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The tumor suppressor promyelocytic leukemia protein (PML) predominantly resides in a
structurally distinct sub-nuclear domain called PML nuclear bodies. Emerging evidences
indicated that PML actively participates in many aspects of cellular processes, but the
molecular mechanisms underlying PML regulation in response to stress and environ-
mental cues are not complete. Post-translational modifications, such as SUMOylation,
phosphorylation, acetylation, and ubiquitination of PML add a complex layer of regulation
to the physiological function of PML. In this review, we discuss the fast-moving horizon of
post-translational modifications targeting PML.
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INTRODUCTION
Promyelocytic leukemia protein (PML) is a tumor suppressor that
was initially identified as a fusion partner of human retinoic acid
receptor alpha (RARα) as a result of a chromosomal translocation
found in the acute promyelocytic leukemia patients (APL; de Thé
et al., 1991; Kakizuka et al., 1991). PML is expressed and conserved
in all mammals (Figure 1). It is enriched in proteinaceous masses
called PML nuclear bodies (NBs), which are visualized as spher-
ical nuclear speckles (Ascoli and Maul, 1991; Daniel et al., 1993).
Many proteins have been identified as PML interacting partners
or components of the PML NBs. PML NBs are implicated in var-
ious cellular activities, including transcriptional regulation, cell
cycle control, post-translational modification, anti-viral response,
DNA damage response and repair, apoptosis, and metabolism
(Kitamura et al., 2005; Van Damme et al., 2010; Kim et al., 2011;
Carracedo et al., 2012; Cheng and Kao, 2012; Ito et al., 2012). There
are nine experimentally verified isoforms in human according to
the NCBI database (Figure 2), all of which have the N-terminal
418 amino acids in common. A nomenclature system of PML iso-
forms using roman numerals was proposed by Jensen et al. (2001).
Although widely used by researchers, this nomenclature system,
however, has not converged with the references used in common
sequence databases of NCBI or Ensembl. Sometimes, ambigu-
ous references were presented in the literature. In this review, we
will refer to the PML isoforms using the names currently imple-
mented by the NCBI database and annotate each isoform with
names from other nomenclature systems (Figure 2). There is only
limited information available on the function of most of the iso-
forms; although a growing body of evidence suggests that different
isoforms may have specific functions. For example, PML isoform
2 is implicated in scaffolding PML NBs (Weidtkamp-Peters et al.,
2008), while PML isoforms 1 and 9 are involved in the antiviral

activity (Cuchet et al., 2011). PML isoform 6, the best-studied
isoform, interacts and recruits p53 to PML NBs (Fogal et al.,
2000). Unless otherwise specified, this review will summarize our
understanding of the post-translational modifications using PML
isoform 6 as a reference and focus on SUMOylation, phosphory-
lation, ubiquitination, and the newly identified acetylation. These
modifications regulate the ability of PML to interact with vari-
ous partners and confer stress- and signal-dependent regulation
of PML or its binding proteins.

SUMOylation OF PML
Human small ubiquitin-like modifiers (SUMOs) include three
paralogs: SUMO1, SUMO2, and SUMO3. SUMO2 and SUMO3
share 95% sequence identity while SUMO1 is only 50% iden-
tical. Protein SUMOylation involves a three-enzyme cascade: a
single sumo activation enzyme E1 dimer (SAE1/SAE2; Gong et al.,
1999; Okuma et al., 1999), a sole E2 conjugating enzyme (UBC9;
Desterro et al., 1997; Gong et al., 1997; Bernier-Villamor et al.,
2002) and multiple substrate-specific E3 sumo ligases (Geiss-
Friedlander and Melchior, 2007). SUMOylation regulates several
aspects of a target protein including protein stability, sub-nuclear
localization, transcriptional activity, and protein–protein inter-
actions (Geiss-Friedlander and Melchior, 2007). SUMO2 and
SUMO3 contain a lysine at position 11 (K11) that can be
conjugated to themselves or with SUMO1 and usually form poly-
SUMOylation chains. By contrast, SUMO1 does not contain K11
and is conjugated to its substrates once or marks the end of
poly-SUMOylation chain.

SUMO1 was initially identified as a PML interacting pro-
tein through a yeast-two hybrid screen (Boddy et al., 1996). This
interaction requires a SUMO-interacting motif (SIM) at the C-
terminus of PML (Lin et al., 2006; Shen et al., 2006). A body of

www.frontiersin.org January 2013 | Volume 2 | Article 210 | 1

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2012.00210/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=XiwenCheng&UID=68529
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Hung-YingKao&UID=67096
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


“fonc-02-00210” — 2013/1/2 — 23:12 — page 2 — #2

Cheng and Kao PML post-translational modifications

FIGURE 1 | Phylogenetic tree of PML proteins in mammals. The phylogenetic tree was generated using the maximum likelihood method with amino acid
substitutions in the Jones–Taylor–Thornton model at a uniform rate. The bootstrap score is labeled at the branches.

FIGURE 2 | Post-translational modifications of human PML. Alignment
of human PML isoforms with post-translational modifications annotated.
Pro, proline-rich region; R, RING domain; B1 and B2, B-Box domains; CC,
predicted coiled coil region; circled p, phosphorylation site; circled s,
SUMOylation site; circled u, ubiquitination site; circled a, acetylation site;
ex1–9 and lines in grey, exon boundaries; dotted box, the consensus

sequence for all PML isoforms (1–418); isoforms 1-2 and 5-11 in red, NCBI
nomenclature; Refseq, NCBI reference sequence; Ensembl CCDS
(Consensus CDS); Jensen2001 (Nomenclature proposed by Jensen et al.
(2001). The post-translational modifications are positioned using
one-letter amino acid code and the position number in the
corresponding isoform.
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evidence has demonstrated that PML is post-translationally con-
jugated to SUMO1 (Sternsdorf et al., 1997; Kamitani et al., 1998b;
Muller et al., 1998) and SUMO2/3 (Kamitani et al., 1998b). Initial
studies identified three canonical SUMOylation sites K65, K160,
and K490 (Kamitani et al., 1998a) on PML. Additionally, later stud-
ies also suggested potential poly-SUMO conjugation sites at K226
and K616 (Vertegaal et al., 2006) and identified three poly-SUMO
conjugation sites including K380, K400, and K497 in response
to arsenic trioxide treatment (Galisson et al., 2011; Figure 3). By
immunofluorescence microscopy, endogenous PML, and SUMO1
were found colocalized in PML NBs (Muller et al., 1998; Gao
et al., 2008a). PML NBs are thought to be a nuclear depot where
SUMOylation elicits its various roles through modulating PML or
components of PML NBs.

SUMOylation is essential for maintaining proper PML NB
structure and normal function. Although PML dimerization is
the prerequisite for de novo PML NB assembly, SUMOylation
of PML is required for the recruitment of components of PML
NBs (Lallemand-Breitenbach and de The, 2010), the turnover
and retention of PML in PML NBs (Weidtkamp-Peters et al.,
2008), and the integrity of PML NBs (Shen et al., 2006). A few

studies have examined the modification pattern of PML by specific
SUMO isoforms. Mouse embryonic fibroblasts (MEFs) derived
from SUMO1 knockout mice show reduced SUMOylation of PML
by SUMO2/3 and marked decreases in the number of PML NBs
compared to those in the wild type cells, suggesting that SUMO1
conjugation of PML is important to maintain the integrity of PML
NBs (Evdokimov et al., 2008). SUMO3 conjugation at K160 also
regulates nuclear localization of PML and PML NB formation
(Fu et al., 2005; Figure 3). Additionally, viral protein LANA2 pro-
motes SUMO2-conjugation of PML (Marcos-Villar et al., 2011).
However, how this pattern originates and what mechanism deter-
mines the specificity by which SUMO1, -2, or -3 is conjugated
to specific lysine residues is still largely unknown. SUMOylation
of PML also regulates the localization of other components in
PML NBs (Ishov et al., 1999; Li et al., 2000; Zhong et al., 2000).
The SUMOylation moiety on PML and/or other components
of PML NBs interact through SIMs present in these proteins
(Takahashi et al., 2005; Lin et al., 2006). The ability of PML to
interact with sumo-conjugated moieties of other PML NB com-
ponents is necessary for PML NB formation (Shen et al., 2006).
SUMOylation of PML exhibits a cell cycle-dependent pattern

FIGURE 3 | Site-specific kinases, SUMO E3 and deconjugating enzymes

that target PML. The diagram depicts the modified residues in PML targeted
by kinases, SUMO E3 ligases, or SUMO deconjugating enzyme. Arrows
indicate the targeting site(s) of these enzymes. Poly-SUMO chains are

observed at K160, K380, K400, K490, and K497 and tentatively at K226 and
K616. K65 is modified by either SUMO1 or a poly-SUMO chain. The functional
consequences of these post-translational modifications are annotated
adjacent to the corresponding enzyme.
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accumulation. It is elevated during interphase and declines dur-
ing mitosis (Everett et al., 1999). Additionally, a specific form of
PML NBs was observed in human neuronal intranuclear inclu-
sion disease associated supraoptic neurons that exhibits as a single
large proteinaceous inclusion body enriched with PML, SUMO1,
and UBC9 (Takahashi-Fujigasaki et al., 2006; Villagra et al., 2006),
raising a possibility that SUMOylation of PML functions in a
tissue-specific manner.

SUMOylation of PML is a key regulator that controls PML sta-
bility in response to extracellular or intracellular stimuli. Arsenic
trioxide (As2O3), a long-known promising therapeutic agent for
treatment of APL, induces a group of slow-migrating PML species
that were identified as SUMO-conjugated PML (Muller et al.,
1998). Arsenic trioxide mediates PML degradation; however not
until recently the molecular mechanism has been largely eluci-
dated. Arsenic trioxide directly binds to the cysteine-rich zinc
fingers in the RING finger, B-box and coiled coil (RBCC) domain
of PML (Figure 2). As2O3 binding directs a conformational
change of PML that promotes the interaction between PML and
the SUMO2 conjugation E2 enzyme UBC9 (Zhang et al., 2010).
Interestingly, such As2O3-induced PML SUMOylation is inhib-
ited by treatment with the serine/threonine phosphatase inhibitor
calyculin (Muller et al., 1998), suggesting that certain cellular phos-
phorylation event inhibits As2O3-induced PML SUMOylation.
As2O3-induced sumoylated PML are targeted for ubiquitination
by the E3 ligase RNF4 prior to the proteasome-mediated degra-
dation (Lallemand-Breitenbach et al., 2008; Tatham et al., 2008).
RNF4 harbors multiple SIMs in its N-terminus and a C-terminal
RING-type E3 ligase domain. Thus, As2O3-induced, SUMO2
conjugation-dependent and ubiquitination-mediated degrada-
tion of PML depends on the binding of the SIMs in RNF4 to
sumoylated PML (Lallemand-Breitenbach et al., 2008; Tatham
et al., 2008). SUMOylated PML also primes casein kinase 2
(CK2)-mediated phosphorylation of PML, which also contributes
to ubiquitination-mediated PML degradation as shown in APL
cells, non-small cell lung carcinoma cells and human primary
tumor specimens (Rabellino et al., 2012). These elegant stud-
ies of SUMOylation-mediated PML degradation authenticate the
essential biological functions of the post-translational modifica-
tions of PML. Understanding such biochemical processes shall
foster development of a better medicine for cancer treatment. A
similar mechanism was adopted by another SIM-containing pro-
tein, ORF61, which contains an N-terminal RING-type E3 ligase
domain and a C-terminal SIM motif, both of which are required
for PML degradation in Varicella-zoster virus (VZV)-infected cells
(Wang et al., 2011).

DNA damage also triggers PML SUMOylation as evidenced
by the observation that the treatment with adriamycin, a DNA-
damaging chemotherapeutic agent, increases the amount of
SUMO-conjugated PML (Gresko et al., 2009). Inhibition of
proteasome-degradation by MG132 treatment disrupts PML NBs
and results in accumulation of PML and SUMO1 in the nucleolus
where these two proteins are not normally colocalized (Mattsson
et al., 2001). By contrast, heat shock causes acute de-SUMOylation
of PML (Nefkens et al., 2003). Additionally, some but not all viral
infections can abolish PML SUMOylation (Muller and Dejean,
1999). PML NBs undergo fission in response to stresses such as

heat shock, heavy metal exposure, and expression of adenoviral
protein E1A and such fission can be rescued by ectopic expression
of SUMO1 (Eskiw et al., 2003). These observations raise several
important questions: How do PML NBs respond to their environ-
ment through SUMOylation? What is the mechanism that senses
a stress and promptly modulates PML SUMOylation? What are
the consequences when PML is conjugated by different SUMOs at
distinct sites?

SUMOylation of PML regulates transcription directly and indi-
rectly, through sequestration of or dissociation of the transcription
factors from PML NBs (Lehembre et al., 2001; Pearson and Pelicci,
2001; Lin et al., 2003; Gao et al., 2008a; Ohbayashi et al., 2008). For
example, IL-6 treatment of cells induces the SUMO deconjugating
enzyme SENP1, which in turns removes PML SUMO moieties,
thereby releasing STAT3 from PML NBs and de-repressing PML-
dependent STAT3 transcriptional activity (Kawasaki et al., 2003;
Ohbayashi et al., 2008).

SUMOylation of PML regulates its ability to regulate apop-
tosis and the outcome probably depends on specific cellular
contents and apoptotic stimuli. Ectopic expression of SUMO1
increases SUMOylation of nuclear PML proteins, PML NBs and
protects rheumatoid arthritis synovial fibroblasts against Fas-
induced apoptosis. The mechanism involves the localization of
death_domain-associated protein (Daxx) to PML NBs (Mei-
necke et al., 2007). In addition, arsenic trioxide induces apoptosis
through a PML SUMOylation-dependent pathway (Zhu et al.,
1997; Lallemand-Breitenbach et al., 2008; Tatham et al., 2008;
Zhang et al., 2010). One key function of PML is to protect cells
from viral infection and SUMOylation also regulates PML’s anti-
viral activities. Infection by poliovirus induces phosphorylation-
dependent PML SUMOylation and the redistribution of PML
NBs, which in turn protects p53 against virus-mediated degra-
dation (Pampin et al., 2006). On the other hand, SUMOylation of
PML can be the Achilles’ heel that attracts certain viral proteins
to attack PML NBs. During human herpesvirus (HSV-1) infec-
tion, viral protein ICP0 binds to sumoylated PML through its own
viral SIM motif (Boutell et al., 2011) and mediates the redistribu-
tion and disruption of PML NBs (Everett and Maul, 1994; Maul
and Everett, 1994), resulting in proteasome-degradation of PML
(Everett et al., 1998; Boutell et al., 2011). These observations sug-
gest that SUMOylation of PML may be required, but not sufficient
to dictate the biological outcomes of these stimuli. These distinct
activities are likely determined by detailed information on which
residues in PML are modified by which SUMO moiety as well as
events other than PML SUMOylation.

The regulators that modulate the extent of PML SUMOylation
include E3 SUMO ligases and non-E3 proteins. PML SUMO E3
ligases bind both PML and the sole E2 enzyme UBC9 to facilitate
SUMO conjugation. RAN binding protein 2 (RanBP2) was first
identified PML SUMOylation E3 ligase (Tatham et al., 2005) and
mediates the SUMOylation of PML at K490 (Satow et al., 2012;
Figure 3). RanBP2-mediated SUMOylation of PML is required
for the maintenance of PML NBs (Saitoh et al., 2006). Recently,
the protein inhibitor of activated STAT 1 (PIAS1), a well-studied
SUMO E3 ligase has also been proposed as a PML SUMO E3 ligase
that promotes SUMOylation of K65 and K160, which facilitates
CK2-mediated, phosphorylation-dependent PML degradation
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(Rabellino et al., 2012). Gao et al. (2008b) demonstrated that
histone deacetylase 7 (HDAC7) is required to maintain PML
SUMOylation and PML NBs, but it remains unclear whether
HDAC7 is an E3 ligase. Beta-catenin, a protein whose gene
is highly mutated in colorectal carcinomas, has recently been
shown to inhibit RanBP2-mediated SUMOylation of PML by
inhibiting the interaction between RanBP2 and PML (Satow et al.,
2012). The NAD-dependent deacetylase sirtuin-1 (Sirt1) also pro-
motes PML SUMOylation independent of its deacetylase activity
(Campagna et al., 2011). Intuitively, both positive and negative
regulators must exist to control PML SUMOylation. Even a sin-
gle modulator could regulate PML SUMOylation bilaterally in
response to different cellular signals. An intriguing question is
how the PML–UBC9 complex directs these different modula-
tors. Since PML SUMOylation is highly responsive to numerous
stimuli, other cofactors that transduce signals to UBC9 may
participate in its regulation. Future studies will dissect the spatial–
temporal regulation of PML SUMOylation as PML is likely to
encounter a different spectrum of E3 enzymes, depending upon its
localization.

The SUMO-specific protease (SENP) family proteins are the
only proteases identified to date that specifically de-conjugate
SUMO moieties from target proteins. Among the six SENPs,
SENP1, -2, -3, -5, and -6 have been shown to remove SUMO
conjugation of PML. SENP1 de-conjugates sumoylated PML but
not RanGAP1, another sumoylated protein (Gong et al., 2000).
An isoform of SENP2, SuPr-1, activates c-Jun transactivation
activity through the removal of a SUMO1 moiety from PML
(Best et al., 2002). SENP3 is activated by mild oxidative stress
and de-conjugates PML poly SUMO2/3 chains, thereby disrupt-
ing PML NBs, promoting cell proliferation, and increasing the
growth of xenografted tumors (Han et al., 2010). SENP5, localized
in nucleoli, preferentially de-conjugates poly SUMO2/3 chains
at K160 and K490; while removing all three SUMO paralogs
at K65 (Gong and Yeh, 2006; Figure 3). SENP6 (aka. SUSP1)
shows specificity for SUMO2/3 but not SUMO1-conjugated PML
(Mukhopadhyay et al., 2006; Hattersley et al., 2011). Loss of SENP6
results in the accumulation of SUMO2/3 in PML NBs, an increase
in number and size of PML NBs and a decrease in cell via-
bility (Mukhopadhyay et al., 2006; Hattersley et al., 2011). How
SENPs regulates PML NBs is an intriguing and incompletely
understood question but is tied to the dynamics and function of
PML NBs.

Several non-PML components of PML NBs are also sumoy-
lated. The E3 SUMO ligase MMS21 is a component of the
alternative lengthening telomere (ALT)-associated PML NBs. It
promotes SUMOylation of several telomere binding proteins
such as TRF1 and TRF2 (Potts and Yu, 2007). SUMOylation of
ALT-PML NB components is an essential step for homologous
recombination-mediated elongation of telomeres in ∼ 25% of
cancers. Additionally, SUMOylation and de-SUMOylation of the
orphan nuclear receptor LRH-1 control its shuttling in and out of
PML NBs (Chalkiadaki and Talianidis, 2005). Another example is
the Daxx protein, an intrinsic PML NB component that is sumoy-
lated. Through its SIM motif, Daxx interacts with the SUMO
moieties of PML and this interaction directs the SUMOylation of
Daxx itself (Lin et al., 2006).

PHOSPHORYLATION OF PML
Phosphorylation is a common modification for transducing sig-
nals (Hunter, 2012). Phosphorylation of PML is a major regulatory
mechanism that controls PML protein abundance and the num-
ber and size of PML NBs. Cells respond to various stimuli, in
part, by modulating phosphorylation of PML. Here we reviewed
phosphorylation in several regions of PML that have been linked
to its biological functions. These regions include the N-terminal
proline-rich region, the RBCC domain, a region containing a
mapped ubiquitination site (K401; Hakli et al., 2005; Lallemand-
Breitenbach et al., 2008), the nuclear localization sequence (NLS)
and the C-terminal SIM (Figure 2).

Promyelocytic leukemia protein harbors an N-terminal
proline-rich region (amino acids 3–46, proline 36%, Figure 2).
Proline-rich peptides are usually exposed on a protein’s surface
and thus participate in protein–protein interactions, signal trans-
duction, and post-translational modification (Kay et al., 2000).
Within this region, PML is phosphorylated at S8, S36, S38,
S40, and T42 in response to epidermal growth factor (EGF)
treatment (Olsen et al., 2006). It is likely that extracellular signal-
regulated kinases (ERK1/2), an EGF downstream kinase, directly
phosphorylates PML at T28, S36, S38, and S40 (Figure 3) and
these phosphorylation promotes PML SUMOylation (Hayakawa
and Privalsky, 2004). Additionally, following DNA damage, the
homeodomain-interacting protein kinase 2 (HIPK2) also phos-
phorylates S8, S36, and S38 (Gresko et al., 2009; Figure 3). Such
HIPK2-mediated phosphorylation leads to increased accumula-
tion of PML protein and its SUMOylation and is required for the
maximal pro-apoptotic activity of PML after DNA damage.

Multiple sites on PML are phosphorylated in response to DNA
damage. The number of PML NBs increases following double
strand breaks (DSBs). However, inhibition of ATM by caffeine
or wortmannin markedly delays or inhibits the increase in PML
NB number (Dellaire et al., 2006). This observation suggests that
DNA damage-responsive kinase ATM regulates PML NB dynamics
in response to DSB. Whether ATM directly phosphorylates PML or
a PML NB component is not clear, nonetheless it is an intriguing
question worth future investigation. Within the RBCC domain, the
DNA damage check point kinase, Chk2, phosphorylates PML at
S117 in response to gamma irradiation (Yang et al., 2002; Figure 3).
Such phosphorylation is important for PML-mediated apoptosis
following DNA damage. Additionally, PML is also phosphorylated
by the ataxia telangiectasia and rad-3-related kinase, ATR kinase,
which is required for the nucleolar localization of PML (Bernardi
et al., 2004). However, the specific phosphorylation site is unclear.

Several groups have reported that regions surrounding the NLS
and SIM of PML are phosphorylated in response to distinct stim-
uli. For example, phosphorylation of PML at S518, S527, and
S530 was detected by mass spectrometry in EGF-treated HeLa
cells (Olsen et al., 2006), during granulopoiesis of IL-3-dependent
myeloid cells (L-G; Tagata et al., 2008) and in human Jurkat cells
following CD3 activation of T-cell receptors (Mayya et al., 2009).
Reineke et al. (2008) also reported that S403 and S505, in addi-
tion to S518, S527, and S530, were phosphorylated in HeLa cells
and that the prolyl-isopeptidase Pin1 promotes PML degrada-
tion that is dependent on phosphorylation of these residues. Lim
et al. (2011) later identified ERK2-dependent phosphorylation of
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PML at S403 and S505, an event that promotes Pin1-mediated
PML degradation (Figure 3). Additionally, a recent study using a
prostate cancer model showed that the CDK1/2-mediated phos-
phorylation of PML at S518 and the subsequently Pin1-mediated
isomerization of PML at the S518-P519 motif facilitate Cullin3-
KLHL20 ubiquitin ligase-dependent degradation of PML under
the tumor hypoxia conditions (Yuan et al., 2011). Such post-
translational modification-mediated degradation of PML is an
essential component in HIF1α-mediated tumor hypoxia responses
(Yuan et al., 2011). Interestingly, S403 is close to the ubiqui-
tination site K401 while S505 and S518 are adjacent to the
acetylation site K515, raising the possibility of mutual regula-
tion of these modifications. The mitogen-activated protein kinase
(MAPK) BMK1/ERK5 phosphorylates PML at S403 and T409 and
inhibits PML-dependent activation of p21 expression (Yang et al.,
2010; Figure 3). ERK1/2 also phosphorylates PML at S527 and
S530, and is involved in As2O3-induced PML-mediated apopto-
sis (Hayakawa and Privalsky, 2004). Interestingly, SUMOylation
of PML at three canonical SUMOylation sites (K65, K160, and
K490) does not seem to be required for phosphorylation of PML
at S505, S518, S527, and S530 (Tagata et al., 2008). However, PML
phosphorylation deficiency at these four serines leads to slower-
migrating SUMOylation bands among which certain sumoylated
PML species accumulate (Tagata et al., 2008). These observa-
tions suggest that phosphorylation modulates SUMOylation in
this region. PML is a key cell cycle regulator. Overexpression of
PML arrests HeLa cells at G1/S (Mu et al., 1997), while loss of PML
promotes cell cycle progression (Wang et al., 1998). Therefore, it
is not surprising that phosphorylation of PML may be subjected
to cell cycle regulation. In HeLa cells, PML directly interacts with
Aurora Kinase A (AURKA) and is phosphorylated at S403, T409,
S518, S527, and S530 during M phase with modest phosphoryla-
tion at S527 and S535 during the G1 phase (Dephoure et al., 2008).
AURKA may participate in these phosphorylation events during
the cell cycle but participation by other kinases is also possible.
It is also unclear whether phosphorylation of PML at these sites
plays a role in cell cycle control.

Casein kinase 2 phosphorylates PML at S565 (SSSEDSE, 560–
566, Figure 3), which is adjacent to the SIM (VVVI, 556–559)
and promotes PML degradation (Scaglioni et al., 2006). Interest-
ingly, this CK2-mediated phosphorylation is also required for the
interaction of SIM with the SUMO moiety (Stehmeier and Muller,
2009). Although it is not clear whether they are directly phospho-
rylated by CK2 (Scaglioni et al., 2006), the residues S560–562 are
essential for SIM function (Percherancier et al., 2009; Stehmeier
and Muller, 2009). Together, these studies suggest that phospho-
rylation of PML at regions next to its ubiquitination site, NLS
and SIM are critical for PML’s function and regulation. A ques-
tion that remains incompletely answered is how phosphorylation
is coordinated with other post-translational modifications of PML
in response to different cellular stimuli.

PML NBs are also active nuclear depots for the phosphoryla-
tion of non-PML proteins. HIPK2 kinase phosphorylates p53 at
S46 in PML NBs in response to UV radiation (D’Orazi et al., 2002;
Hofmann et al., 2002) and promotes subsequent p53 acetylation
at K382 by CBP (Hofmann et al., 2002). Such phosphorylation
and acetylation of p53 in PML NBs enhance its transactivation

activity, pro-apoptotic activity, and the ability to arrest the cell
cycle (D’Orazi et al., 2002; Hofmann et al., 2002; Moller et al.,
2003). In addition, following DNA damage, Chk2 and p53 are
enriched in PML NBs, where PML promotes Chk2 autophospho-
rylation, phosphorylation of p53 by Chk2 at Ser20 and subsequent
stabilization of p53 (Louria-Hayon et al., 2003; Yang et al., 2006).
Imatinib, a drug used to treat chronic myeloid leukemia (CML),
induces TAp73 (a p53 family member) phosphorylation and local-
ization to PML NBs in a p38- and PML-dependent manner in CML
cells (Liu et al., 2009).

UBIQUITINATION AND ACETYLATION OF PML
To date, ubiquitination of PML is only associated with its own
degradation. RNF4 promotes the ubiquitination of PML at K401
and mediates As2O3-induced PML degradation through the pro-
teasome pathway (Hakli et al., 2005; Lallemand-Breitenbach et al.,
2008; Tatham et al., 2008; Weisshaar et al., 2008). Guan et al.
(2012) recently identified UHRF1 as a PML ubiquitin E3 lig-
ase, but whether K401 is target for modification and subsequent
proteasome-mediated degradation is not clear. Additionally, viral
proteins such as the HSV-1 viral proteins ICP0 and STUBL are
E3 ligases that target PML for ubiquitination-mediated degrada-
tion in a SUMOylation-dependent manner (Boutell et al., 2003,
2011). An intriguing but unanswered question is whether PML is
conjugated with ubiquitin at sites other than K401 and whether
ubiquitin plays a role in signal transduction in PML NBs.

Acetylation of PML at K487 and K515 by p300 promotes its
SUMOylation and is important for Trichostatin A (TSA)-induced
apoptosis (Hayakawa et al., 2008). Paradoxically, overexpression
of the deacetylase Sirt1 increases PML protein abundance and
SUMOylation, whereas loss of Sirt1 decreases PML protein accu-
mulation (Campagna et al., 2011). This Sirt1-dependent increase
in PML protein abundance is independent of its deacetylase activ-
ity (Campagna et al., 2011), although Sirt1 promotes deacetylation
of PML (Miki et al., 2012). Mutation at K487R abolishes nuclear
localization of PML, but a specific role for K487 acetylation in
PML nuclear localization is not clear. In contrast, a K515 acetyla-
tion deficiency in PML has minor effects on PML SUMOylation or
PML NBs (Duprez et al., 1999). A further complexity was revealed
by the observation that SUMOs can be acetylated. Although the
acetylation on SUMO1 at K37 and SUMO2 at K33 show minor
effects on PML SUMOylation, the acetylation on SUMOs appears
to play an inhibitory role on PML NB assembly, through pre-
vention of the interaction between the PML SUMO moiety and
SIMs of other PML NB components, such as DAXX (Ullmann
et al., 2012).

OTHER POST-TRANSLATION MODIFICATIONS AND PML
To our knowledge, methylation of PML has not been reported.
However, several protein arginine N-methyltransferases (PRMTs)
reside in and regulate the dynamics of PML NBs (Boisvert et al.,
2005; Cho et al., 2011; Neault et al., 2012). Isgylation is an
ubiquitination-like post-translational modification that conju-
gates the interferon stimulating gene 15 (ISG15) to target proteins.
Isgylation is implicated in protein synthesis, and stability control.
PML is indirectly involved in isgylation as suggested by results with
retinoic acid treatment that mediates degradation of PML–RARα
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FIGURE 4 | Effects of extracellular stimuli on PML. A model summarizes stimuli that regulate PML modification and outcomes.

fusion protein, in part by up-regulating the isgylation E1 enzyme
UBE1L (Kitareewan et al., 2002; Pitha-Rowe et al., 2004). This
UBE1L-mediated degradation of PML–RARα is believed to occur
by targeting the PML domain in PML–RARα (Shah et al., 2008).
Additionally, ectopic expression of an isgylation de-conjugation
enzyme UBP43 leads to elevated accumulation of PML (Guo
et al., 2010). These data indicate that isgylation plays a role in the
regulation of PML protein accumulation. However, a mass spec-
trometry study did not find PML among the isgylated proteins
(Giannakopoulos et al., 2005). The possibility exists that UBE1L
promotes isgylation of other proteins, which in turn modulate
PML protein accumulation.

PROSPECTIVE
Promyelocytic leukemia protein is post-translationally modi-
fied in response to different cellular stimuli (Figure 4). The

different modifications form a complex regulatory network that
modulates the activity of PML and PML NBs. It is clear that stim-
uli such as As2O3 and DNA damage induce both SUMOylation
and phosphorylation of PML. The biggest challenge lies in the
dissection of the biological effects of these modifications and the
crosstalk among these modifications. The nature of low abun-
dance or transient modification also serves as a barrier for this
issue. However, the study and understanding of PML and PML
NB-associated post-translational modifications will be necessary
to establish its function at the molecular level.
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