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The drive to understand how altered cellular metabolism and cancer are linked has caused
a paradigm shift in the focus of cancer research. The discovery of a mutated metabolic
enzyme, isocitrate dehydrogenase 1, that leads to accumulation of the oncometabolite 2-
hydroxyglutarate, provided significant direct evidence that dysfunctional metabolism plays
an important role in oncogenesis. Striking parallels exist with the Krebs cycle enzyme
fumarate hydratase (FH ), a tumor suppressor, whose mutation is associated with the
development of leiomyomata, renal cysts, and tumors. Loss of FH enzymatic activ-
ity results in accumulation of intracellular fumarate which has been proposed to act as
a competitive inhibitor of 2-oxoglutarate-dependent oxygenases including the hypoxia-
inducible factor (HIF) hydroxylases, thus activating oncogenic HIF pathways. Interestingly,
our studies have questioned the role of HIF and have highlighted other candidate mech-
anisms, in particular the non-enzymatic modification of cysteine residues (succination)
that could lead to disruption or loss of protein functions, dysfunctional cell metabolism
and cell signaling. Here, we discuss the evidence for proposing fumarate as an onco-
metabolite.
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THE LINK BETWEEN DYSREGULATED METABOLISM
AND CANCER
Cancer cells exhibit characteristic “hallmarks” of malignancy
including increased proliferation, survival, and in particular dys-
regulated metabolism (Hanahan and Weinberg, 2011). There is
abundant evidence showing that cancer cells produce energy
through a high rate of glycolysis in the cytoplasm, in marked
contrast to the process in most normal cells, which employ a
relatively low rate of glycolysis followed by oxidation of pyru-
vate in the mitochondria (Kim and Dang, 2006). Although
Otto Warburg postulated that this switch in cellular metabolism
was the fundamental cause of cancer, most cancer research
since has focused on mutations in, and roles of, oncogenes
and tumor suppressors in the onset and progression of can-
cers (Warburg et al., 1927; Warburg, 1956; Semenza et al., 2001;
Vander Heiden et al., 2009). The development and application
of highly sensitive new technologies such as mass spectrome-
try and nuclear magnetic resonance combined with metabolic
labeling and profiling have increased our understanding of the
complexities of normal and dysregulated cellular metabolism, par-
ticularly when linked with powerful computing programs that
allow for the integration and interrogation of data(Tomita and
Kami, 2012). Furthermore, cancer associated mutations have
been identified in genes of known metabolic function; namely
isocitrate dehydrogenase 1 and 2 (IDH1 and 2), succinate dehy-
drogenase (SDH) and fumarate hydratase (FH; Semenza, 2011).
Consequently, there has been renewed interest in Warburg’s
hypothesis and the link between dysregulated metabolism and
cancer.

WHAT IS AN ONCOMETABOLITE?
The term oncometabolite has only recently been coined and
assigned with confidence to R(-)-2-hydroxyglutarate ((R)-2HG),
the reduced form of 2-oxoglutarate (2OG). (R)-2HG is a by-
product produced by gain-of-function mutations of IDH1 and
IDH2, which normally catalyze the reversible NADP+-dependent
oxidative-decarboxylation of isocitrate to produce 2OG in the
cytoplasm and mitochondria, respectively (Leonardi et al., 2012).
IDH mutations have been found in 75% of low grade gliomas
and secondary glioblastoma multiforme and approximately 20%
of acute myeloid leukemia (Parsons et al., 2008; Mardis et al.,
2009; Yan et al., 2009). 2HG acts as a competitive inhibitor to
multiple 2OG utilizing 2-oxygenases, including prolyl hydrox-
ylases (PHDs), histone demethylases, and the TET family of
5-methylcytosine (5mC) hydroxylases (Chowdhury et al., 2011;
Xu et al., 2011). In gliomas, (R)-2HG accumulation caused by
oncogenic IDH mutations enhances DNA methylation and epi-
genetic remodeling, which stalls cell differentiation and thereby
primes cells for malignancy (Figueroa et al., 2010; Ward et al., 2010;
Lu et al., 2012).

How should we define an oncometabolite? Using (R)-2HG as
an example, one could propose that an oncometabolite is a small
molecule component (or enantiomer) of normal metabolism
whose accumulation causes metabolic dysregulation and con-
sequently primes cells allowing future progression to cancer.
There are likely to be numerous and complex interacting steps
in this process including inhibition, disruption or activation of
pathways each of which will require detailed investigation. Never-
theless, the concept of oncometabolites is novel and exciting and
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offers a real and innovative route into therapies for a variety of
cancers. Here we will discuss evidence implicating fumarate as an
oncometabolite in FH-deficient cells. Furthermore, we will high-
light where these studies have provided useful insights into cell
metabolism.

FUMARATE HYDRATASE
Germline loss-of-function mutations in the Krebs cycle enzyme
FH predispose affected individuals to benign cutaneous and uter-
ine leiomyomata, renal cysts and aggressive collecting duct and
Type 2 papillary renal tumors in hereditary leiomyomatosis and
renal cell cancer (HLRCC; Tomlinson et al., 2002). However, the
exact mechanisms leading to FH-associated oncogenesis remain
to be elucidated (Frezza et al., 2011a).

Fumarate hydratase is a highly conserved homotetrameric pro-
tein located and functioning in both the mitochondria and the
cytosol. In the mitochondria, FH catalyses the hydration of
fumarate to generate malate as part of the Krebs cycle. This
pathway is not only essential for the production of cellular
energy, but also forms a central metabolic hub to generate macro-
molecular precursors. In the cytosol, FH has been proposed to
participate in a number of pathways where fumarate can be pro-
duced, including the urea cycle and the purine nucleotide cycle
(Stepinski et al., 1989; Brosnan and Brosnan, 2004). Both forms
of FH are encoded by the same transcript; localization of the
protein is effected by cleavage of the resulting propeptide into
two smaller peptides, one retaining the N-terminal mitochon-
drial targeting sequence (MTS) and one that is released into
the cytoplasm (Stein et al., 1994; Sass et al., 2001). How FH is
localized within the cell and the exact role the enzyme plays in
different cellular compartments have not been elucidated fully
and this will certainly be a focus for future research. Currently,
it is unclear whether the mitochondrial Krebs cycle defect is
responsible for oncogenesis, or if other mechanisms contribute,
such as fumarate accumulation (Figure 1). To address this ques-
tion we have used a conditional Fh1 (the ortholog of human
FH) knockout mouse model (Pollard et al., 2007) and a panel
of four mouse embryonic cell lines (MEFs) derived from this:
wild-type MEFs, Fh1-deficient MEFs (Fh1−/−, Fh1KO), and Fh1-
deficient MEFs in which there is stable re-expression of either
full length, mitochondrial-targeted FH (Fh1−/− + FH), or cyto-
plasmic FH (Fh1−/− + FH�MTS; O’Flaherty et al., 2010). These
have been used to investigate the importance of FH in both
the mitochondria and the cytoplasm and to unravel some of
the complex consequences of FH loss for cellular, tissue and
whole animal physiology with successful extrapolation into FH-
deficient human tumors (O’Flaherty et al., 2010; Adam et al.,
2011). Immunofluorescence studies with the MEFs described
above have demonstrated that Fh1 loss results in a striking change
in the morphology of mitochondria, which become much enlarged
(O’Flaherty et al., 2010). This phenotype reinforces the obser-
vation that mitochondrial dysfunction is associated with FH
deficiency; but the precise reasons for this and the consequences
for the mitochondria and the cell remain to be determined.
It could be postulated that disruption to the Krebs cycle leads
to alterations in mitochondrial membrane potential and per-
meability of the outer membrane and increased autophagy; all

aspects of cell biology and physiology that can, and should, be
investigated.

FUMARATE ACCUMULATION – A CONSEQUENCE
OF FH INACTIVATION
Fumarate hydratase-deficient cells and tumors have been shown
to accumulate fumarate to very high levels with multiple conse-
quences including the activation of oncogenic pathways (Isaacs
et al., 2005; Pollard et al., 2005). In Fh1 deficient MEFs the level of
fumarate is approximately 8–10 fmol/cell as measured by 1H mag-
netic resonance spectroscopy metabolite analysis and no fumarate
can be detected by this technique in either wild-type MEFs or
Fh1−/− + FH MEFs (O’Flaherty et al., 2010). Perhaps surprisingly
only very low levels (approximately 1 fmol/cell) can be detected in
Fh1-deficient MEFs complemented with extramitochondrial FH
(Fh1−/− + FH�MTS), although the defect in aerobic metabolism
is not corrected (O’Flaherty et al., 2010). Currently, we are under-
taking metabolomic analyses to confirm these observations in
MEFs by alternative techniques (capillary electrophoresis time-of-
flight mass spectrometry; Soga et al., 2003, 2006) and to extend the
studies to mouse and human tissues lacking FH. It would be inter-
esting to determine the relative levels of fumarate under a variety of
physiological conditions in different cellular compartments; mito-
chondrial versus cytoplasm – especially since cytoplasmic “rescue”
effects such a dramatic reduction in the overall cellular fumarate
levels (O’Flaherty et al., 2010) and in the nucleus, given the pro-
posed role for FH in the DNA damage response in yeast (Yogev
et al., 2010).

COMPETITIVE INHIBITION OF
2-OXOGLUTARATE-DEPENDENT OXYGENASES
Others had postulated previously that FH-associated tumori-
genesis might be driven by the upregulation of a number
of oncogenic pathways by hypoxia inducible factor (HIF;
Gottlieb and Tomlinson, 2005). Indeed, it has been shown that
fumarate competitively inhibits 2OG-dependent oxygenases, par-
ticularly the HIF PHDs, thus mimicking hypoxia (pseudohy-
poxia), stabilizing the HIF complex and potentially activating its
oncogenic target genes (Isaacs et al., 2005).

Hypoxia inducible factor is stabilized in human tumors in
HLRCC, in Fh1-deficient MEFs and in the hyperplastic renal cysts
that develop in mice following targeted inactivation of Fh1. Gene
expression analysis in all these tissues revealed strong signatures
of HIF activation (Isaacs et al., 2005; Pollard et al., 2005, 2007;
Ashrafian et al., 2010). Furthermore, both succinate and fumarate
inhibit PHD enzymatic activities in vitro and cell-permeable esters
of 2OG reactivate the enzymatic activity of the PHDs and alleviate
the pseudohypoxia caused by succinate or fumarate accumula-
tion (Hewitson et al., 2007; Mackenzie et al., 2007). However,
using a mouse model in which Fh1 inactivation in renal tubu-
lar cells was combined with inactivation of Hif-1α, Hif-2α, or
both Hif-α isoforms; hyperplastic cyst formation was shown to
be Hif independent (and separately Phd independent). Indeed
combined inactivation of Fh1 and Hif-1α greatly exacerbated the
cystic hyperplasia (Adam et al., 2011). While this suggests that the
effect of HIF may be discounted in the early events of fumarate-
mediated oncogenesis it neither precludes a role in tumorigenesis
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FIGURE 1 | Consequences of elevated cellular fumarate. Loss of
fumarate hydratase enzyme activity results in intracellular accumulation
of fumarate with multiple diverse consequences. However, it remains to be
determined whether some, or all of these, or indeed other as yet uncovered
pathways, lead directly to oncogenesis. Dysregulated metabolism possibly
linked to reductive carboxylation may both result from elevated fumarate and
is certainly a cause of the elevated fumarate. Mitochondrial dysfunction is a
feature of both altered metabolism and possibly high fumarate levels; but
whether it is a contributing factor in oncogenesis needs to be determined
and if autophagy leads to increased availability of nutrients for the cell.
Fumarate has been shown to act as a competitive inhibitor of members
of the 2-oxoglutarate-dependent oxygenase superfamily including the

histone demethylase enzymes (HDMs), TET proteins and hypoxia-inducible
factor (HIF) hydroxylases, thus activating oncogenic HIF pathways. However,
further investigation is required to ascertain whether fumarate initiates
oncogenesis via all, or any, of these routes. Succination of cysteine
residues that could lead to disruption or loss of protein functions,
dysfunctional cell metabolism and cell signaling offers a novel and
promising route to link fumarate and oncogenesis directly. The benefits of
fumarate proposed in activating a DNA damage response need to be
addressed further, while the cytoprotective role proposed for fumarate in
cardiac cells by diverting amino acids into the Krebs cycle and activating the
Nrf2 antioxidant pathway suggests that different cell types may have different
response strategies.

for long-term stabilization of HIF nor its consequent activation of
multiple oncogenic pathways.

This is by no means an end to the story as recent evidence
has shown that fumarate (and succinate) inhibit the activity or
function of other members of the 2OG oxygenase superfamily,
including histone demethylase enzymes (HDMs) and TET pro-
teins which are critical in epigenetic regulation of gene expression
(Xiao et al., 2012). Despite the identification of cancer-associated
mutations in both classes of these enzymes, a direct causal role in
oncogenesis is yet to be determined (Abdel-Wahab et al., 2009; van
Haaften et al., 2009; Dalgliesh et al., 2010; Ko et al., 2010).

SUCCINATION
In addition to its role as an allosteric regulator of 2OG-dependent
oxygenases, fumarate is also an endogenous electrophile and reacts
spontaneously with cysteine residues in proteins by a Michael
addition reaction to form S-(2-succinyl) cysteine (2SC), a process

termed succination (Alderson et al., 2006). Accumulation of cellu-
lar fumarate has been shown to correlate directly with an increase
in succinated proteins. It has been proposed that this results from
mitochondrial stress in adipocytes during adipogenesis, when cul-
tured in high glucose medium, in adipose tissue of obese type 2 dia-
betic mice and in skeletal muscle of streptozotocin-induced type
1 diabetic rats (Frizzell et al., 2011). Mechanistically, it has been
proposed that nutrient excess from hyperglycemia results in high
a NADH/NAD+ ratio, leading to feedback inhibition of oxidative
phosphorylation and accumulation of mitochondrial intermedi-
ates including fumarate, which in turn causes protein succination
(Frizzell et al., 2012). Targets for succination include the glycolytic
enzyme glyceraldehyde-3-phosphate dehydrogenase, adiponectin,
cytoskeletal proteins, and endoplasmic reticulum chaperone pro-
teins. Furthermore, evidence suggests that succination of these
proteins in cells may impair their functions (Blatnik et al., 2008;
Frizzell et al., 2009).

www.frontiersin.org July 2012 | Volume 2 | Article 85 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


“fonc-02-00085” — 2012/7/28 — 18:59 — page 4 — #4

Yang et al. Fumarate and oncogenic signaling

Compared to the situation in diabetes, protein succination is
predictably more severe in FH-deficiency due to the significantly
higher levels of fumarate accumulation. Immunohistochemical
analysis of FH-deficient tumors and cysts has shown a strik-
ing direct relationship between FH inactivation and an increase
in 2SC proteins, which is absent in non-HLRCC tumors and
normal tissue controls and has provided a potentially robust diag-
nostic biomarker for FH-deficiency in cells and tissues (Bardella
et al., 2011). We hypothesize that succination resulting from FH
deficiency targets multiple proteins and may, at least in part,
account for the altered metabolism and oncogenic drive observed
in HLRCC, as exemplified by the succination of Kelch-like ECH-
associated protein 1 (KEAP1). Evidence for KEAP1 succination
came from the observation that there is striking upregulation of
the nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated
antioxidant signaling pathway in our murine Fh1 deficient renal
cyst model, mouse embryonic fibroblasts as well as human FH-
deficient cells and tissues (Adam et al., 2011; Ooi et al., 2011).
NRF2 controls the adaptive response of cells to oxidative and
electrophilic stress, through the activation of target genes con-
taining antioxidant response elements (AREs) while KEAP1 is
the substrate recognition subunit of a Cul3-based E3 ubiquitin
ligase complex and a major cellular electrophile sensor (Zhang,
2010). In the absence of electrophiles, the homodimeric KEAP1
interacts with an NRF2 monomer, promoting its ubiquitylation
and proteasomal-mediated degradation (McMahon et al., 2010).
KEAP1 has been shown to be succinated on two critical cysteine
residues (Cys155 and Cys288) in FH-deficient cells, which disrupts
its interaction with NRF2, resulting in stabilization and accumu-
lation of nuclear NRF2 (Adam et al., 2011; Ooi et al., 2011). This
allows binding to AREs and consequent activation of downstream
target genes involved in defense against reactive oxygen species
(Zhang, 2010). The activation of the NRF2-mediated antioxidant
pathway is a clear point of focus for future work; especially as
activating NRF2 mutations and inactivating KEAP1 mutations are
prevalent in many cancer types (Hayes and McMahon, 2009) and
oncogene-induced Nrf2 transcription promotes tumorigenesis in
mice (DeNicola et al., 2011). NRF2 may contribute to tumor devel-
opment by enabling FH-deficient cells to tolerate high levels of
exogenous or endogenous oxidants, thus promoting their survival.

Succination may result in the disrupted function of multi-
ple proteins and offers a unique mechanism by which fumarate
may lead to dysregulated cellular metabolism and act as an
oncometabolite. Clearly screens need to be undertaken to identify
other candidate succination targets which have cysteine residues
critical for their function and are associated with oncogenic
signaling or metabolic pathways.

DISRUPTION TO METABOLISM
The Krebs cycle dysfunction caused by loss of FH activity poses
significant challenges to cells in meeting energy requirements,
in the generation of macromolecular precursors and in sur-
vival. Studies, in part contradictory, using a number of cellular
models, have identified a variety of mechanisms by which FH-
deficient cells may deal with these problems. Impaired respiration
and upregulation of aerobic glycolysis have been observed in
FH-deficient cell lines and tissues, presumably as an adaptation

to meet cellular energy requirements by producing ATP indepen-
dently of the TCA cycle (Sudarshan et al., 2009; O’Flaherty et al.,
2010). Elevated glutaminolysis has been observed and stable iso-
tope labeling studies of an Fh1-deficient murine renal cell line
have suggested that glutamine is the major carbon source for the
Krebs cycle (Frezza et al., 2011b). These authors have also pro-
posed upregulation of the heme biosynthesis pathway as a means
of removing excess carbon from the dysregulated Krebs cycle whilst
permitting partial mitochondrial NADH generation (Frezza et al.,
2011b). Enhanced glycolysis and glutaminolysis are both stereo-
typical features of transformed cells (DeBerardinis et al., 2007;
Vander Heiden et al., 2009) and may prime FH-deficient cells
toward malignancy. Separately, partial reversal of the Krebs cycle,
so called glutamine-dependent reductive carboxylation, has been
observed in human carcinoma lines including UOK262 cells, defi-
cient in FH. By this mechanism 2OG is reductively carboxylated
by IDH isoforms to generate isocitrate, followed by its subsequent
metabolism to produce citrate, oxaloacetate and acetyl coenzyme
A (AcCoA). AcCoA is crucial for fatty acid synthesis and protein
acetylation while oxaloacetate is reduced to malate to compensate
for decrease in the levels of these metabolites due to Krebs cycle
blockage (Metallo et al., 2012; Mullen et al., 2012). Such a mecha-
nism would allow cells with FH deficiency and impaired oxidative
phosphorylation to maintain cell growth. There are some anoma-
lies between these various proposed adaptive responses perhaps
relating to the cellular model systems employed. More compara-
ble analyses need to be conducted, ideally both in vitro and in vivo
and in combination with metabolite and transcriptome profiling.
Clearly, however, the adaptive response to fumarate accumulation
of FH-deficient cells through alterations of primary metabolism
may contribute to oncogenic transformation. Glycolysis, glu-
taminolysis, anaplerosis and the urea cycle may all be relevant
for FH-deficiency and a greater understanding of these and their
inter-relationships in normal and dysregulated cell metabolism
are vital.

CELL-SPECIFIC EFFECTS – A DUAL ROLE FOR FUMARATE
Despite evidence for fumarate as an oncometabolite, in other
circumstances this metabolite has been shown to exhibit cyto-
protective roles. For example, it has been reported that in yeast
cytoplasmic FH translocates to the nucleus following DNA dam-
age. There it activates the damage response to double strand
breaks, a process that can be complemented by high concentra-
tions of fumarate in the absence of FH enzymatic activity. Elevated
nuclear FH has also been detected in HeLa cells following irradi-
ation damage suggesting that human cytosolic FH may have a
similar function (Yogev et al., 2010). Additionally, it has also been
shown that elevated fumarate in Fh1 cardiac knockout mice greatly
reduced the amount of heart tissue damage following ischemic-
reperfusion injury. This is achieved by diverting amino acids into
the Krebs cycle, thus maintaining ATP levels, stabilizing Nrf2 and
consequently activating the Nrf2 antioxidant pathway (Ashrafian
et al., 2012). Perhaps the key to the opposing roles of fumarate as
an oncometabolite or in a protective role lies in the exact cellular
concentrations of fumarate and its cellular compartmentalization,
as this metabolite on its own is essential for normal functioning
of the Krebs cycle. Therefore, it would be of immense value to be
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able to determine the endogenous levels of fumarate in different
cells and under different stress conditions. Technical difficulties to
undertaking this include heterogeneity in tissue samples and, more
significantly, the lack of effective methods to accurately quan-
tify small molecule metabolites such as succinate and fumarate in
sub-cellular compartments, e.g., mitochondria and nucleus, where
local metabolite levels could be important.

The shift in focus of cancer research to one of trying to under-
stand how altered cellular metabolism and cancer are linked has
highlighted how woefully ignorant we are about the complex-
ities and interrelationships of cellular metabolic pathways and
how these are altered under conditions of a variety of stress
agents. However, studies into rare genetic disorders associated with

metabolism are beginning to provide real insights into the adap-
tive responses of cells and dysregulated metabolism associated with
cancer.
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