., 1993; Cormio et al.,
1995; Sakai et al., 1997).

The common histological types of ovarian carcinoma are
serous, endometrioid, clear cell, and mucinous carcinoma, as well
as carcinomas of mixed type. These distinct morphological enti-
ties are growingly perceived to be tumors of different etiology, with
unique genetic and phenotypic characteristics and different clin-
ical behavior, including response to chemotherapy (Köbel et al.,
2008).

EPITHELIAL–MESENCHYMAL TRANSITION
Epithelial cells are adherent cells that maintain cell–cell contact
through adherens junctions, tight junctions, gap junctions, and
desmosomes. During embryogenesis, epithelial cells assume mes-
enchymal characteristics in a process that facilitates migration
through the extracellular environment (ECM) and settlement in
areas of new organ formation. Several phases of this process,
termed primary, secondary, and tertiary epithelial–mesenchymal
transition (EMT), are crucial for formation of the different germ
cell layers, structures originating from the neural tube, tubular
organs (e.g., the alimentary system), and parenchymal organs
developing through budding, such as the liver and pancreas.
Wound healing represents another form of physiological EMT,
whereas tissue fibrosis and cancer progression represent examples
of pathological EMT (Thiery, 2002; Acloque et al., 2009; Thiery
et al., 2009). In the context of cancer, it is hypothesized that carci-
noma cells lose their epithelial characteristics and acquire certain
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mesenchymal properties that promote ECM invasion and distant
metastasis in an EMT-like process.

Signals inducing EMT in embryogenesis and/or cancer pro-
gression are multiple and diverse and include growth factors, such
as epidermal growth factor (EGF) and fibroblast growth factor
(FGF), platelet-derived growth factor (PDGF), insulin-like growth
factor (IGF), vascular endothelial growth factor (VEGF), hepa-
tocyte growth factor (HGF), and transforming growth factor-β
(TGF-β); stem cell factor (SCF); bone morphogenetic proteins
(BMP); the Wnt signaling pathway; integrins; Notch transcription
factors; prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-
2); parathyroid hormone (PTH); UV; nicotine; bile acids and
estrogens (Thiery et al., 2009).

The morphological alterations that cells undergo during EMT
are accompanied by changes in the expression of a large number
of molecules. Epithelial markers that are downregulated dur-
ing this process include E-cadherin, cytokeratins, ZO-1, claudins,
occludin, laminin-1, entactin, MUC1, and the microRNA 200
(miR-200) family. Molecules that are overexpressed in this process
include the transcription factors Snail, Slug, Twist, Zeb1 and
Zeb2/SIP1, E47, KLF8, E2.2, Goosecoid, LEF-1 and FoxC2, as well
as E-cadherin, vimentin, fibronectin, miR10b, and miR21 (Kalluri
and Weinberg, 2009; Thiery et al., 2009; Zeisberg and Neilson,
2009). While many of these molecules are altered in both embry-
onic and cancer-related EMT, tumor cells differ from embryonic
cells by having lost specific target recognition, as well as by their
ability to activate autocrine loops of growth signals, evade apopto-
sis, and elicit angiogenesis. Recent data support the role of hypoxia,
inflammation, and oxidative stress, mediated through signals from
the tumor microenvironment, i.e., leukocytes and myofibroblasts,
as inducers of EMT (López-Novoa and Nieto, 2009). TGF-β1
appears to be a key mediator of EMT (López-Novoa and Nieto,
2009; Mamuya and Duncan, 2012), in part via its interaction with
αV integrins (Mamuya and Duncan, 2012).

The following sections will discuss the expression, biological
role, and clinical relevance of some of the molecules that are altered
in the process of EMT in ovarian carcinoma.

EPITHELIAL MARKERS TARGETED BY EMT
E-CADHERIN
E-cadherin, the prototype member of the classical cadherin fam-
ily, maintains cell polarity and normal structure in epithelial cells.
E-cadherin-mediated intercellular adhesion is lost during malig-
nant transformation and tumor progression in the majority of
carcinomas (Pecina-Slaus, 2003; Cavallaro and Christofori, 2004).
In classical EMT, expression of N-cadherin concomitantly occurs.
However, cadherin expression patterns in the normal and neo-
plastic ovary are complex and do not fully follow this model. The
ovarian surface epithelium (OSE), believed to be the origin of at
least some ovarian carcinomas, shares histogenesis and anatomic
continuity with the peritoneal mesothelium. Normal OSE with
flat morphology expresses N-cadherin, but is E-cadherin negative,
and the latter is expressed only in clefts and inclusion cysts, pos-
tulated to be ovarian carcinoma precursors (Hudson et al., 2008).
Furthermore, while E-cadherin expression is reduced in some pri-
mary ovarian carcinomas, this protein is re-expressed in ovarian
carcinoma effusions, with significantly higher levels compared to

patient-matched primary carcinomas (Davidson et al., 2000a),
suggesting that ovarian carcinoma cells undergo incomplete EMT.
Further complicating matters is the ability of ovarian carcinoma
cells to co-express E-cadherin and the EMT-associated N-cadherin
(Figures 1A,B; Sivertsen et al., 2006). P-cadherin is another family
member expressed in ovarian carcinoma, and was postulated to be
the main cadherin member involved in tumor progression based
on analysis of cadherin profiles in FIGO stage I–II tumors (Patel
et al., 2003).

The clinical role of E-cadherin in ovarian carcinoma is not
entirely settled, although the majority of studies suggest a prognos-
tic role in this disease. Loss of E-cadherin protein expression was
associated with poor survival in two series of 20 and 104 primary
carcinomas, but these included a total of only 13 E-cadherin neg-
ative specimens (Darai et al., 1997; Faleiro-Rodrigues et al., 2004).
E-cadherin protein expression in primary ovarian carcinomas and
solid metastases did not differ between patients with short-term
vs. long-term survival (Davidson et al., 2000b), whereas lower

FIGURE 1 | EMT-related molecules in ovarian serous carcinoma.

(A,B) Expression of E-cadherin (A) and N-cadherin (B); (C–E)

Immunostaining for claudin-1 (C), claudin-3 (D), and claudin-4 (E); (F) in situ
hybridization for Snail mRNA in a primary carcinoma. NBT–BCIP as
chromogen; (G,H) Snail immunofluorescence. Snail localizes to the
cytoplasm in some effusions (G), whereas localization to the nucleus in
seen in others, being more prominent after cells are cultured (H). Green:
Snail, Red: DAPI, right column: overlay.
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E-cadherin mRNA expression in ovarian carcinoma effusions cor-
related with poor survival (Elloul et al., 2005). In a large recent
study of high-grade serous ovarian carcinomas, high expression
of E-cadherin was associated with better survival, with opposite
findings for N-cadherin and P-cadherin (Quattrocchi et al., 2011).

The marked changes in cadherin expression patterns in ovar-
ian carcinoma compared to the normal ovary, as well as the
anatomic site-related changes in carcinomas along tumor pro-
gression, suggest dynamic regulation at the epigenetic level, in
agreement with data presented in other sections of this review.
It is nevertheless questionable whether cadherins which may be
associated with poor survival, such as N-cadherin, are viable ther-
apeutic candidates, as suggested by Quattrocchi et al. (2011), in
view of their frequent expression in benign host cells (e.g., normal
mesothelium).

CLAUDINS
The expression and clinical significance of tight junction proteins
of the claudin family in ovarian carcinoma is yet another example
of the discordance between classic EMT and expression patterns in
this cancer. Tight junctions, located in the apical aspect of epithe-
lial or endothelial cells, maintain cell polarity, and regulate the
paracellular transport of solutes and the diffusion of proteins and
lipids. Claudins contain intracellular amino and carboxy termini,
four transmembrane domains, and two extracellular loops medi-
ating intercellular interactions between family members, the latter
being the binding site for Clostridium perfringens enterotoxin in
claudin-3 and -4. The carboxy terminus of most claudins con-
tains potential serine and/or threonine phosphorylation sites and
a PDZ-binding motif, to which the tight junction cytoplasmic
scaffolding proteins ZO-1, -2, and -3 bind (Morita et al., 1999;
Tsukita et al., 2001; González-Mariscal et al., 2003; Van Itallie and
Anderson, 2006).

Claudin expression is deregulated in cancer compared to nor-
mal tissue or benign tumors in a complex and organ-dependent
manner (Hewitt et al., 2006), and several members of this family,
including claudin-3, -4, -7, and -10, have been reported to be more
highly expressed in ovarian carcinoma compared to normal OSE
(Hough et al., 2000; Hibbs et al., 2004; Lu et al., 2004; Santin et al.,
2004; Bignotti et al., 2006; Tassi et al., 2008). Interestingly, in vitro
analysis of 4 ovarian carcinoma cell lines of different histological
type showed formation of functional cell junctions only in serous
ovarian carcinoma (Zhu and Sundfeldt, 2007).

In addition, claudins are significantly overexpressed in ovar-
ian carcinoma effusions compared to other tumors affecting the
serosal cavities, particularly malignant mesothelioma, and benign
reactive mesothelial cells (Davidson et al., 2006; Kleinberg et al.,
2007), and claudin-4 was recently shown to effectively differentiate
between carcinomas of different origin, including ovarian carci-
noma, and malignant mesothelioma or reactive mesothelial cells
(Lonardi et al., 2011).

Claudin expression in ovarian carcinoma is anatomic site-
related, as three members of this family, claudin-1, -3, and -7, are
upregulated in ovarian carcinoma effusions compared to patient-
matched primary carcinomas and solid metastases. In contrast,
claudin-4 is highly expressed at all anatomic sites in this cancer
(Figures 1C–E; Kleinberg et al., 2008).

Claudin-4-containing exosomes were found in the plasma of
32/63 ovarian carcinoma patients compared to 1/50 healthy vol-
unteers. At a specificity of 98%, the claudin-4 and CA125 tests had
sensitivities of 51 and 71%, respectively, and the two tests were
strongly correlated (Li et al., 2009a). Claudin-4 was further shown
to be involved in spheroid formation in ovarian carcinoma (Boylan
et al., 2011), as well as in angiogenesis (Li et al., 2009b). Claudin-7
was recently shown to promote invasion of ovarian carcinoma cells
in vitro, whereas migration was inhibited (Dahiya et al., 2011).

Several reports regarding the prognostic role of claudins in
ovarian carcinoma have been published in recent years. Low
claudin-3 protein expression was associated with a trend for poor
survival in analysis of 115 primary carcinomas (Heinzelmann-
Schwarz et al., 2004). In contrast, high claudin-3 expression was
associated with shorter survival in both univariate and multivari-
ate analysis in another study (Choi et al., 2007). In the above-
mentioned comparative analysis of ovarian carcinoma claudin
expression at different anatomic sites (Kleinberg et al., 2008), in
which a total of 463 tumors were studied, higher claudin-1, -3, and
-7 expression in effusions correlated with shorter overall survival
(OS) and/or progression-free survival (PFS) in univariate analysis.
In Cox multivariate survival analysis of the entire cohort, claudin-
7 expression was an independent predictor of poor PFS, whereas
claudin-3 independently predicted poor OS for patients with post-
chemotherapy effusions. Claudin-5 expression was associated with
high grade,advanced stage and shorter OS and PFS in an additional
study (Turunen et al., 2009).

The overexpression of claudins in ovarian carcinoma compared
to normal ovaries, their role in tumor biology, their upregulation
in metastatic disease, and their association with poor outcome,
suggest a role as therapeutic target in this disease, an approach
that has been under clinical investigation in recent years (Romani
et al., 2009; Saeki et al., 2009; Suzuki et al., 2009; Yuan et al., 2009;
Cocco et al., 2010; Sun et al., 2011). Furthermore, claudin silencing
increases the sensitivity of ovarian carcinoma cells to chemother-
apy (Gao et al., 2011; Kim et al., 2011; Yoshida et al., 2011), and
intraperitoneal application of C. perfringens enterotoxin leads to
eradication of CD44+ ovarian cancer stem cells (CSC) in mice
in vivo (Casagrande et al., 2011), providing a molecular rationale
for their evaluation in this context.

Together, these data demonstrate that epithelial markers may
be related to enhanced rather than reduced tumor aggressiveness
in ovarian carcinoma and underscore the difficulty in applying the
molecular principles of EMT to this cancer.

TRANSCRIPTIONAL REGULATORS OF EMT
THE SNAIL FAMILY
The Snail family is a regulator of mesenchyme formation in
embryogenesis that is highly conserved across different species,
from C. elegans and Drosophila to vertebrates, including humans.
In vertebrates, it consists of three zinc finger transcription fac-
tors, Snail1 (Snail), Snail2 (Slug), and Snail3 (Smuc). Snail family
members have in recent years been shown to be major reg-
ulators of EMT, but additionally modulate genes involved in
cell polarity, apoptosis, cell survival, immune regulation, and
CSC biology, whether directly or indirectly. Among the genes
that are negatively regulated by Snail proteins during EMT are
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E-cadherin, cytokeratin 18, desmoplakin, MUC1, claudin, and
occludin, whereas the expression of matrix metalloproteinases
(MMP), the most important family of proteases mediating inva-
sion, metastasis, and angiogenesis, as well and that of vimentin,
fibronectin, and Rho GTPases is induced by Snail (Hemavathy
et al., 2000; Nieto, 2002; Peinado et al., 2007; Wu and Zhou, 2010).

The transcriptional repressor activity of Snail is modulated by
its expression level and intracellular localization. As EMT in gen-
eral, Snail members are regulated by a large number of proteins
and signaling pathways, including growth factors (TGF-β1, EGF,
VEGF, FGF, PDGF), Integrin/Integrin-related kinase (ILK) signal-
ing, NFκB, Hedgehog, Notch, HMGA2, and the Wnt/β-catenin
pathway (Nieto, 2002; Peinado et al., 2007; Wu and Zhou, 2010).
p21-activated kinase (Pak1), a serine/threonine protein kinase,
regulates Snail through phosphorylation at Ser246, resulting in
Snail accumulation in the nucleus, with resulting increase in its
transcriptional activity. Cytoplasmic Snail has a short half-life,
as it is targeted for degradation by glycogen synthase kinase-3β

(GSK-3β; Wu and Zhou, 2010).
In experimental models of ovarian carcinoma, Snail was shown

to mediate E-cadherin downregulation induced by hypoxia (Imai
et al., 2003), promote tumor growth and metastasis (Jin et al.,
2010), induce EMT initiated by p70 S6 kinase and bone morpho-
genetic protein-4 (BMP-4; Thériault et al., 2007; Pon et al., 2008),
and mediate invasion (Kurrey et al., 2005). Treatment of serous
ovarian carcinoma cell lines with another member of the BMP
family, BMP-2, resulted in higher Snail level, increased motility,
and increased scattering of cells in spheroids (Le Page et al., 2009).

As for Snail, Slug was shown to be involved in EMT and inva-
sion (Kurrey et al., 2005; Thériault et al., 2007). In the latter study
(Kurrey et al., 2005), Snail and Slug were associated with resistance
to chemotherapy and radiotherapy in vitro, related to resistance to
p53-induced apoptosis and accompanied by expression of CSC
markers.

Knockdown of the chemokine receptor CXCR4 in ovarian car-
cinoma cells was recently shown to result in reduced invasion and
proliferation, with downregulation of Slug and vimentin expres-
sion (Wang et al., 2011). Upregulation of Snail and MMP-2, with
reduced E-cadherin level, was observed in ovarian carcinoma cells
treated with 17β-Estradiol (Ding et al., 2006), with similar results
reported for both Snail and Slug in another study (Park et al.,
2008a).

Endothelin-1 induced EMT via ILK-mediated inhibition of
GSK-3β, resulting in Snail upregulation (Rosanò et al., 2005).
In a recent study by the same group, blocking of Endothelin
A, the receptor for Endothelin-1 in A2780 cells in vitro resulted
in sensitization to chemotherapy and reduced cell growth, with
concomitant decrease in Snail levels (Rosanò et al., 2011).

Downregulation of E-cadherin expression by hydrogen perox-
ide was recently reported to occur via EGF, in a p38 MAPK- and
Snail-dependent manner, with no involvement of Slug (Cheng
et al., 2010), whereas combination of EGF and TGF-β synergis-
tically induces both Snail and Slug and represses E-cadherin in
OVCA429 cells (Xu et al., 2010). Stimulation of cultured OSE
by TGF-β induces an EMT-like process, characterized by inabil-
ity to form an epithelial barrier, sustained increase in Snail and
E-cadherin, and transient increase in Slug level, with no effect

on Twist and Zeb1 (Zhu et al., 2010). Heparin-binding EGF-like
growth factor (HB-EGF),one of the ligands of EGFR, induces EMT
phenotype in RMG1 clear cell carcinoma cells through increase in
Snail, though not Slug, and reduced E-cadherin levels, with con-
comitant increase in ILK, VEGF, MMP-9, and integrin-β3 levels,
and suppression of Snail expression using siRNA results in reduced
HB-EGF levels (Yagi et al., 2008).

The metastasis-associated molecule MTA1 is an additional
repressor of E-cadherin based on in vitro analysis of OVCAR-
3 cells overexpressing MTA1, with concomitant decrease in ER-β,
postulated to occur through increase in Snail and Slug levels (Dan-
nenmann et al., 2008). SKOV-3 cells stably transfected with the gly-
coprotein Stanniocalcin-2, target of HIF-1, have increased motility
and invasive capacity, fibroblast morphology, and higher levels of
N-cadherin, vimentin, and Snail, with reduced E-cadherin, under
hypoxic conditions (Law and Wong, 2010). The variant isoform
of hepatocyte nuclear factor 1 (vHNF1) has the opposite effect,
and knockdown of vHNF1 in ovarian carcinoma cell lines leads to
reduced E-cadherin expression, whereas Snail and Slug levels are
reduced in vHNF1-transfected OSE (Tomassetti et al., 2008).

Semaphorin 3E, a neural molecule involved in axon guidance, is
more highly expressed in high-grade endometrioid ovarian carci-
noma compared to other histological types of ovarian carcinoma,
and mediates EMT via its Plexin-D1 receptors, with increased
motility and nuclear expression of Snail (Tseng et al., 2011).

Recently, the authors showed that E-cadherin interferes with
spheroid formation in ovarian carcinoma cells in vitro, and that
Snail silencing in ES-2 clear cell carcinoma cells using Small Hair-
pin RNA reduces invasion and MMP-2 activity. Silencing of Pak1,
known regulator of Snail, using dominant negative (DN) clones,
showed that the latter had reduced attachment to ECM proteins,
invasion, and MMP-2 activity compared to constitutively active
(CA) and wild-type ES-2 and OVCAR-3 cells. DN Pak1 ES-2 cells
additionally had reduced binding to LP9 cells, generated from
benign mesothelium (Elloul et al., 2010). In analysis of clinical
specimens, Pak1 protein expression was significantly higher in
primary carcinomas compared to effusions, and positive correla-
tion was found between Pak1 and Snail expression, suggesting that
Pak1 may mediate downregulation of Snail expression in effusions
(Elloul et al., 2010).

Snail expression and its clinical role has been the subject of
several studies. Nuclear Snail expression was absent in epithelial
and stromal cells in normal ovaries and benign ovarian tumors,
and was infrequent in borderline tumors, whereas expression was
found in >20% of carcinomas. It was, however, unrelated to clin-
icopathological parameters or survival (Tuhkanen et al., 2009). A
similar increase in Snail, as well as in Slug, SIP1, and Twist levels,
related to the degree of malignancy was observed by Yoshida et al.,
and Snail expression was inversely related to that of E-cadherin.
Snail, SIP1, and Twist expression was lower in solid metastases
compared to primary carcinomas, whereas Slug expression was
higher, differences which were significant for Snail and Twist. In
this study, Snail expression was significantly related to shorter OS,
whereas Slug expression had no prognostic role (Yoshida et al.,
2009a).

Analysis of E-cadherin and Snail expression in 48 pri-
mary carcinomas and 50 metastases, of which 47 were paired
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specimens, using immunohistochemistry showed significant asso-
ciation between expression of these two proteins in primary and
metastatic specimens. Reduced E-cadherin in primary carcino-
mas and increased Snail in metastases were associated with poor
OS (Blechschmidt et al., 2008). In contrast, Jin et al. reported on
significantly lower E-cadherin expression in metastases in analysis
of 14 patient-matched primary carcinomas and solid metastases.
The authors additionally found significantly higher Snail expres-
sion in solid metastases and primary carcinomas from patients
diagnosed with advanced-stage disease compared to primary car-
cinomas from early stage patients, and Snail was observed to be
more often localized to the nucleus in advanced-stage compared
to early stage tumors (Jin et al., 2010).

In another study, analysis of 25 patient-matched primary car-
cinomas and solid metastases for the expression of 25 signal-
ing molecules using reverse phase protein arrays showed sig-
nificant co-expression of Snail with activated EGFR(Tyr1086) and
p38(Thr180/Tyr182) in primary OC and with EGFR(Tyr1086) in solid
metastases. High Snail expression in primary carcinomas and high
p38(Thr180/Tyr182) in metastases were associated with greater risk of
death (Hipp et al., 2010).

Snail and Slug mRNA was expressed in ovarian carcinoma effu-
sions, as well as in primary ovarian carcinomas (Figure 1F) and
solid metastases, but their levels in effusions by RT-PCR were unre-
lated to survival (Elloul et al., 2005). Furthermore, while Snail
mRNA levels in effusions were comparable to those of primary
ovarian carcinomas and solid metastases, protein expression was
significantly lower in effusions. Slug mRNA and protein expres-
sion was highest in solid metastases and lowest in effusions, with
intermediate levels in primary carcinomas (Elloul et al., 2006).
Additionally, Snail localized to the cytoplasm rather than the
nucleus in uncultured ovarian carcinoma cells from some effu-
sions (Figures 1G,H), suggesting that it is not functional in these
cells (Elloul et al., 2006).

Interestingly, exposure of clinical specimens from patients diag-
nosed with advanced-stage ovarian carcinoma to cisplatin, as
well as the OVCA433 cell line, results in reduced E-cadherin and
increased Snail, Slug, Twist, and Vimentin mRNA levels, as well as
the increased cell surface expression of CSC markers, which cor-
related with activation of the MAPK member ERK2, presenting
a mechanism for development of resistance in ovarian carcinoma
(Latifi et al., 2011). The involvement of E-cadherin repressors in
chemotherapy response is well in agreement with an earlier study
by Bani et al. (2004) in which Slug was shown to be one of the genes
that are upregulated in response to Paclitaxel in ovarian carcinoma
xenografts in mice by gene expression arrays.

The above-discussed data do not provide a conclusive statement
regarding the clinical role of Snail and Slug in ovarian carcinoma,
nor do they allow for full appreciation of the dynamics of expres-
sion along tumor progression as function of the anatomic site of
the tumor, although they do suggest that primary and metasta-
tic tumors have different expression levels of these E-cadherin
repressors. Some of the data, particularly those related to effusion
specimens, again suggest that ovarian carcinoma cells undergo
at least partial mesenchymal-to-epithelial transition (MET), a
hypothesis supported by the cytoplasmic localization of Snail in
ovarian carcinoma cells in effusions.

THE BASIC HELIX-LOOP-HELIX FAMILY
The basic helix-loop-helix (bHLH) transcription factor family reg-
ulates cell fate during embryogenesis by direct binding to DNA and
recruitment of coactivators or repressors, by protein sequestration
and through protein–protein interactions. They are divided into
three classes. The ubiquitous A class includes E2-2, HEB, and the
E12/E47 isoforms of the E2A gene. The tissue-restricted B class
includes Twist1 and Twist2, as well as Hand1, Hand2, Paraxis, and
Scleraxis, whereas the third group, inhibitory Id proteins, lacks the
ability to bind DNA (Franco et al., 2011). Twist proteins have in
recent years been recognized as central actors in EMT (Vernon and
LaBonne, 2004; Franco et al., 2011).

Twist expression was shown to be related to Paclitaxel resis-
tance in vitro in comparison of the OVCA433 and OVCA432 cell
lines (Wang et al., 2004), and analysis of NOS cells resistant to
Paclitaxel showed relationship to EMT and Twist, as well as Snail,
expression (Kajiyama et al., 2007). Twist was additionally shown
to increase adhesion to mesothelial cells in vitro, thereby possi-
bly related to peritoneal metastasis (Terauchi et al., 2007). Loss of
MKK4, part of the MAPK signaling cascade, was recently shown
to induce EMT in ovarian carcinoma cell lines, as evidenced by
increased Twist expression and loss of E-cadherin (Yeasmin et al.,
2011). In an additional study, knockdown of Twist in an ovarian
carcinoma cell line with CSC characteristics results in decreased
hsa-miR-199a and hsa-miR-214 levels, and increase in the level
of IKKβ, part of the NFκB pathway, suggesting that Twist is an
inhibitor of this pathway in this cell line (Yin et al., 2010).

In a series of clinical ovarian carcinoma of all histological types,
Twist expression was associated with shorter OS and PFS, a finding
that was an independent prognostic factor in multivariate analysis
(Hosono et al., 2007). Similar findings were observed in a study
limited to clear cell carcinomas by the same group (Kajiyama et al.,
2006). Yoshida et al. (2009a) observed a trend for shorter OS for
patients with tumors staining strongly for Twist. Our data indi-
cate that Twist1, Zeb1, and Vimentin mRNA expression is higher
in solid metastases compared to primary carcinomas and effu-
sions from OC patients (Elloul et al., 2010), further attesting to
the dynamic nature of EMT in OC as function of anatomic site,
and suggesting a role in tumor progression.

As for Snail and Slug, these data support a role for Twist in the
induction of EMT-related events in OC. The data from studies
of clinical material suggests a prognostic role for this protein, but
awaits confirmation from studies by other groups.

THE Zeb FAMILY
The Zeb family of transcription factors includes Zeb1 and
Zeb2/SIP1. They contain zinc finger domains involved in bind-
ing target promoters and a POU-like homeodomain involved in
protein–protein interactions. Zeb proteins are modulators of TGF-
β responses, and are additionally able to bind the transcriptional
activators p300 and pCAF. In addition to inducing EMT, Zeb pro-
teins regulate cell cycle- and apoptosis-related proteins (Browne
et al., 2010).

microRNAs are short (19–25 nucleotides) non-coding RNAs
that modulate gene expression at the post-transcriptional level
through binding to the 3′-UTR region of target mRNA, thereby
inducing degradation of the mRNA transcript or inhibition of
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protein translation. Depending on whether miRNAs target onco-
genes or tumor suppressor genes, they may act as tumor sup-
pressors or oncogenes, respectively. microRNAs have been under
growing focus as modulators of cancer biology in recent years (Fil-
ipowicz et al., 2008; Nelson and Weiss, 2008; Sandhu and Garzon,
2011). In ovarian carcinoma, the let-7 and miR-200 families are
the most frequently deregulated microRNAs (Mezzanzanica et al.,
2010).

Zeb factors negatively regulate the mir-200 family, which
induces an epithelial phenotype, and are in turn negatively reg-
ulated by the latter. mir-200 factors additionally regulate TGF-β2
expression, as well as other molecules with a central role in cancer
biology, including β-catenin, class III β-tubulin, and phospholi-
pase Cγ1 (Brabletz and Brabletz, 2010). The inverse association
between mir-200 and Zeb1/Zeb2, and their association with an E-
cadherin-positive/Vimentin-negative phenotype was documented
in analysis of the NCI-60 cell lines, and these data were supported
by experiments in which mir-200 were ectopically expressed or
inhibited, with resulting MET and EMT phenotype, respectively.
In clinical ovarian carcinoma specimens, direct association was
observed between miR-200 and E-cadherin levels (Park et al.,
2008b). Chen et al. (2011) recently showed that the mir-429, a
miR-200 member, induces MET in ovarian carcinoma cell lines,
as evidenced by reduced Zeb1 and Zeb2 and increased E-cadherin
levels.

The authors recently applied miRNA array to compare the
miRNA profiles of primary ovarian carcinoma and ovarian carci-
noma effusions. Analysis of 21 tumors, including 13 effusions and
8 primary carcinomas, identified three sets of miRNAs: one that
was highly expressed in both primary carcinomas and effusions,
one overexpressed in primary carcinomas, and one overexpressed
in effusions. qPCR analysis of a validation set consisting of 45
additional tumors (30 effusions, 15 primary carcinomas) showed,
as in the array set, reduced miR-145 and miR-214 and elevated let-
7f, miR-182, miR-210, miR-200c, miR-222, and miR-23a levels in
effusions compared to primary ovarian carcinomas. In silico target
prediction programs identified potential target genes for some of
the differentially expressed miRNAs. Expression of ZEB1 and c-
Myc, targets of miR-200c, as well as of PAK1 and PTEN, predicted
targets of miR-222, showed inverse correlations between miRNA
expression levels and the levels of their predicted target genes. In
addition, higher expression of the miRNA-processing molecules
Ago1, Ago2, and Dicer was observed in effusions compared to
primary carcinomas (Vaksman et al., 2011).

Zeb1 was induced in the OV266 ovarian carcinoma cell line
in response to estrogen, and high levels of Zeb1 mRNA were
found in high-grade serous ovarian carcinomas (Hurt et al., 2008).
Tissue transglutaminase (TG2), as enzyme involved in protein
post-translational modifications and cross-linking, which is over-
expressed in ovarian carcinoma compared to the normal ovary,
mediates EMT and increases metastasis in a mouse xenograft ovar-
ian carcinoma model, and antisense silencing of TG2 results in
reduced Zeb1, Zeb2, and Slug mRNA levels. TG2 induction of
Zeb1 involves the NFκB pathway (Shao et al., 2009). Work by the
same group recently showed that TG2 itself is induced by TGF-
β, with resulting EMT, spheroid formation and metastasis (Cao
et al., 2012). The scaffolding adaptor protein Gab2, involved in

activation of the MAPK and PI3K signaling pathways, mediates
EMT, with downregulation of E-cadherin and increased migra-
tion and invasion, through activation of PI3K and Zeb1 (Wang
et al., 2012).

Comparison of the miRNA profiles of 70 clinical primary ovar-
ian carcinoma specimens of the serous, endometrioid and clear
cell types and 15 cell lines to those of OSE showed higher miR-200
and reduced Zeb expression in the ovarian carcinoma specimens
(Bendoraite et al., 2010). In contrast, high Zeb2/SIP1 levels were
observed in ovarian carcinoma effusions, in which higher SIP1/E-
cadherin mRNA ratio is also associated with poor OS (Elloul et al.,
2005). Based on these observations, Bendoraite et al. (2010) sug-
gested that an initial MET occurs in the ovary, characterized by
increased E-cadherin, high miR-200 and reduced Zeb expression,
later followed by EMT in progression to ascites, during which
Zeb2/SIP1 levels are elevated.

BRCA1-associated ovarian carcinoma cell lines were recently
shown to be characterized by a high rate of hypermethylation
of p75, a p53-related gene, leading to abrogated binding of its
transcriptional repressor Zeb1, with resulting higher p75 levels,
leading to apoptosis. Similar findings were observed in clinical
specimens when BRCA1-related tumors were compared to those
with normal BRCA1. Interestingly, this hypermethylation was lost
in recurrent tumors, suggesting a mechanism for chemoresistance
in this ovarian carcinoma subset (Ibrahim et al., 2010).

The full biological significance related to the interaction
between Zeb family members and miRNAs in ovarian carcinoma
awaits elucidation, as is the reason for the opposing alterations in
the expression level of Zeb1 and Zeb2/SIP1 in effusions compared
to solid lesions. The clinical role of Zeb family members in ovarian
carcinoma is similarly undecided at present.

OTHER STUDIES
The role of miRs other than miR-200 in regulating EMT in ovar-
ian carcinoma has been investigated in several studies. miR-187, as
well as miR-200a, was shown to be overexpressed in ovarian car-
cinoma cell lines compared to OSE. miR-187 negatively regulated
disabled homolog-2 (Dab2), a tumor suppressor gene that induces
EMT, as evidenced by measurement of E-cadherin and Vimentin
levels, and its levels were inversely related to those of Dab2 protein
in clinical specimens. Higher miR-187 levels were associated with
better OS in clinical ovarian carcinoma specimens, an observa-
tion retained in multivariate analysis (Chao et al., 2012). EGFR
was shown to repress the expression of miR-125a, negative reg-
ulator of EMT, through PEA3, member of the Ets transcription
family, and AT-rich interactive domain 3B (ARID3B), regulator of
mesenchymal cell development in the embryo, was identified as
a target of miR-125a (Cowden Dahl et al., 2009). Parenthetically,
PEA3 was reported to be a marker of poor survival in ovarian carci-
noma (Davidson et al., 2003, 2004). Another member of the PEA3
sub-family of Ets factors, ETV5, is upregulated in ovarian tumors
compared to normal ovaries, and induces EMT and mediates cell
survival and proliferation in ovarian carcinoma cell lines (Llau-
radó et al., 2012), supporting the role of this family in mediating
EMT in this cancer.

Secreted frizzled-related protein 5 (SFRP5), a Wnt antago-
nist, is hypermethylated in ovarian carcinoma, and the latter is
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Table 1 | Molecules related to epithelial-to-mesenchymal transition in clinical ovarian carcinoma specimens – association with disease

progression.

Reference Molecule Expression level No. Finding p-Value

Davidson et al. (2000a) E-cadherin Protein 164 Effusions > primary and solid metastases p < 0.001

Elloul et al. (2006) E-cadherin mRNA 134 Effusions > primary and solid metastases p < 0.001

Yoshida et al. (2009a) E-cadherin Protein 20 pairs Primary < solid metastases NS

Jin et al. (2010) E-cadherin Protein 14 pairs Primary > solid metastases p = 0.033

Patel et al. (2003) P-cadherin Protein and mRNA 24 pairs Effusions and stage II primary > stage I primary NP

Kleinberg et al. (2008) Claudin-1 Protein 463 Effusions > primary and solid metastases p < 0.001

Claudin-3 Protein 463 Effusions > primary and solid metastases p < 0.001

Claudin-4 Protein 463 Effusions = primary and solid metastases NS

Claudin-7 Protein 463 Effusions > primary and solid metastases p < 0.001

Elloul et al. (2010) Vimentin mRNA 80 Solid metastases > primary and effusions p = 0.03

Yoshida et al. (2009a) Snail Protein 20 pairs Primary > solid metastases p = 0.007

Elloul et al. (2006) Snail mRNA 134 Effusions = primary and solid metastases NS

Snail Protein 114 Effusions < primary and solid metastases p < 0.001

Yoshida et al. (2009a) Slug Protein 20 pairs Primary < solid metastases NS

Elloul et al. (2006) Slug mRNA 134 Effusions < solid metastases; primary NS p = 0.042

Slug Protein 114 Effusions < primary < solid metastases p < 0.001

Yoshida et al. (2009a) Twist Protein 20 pairs Primary > solid metastases p < 0.0001

Elloul et al. (2010) Twist1 mRNA 80 Solid metastases > primary and effusions p < 0.001

Zeb1 mRNA 80 Solid metastases > primary and effusions p = 0.003

Yoshida et al. (2009a) Zeb2/SIP1 Protein 20 pairs Primary > solid metastases NS

Elloul et al. (2006) Zeb2/SIP1 mRNA 134 Effusions > solid metastases > primary p < 0.001

Elloul et al. (2010) Pak1 Protein 60 Primary > effusions p = 0.007

No. = total number of cases.

NS, not significant; NP, not performed.

associated with less favorable response to chemotherapy. Silencing
of SFRP5 through methylation induces EMT through Twist and
activates AKT2 in vitro, which may contribute to chemoresistance
in clinical ovarian carcinoma (Su et al., 2010). Chemoresistance in
ovarian carcinoma cell lines was additionally shown to be related
to EGFR activation, with involvement of ERK and Janus kinases
(Jak) signaling and induction of EMT via Snail (Yue et al., 2012).

HMGA2, a high mobility group AT hook (HMGA) protein,
belongs to a family of non-histone nuclear proteins involved in
chromatin remodeling and gene transcription, and is overex-
pressed in many cancers, including ovarian carcinoma (Fedele
and Fusco, 2010; Mahajan et al., 2010). HMGA2 overexpression
transforms OSE cells, leading to tumor formation in a xenograft
model in mice, accompanied by reduced E-cadherin and increased
Vimentin expression. Global gene expression array analysis com-
paring OSE overexpressing HMGA2 with control cells showed
significantly altered levels of 36 genes, including downregulation
of LUM, coding for the tumor suppressor Lumican, which inhibits
EMT (Wu et al., 2011).

Antibody-mediated knockdown of CA 125 resulted in EMT-
related changes in OVCAR-3 cells, as evidenced by reduced E-
cadherin and CK18 and increased N-cadherin and Vimentin
expression, with in vitro increase in motility, migration and inva-
sion, EGFR, ERK1/2 and AKT activation, and increased MMP-2
and MMP-9 expression and activity (Comamala et al., 2011).

Neutrophil gelatinase-associated lipocalin (NGAL), a protein
stored in neutrophil granules which binds MMP-9, is more highly

expressed in ovarian tissue as function of the degree of malignancy,
with highest expression in carcinomas. It is more highly expressed
in ovarian carcinoma cell lines with epithelial features compared
to those with mesenchymal features, and its levels are reduced in
cells undergoing EMT (Lim et al., 2007).

MUC4, a mucin that is widely expressed on ovarian carci-
noma cells in both solid lesions and effusion specimens (Davidson
et al., 2006, 2007), is yet another molecule shown to induce EMT.
Ectopic MUC4 overexpression in SKOV-3 cells results in reduced
E-cadherin and CK18 expression and increase in Twist1, Twist2,
Snail, FAK, and MAPK signaling cascade proteins, as well as in
the formation of larger tumors and increased metastatic ability in
nude mice (Ponnusamy et al., 2010).

CONCLUDING COMMENTS
Ovarian carcinoma remains a highly lethal disease despite bet-
ter understanding of its molecular characteristics and growing
efforts to apply targeted therapy as an additional modality com-
plementing surgery and chemotherapy. Among the leading causes
for our failure to achieve better results in treating ovarian car-
cinoma patients is the remarkable heterogeneity of the disease
along tumor progression, and particularly upon comparison of
primary carcinomas, effusion specimens, and solid metastases.
Profound molecular alterations expectedly occur when tumors
become chemoresistant. In the context of EMT, ovarian carci-
noma defies the general characteristics of this process already
at its evolution, as evidenced by studies of cadherin expression
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Table 2 | Molecules related to epithelial-to-mesenchymal transition in clinical ovarian carcinoma specimens – prognostic relevance.

Reference Molecule Expression

level

Material No. Univariate Multivariate Prognosis

Darai et al. (1997) E-cadherin Protein Primary 20 p < 0.05 NP Good

Davidson et al. (2000b) E-cadherin Protein Primary + solid metastases 45 NS NS –

Faleiro-Rodrigues et al. (2004) E-cadherin Protein Primary 104 OS: p = 0.006 p = 0.014 Good

Elloul et al. (2005) E-cadherin mRNA Effusions 70 PFS: p = 0.023 NP Good

Blechschmidt et al. (2008) E-cadherin Protein Primary 48 p = 0.008 NP Good

E-cadherin Protein Solid metastases 50 NS NP –

Yoshida et al. (2009a) E-cadherin Protein Primary 68 NS NP –

Quattrocchi et al. (2011) E-cadherin Protein Primary 167 OS: p = 0.008 NS Good

PFS: p < 0.001

P-cadherin Protein Primary 167 OS: p = 0.042 NS Poor

PFS: NS

N-cadherin Protein Primary 167 OS: p = 0.005 NS Poor

PFS: p = 0.01

Heinzelmann-Schwarz et al. (2004) Claudin-3 mRNA Primary 115 NS NP –

Choi et al. (2007) Claudin-3 Protein Primary 84 OS: p = 0.027 OS: p = 0.019 Poor

Claudin-4 Protein Primary 84 NS NS –

Kleinberg et al. (2008)a Claudin-1 Protein Effusions 181 NS NS –

Kleinberg et al. (2008) Claudin-3 Protein Effusions 181 OS: p = 0.038 NS Poor

PFS: NS

Claudin-4 Protein Effusions 181 NS NS –

Claudin-7 Protein Effusions 181 OS: p = 0.035 OS: NS Poor

PFS: p = 0.026 PFS: p = 0.017

Turunen et al. (2009) Claudin-5 Protein Primary 85 OS: p = 0.026 NS Poor

Tuhkanen et al. (2009) Snail Protein Primary 74 NS NS –

Yoshida et al. (2009a) Snail Protein Primary 68 OS: p = 0.038 NP Poor

Blechschmidt et al. (2008) Snail Protein Primary 48 NS NP –

Snail Protein Solid metastases 50 p = 0.047 NP Poor

Elloul et al. (2005) Snail mRNA Effusions 70 NS NP –

Yoshida et al. (2009a) Slug Protein Primary 68 NS NP –

Elloul et al. (2005) Slug mRNA Effusions 70 NS NP –

Kajiyama et al. (2006) Twist Protein Primary 27 OS: p < 0.0001 OS: p = 0.0077 Poor

PFS: p < 0.0001 PFS: p = 0.0033

Hosono et al. (2007) Twist Protein Primary 82 OS: p < 0.0001 OS: p < 0.0001 Poor

PFS: p < 0.0001 PFS: p < 0.0001

Yoshida et al. (2009a) Twist Protein Primary 68 NS NP –

Zeb2/SIP1 Protein Primary 68 NS NP –

Elloul et al. (2005) Zeb2/SIP1 mRNA Effusions 70 NSb NP –

No. = number of cases.

NP, not performed; OS, overall survival; NS, not significant; PFS, progression-free survival.
aHigher claudin-7 expression additionally correlated with shorter OS in univariate survival analysis of patients with pre-chemotherapy effusions (p = 0.045), and higher

claudin-1 and claudin-3 expression was associated with shorter OS in analysis of patients with post-chemotherapy effusions (p = 0.018 and p = 0.009, respectively).

Claudin-3 expression was an independent marker of shorter OS in Cox multivariate analysis of patients with post-chemotherapy effusions (p = 0.012). Higher claudin-1

expression in primary carcinomas was associated with shorter OS in univariate analysis (p = 0.036);
bHigher SIP1/E-cadherin ratio correlated with worse OS (p = 0.018).

profiles in OSE, inclusion cysts and carcinomas (Ahmed et al.,
2007), the former two still believed by many, including the
author of this paper, to be the main precursor of serous ovar-
ian carcinoma. Nevertheless, a recent pathway analysis of data
from nine gene profiling array studies in which ovarian car-
cinoma resistance to platinum-based chemotherapy was stud-
ied implicated the TGF-β pathway, which affects both EMT

and stemness, as one of the main drivers of chemoresistance
in ovarian carcinoma (Helleman et al., 2010). EMT, including
in relation to TGF-β signaling, was similarly a main driver of
poor survival of ovarian carcinoma patients in a review sum-
marizing gene expression array analyses, in which 108 of 154
genes selected by the authors were EMT-related (Yoshida et al.,
2009b).
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The data presented in this review suggest that a large num-
ber of molecules may induce EMT in ovarian carcinoma cells
in vitro through activation of several repressors of epithelial phe-
notype, in particular E-cadherin. However, the relevance of these
data to patient material in terms of clinical behavior, prognosis,
and therapeutic intervention is not entirely clear at present. Spin-
dle cells which may indicate transformation from epithelial to
mesenchymal phenotype are not frequently observed in clinical
specimens of ovarian carcinomas, with the exception of carci-
nosarcomas, tumors that constitute a separate entity diagnostically
and clinically. There is therefore little probability that ovarian car-
cinoma cells undergo full EMT. The fact that serous carcinoma, the
most common histological type of this tumor, frequently expresses
EMT-related markers such as N-cadherin and Vimentin, evidence
of its close histogenetic relationship to the mesothelium, further
confounds matters.

As in other areas of research, drawing a unifying statement from
the studies performed to date is also made difficult by the inclusion
of different histological types of ovarian carcinoma in the majority
of reports, as these have been increasingly regarded to represent
different disease entities, both biologically and clinically (Köbel
et al., 2008; Prat, 2012). Further difficulties are related to the study
of protein vs. mRNA, different methodology, different endpoints
(e.g., analyses of similarities vs. differences between primary and
metastatic tumors) and the analysis of small cohorts in some of
the studies.

Tables 1 and 2 provide an overview of the data gathered in
analysis of clinical ovarian carcinoma specimens to date, with
respect to anatomic site-related differences in expression of EMT-
related molecules and their prognostic role. These suggest the
following:

1. Ovarian carcinoma cells in effusions have significantly different
expression profile of EMT-related molecules, with higher levels

of E-cadherin and SIP1 and reduced expression of Snail, Slug,
Twist, and Zeb1 compared to solid lesions. Data with respect to
differences between primary carcinomas and solid metastases
are less consistent, with the sole possible exception being the
observation that E-cadherin expression is lowest in primary
carcinomas.

2. E-cadherin expression is associated with longer survival in the
majority of studies, while the opposite is true for its transcrip-
tional suppressors, for claudins and for other cadherins.

Studies of metastatic disease in clinical specimens are never-
theless still too few in this context, and as metastatic tumors are
those that eventually lead to the death of the patients, such studies
are the ultimate test of relevance and should be the ones to decide
the clinical role of EMT-related molecules considered as possible
candidates for targeted therapy in OC.

The solution to the above-detailed shortcomings is in perform-
ing studies of large tumor series, which include each only one
histological type of ovarian carcinoma, with well-characterized
cohorts with respect to clinical data, in which a broad panel
of EMT-related markers will be analyzed. Analyses should be
performed for primary carcinomas, effusions, and solid metas-
tases, preferably in patient-matched specimens. This is most
easily achieved applying immunohistochemistry, but can also
be performed at the mRNA level. Only this approach will
enable us to reach conclusive observations with respect to the
occurrence and clinical significance of EMT in ovarian carci-
noma.
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