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In locally advanced cervical cancer, 18F-fluorodeoxyglucose (FDG) positron emission tomog-
raphy – computed tomography (PET/CT) has become important in the initial evaluation
of disease extent. It is superior to other imaging modalities for lymph node status and
distant metastasis. PET-defined cervical tumor volume predicts progression-free and overall
survival. Higher FDG uptake in both primary and regional lymph nodes is strongly predictive
of worse outcome. FDG-PET is useful for assessing treatment response 3 months
after completing concurrent chemo-radiotherapy (CRT) and predicting long-term survival,
and in suspected disease recurrence. In the era of image-guided adaptive radiotherapy,
accurately defining disease areas is critical to avoid irradiating normal tissue. Based on
additional information provided by FDG-PET, radiation treatment volumes can be modified
and higher doses to FDG-positive lymph nodes safely delivered. FDG-PET/CT has been
used for image-guided brachytherapy of FDG-avid tumor volume, while respecting low
doses to bladder and rectum. Despite survival improvements due to CRT in cervical
cancer, disease recurrences continue to be a major problem. Biological rationale exists
for combining novel non-cytotoxic agents with CRT, and drugs targeting specific molecular
pathways are under clinical development. The integration of these targeted therapies in
clinical trials, and the need for accurate predictors of radio-curability is essential. New
molecular imaging tracers may help identifying more aggressive tumors. 64Cu-labeled
diacetyl-di(N(4)-methylthiosemicarbazone) is taken up by hypoxic tissues, which may be
valuable for prognostication and radiation treatment planning. PET/CT imaging with novel
radiopharmaceuticals could further impact cervical cancer treatment as surrogate markers
of drug activity at the tumor microenvironment level.The present article reviews the current
and emerging role of PET/CT in the management of cervical cancer.
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INTRODUCTION
Cervical cancer is the second most common cancer among women
in the world, and a leading cause of cancer mortality, affecting
mainly the under deserved populations of sub-Saharan Africa,
Central and Latin America, and South-Central Asia (Ferlay et al.,
2010a,b). Clinical staging of cervical cancer is based on the
International Federation of Gynaecology and Obstetrics (FIGO)
system, which was revised in 2009 (Pecorelli et al., 2009). This
staging system is based on physical examination and inspection
with scarce radiographic evaluation, aiming to be easily intro-
duced in non-developed nations with limited access to imaging
studies. However, compared with surgical staging, clinical exami-
nations alone can under-stage cervical cancer in 20–30% of stage
IB and up to 64% of stage IIIB patients (Lagasse et al., 1980).
Improvements in tumor staging by imaging modalities, such as
computed tomography (CT), magnetic resonance imaging (MRI),
and fluorine-18-labeled fluoro-2-deoxy-D-glucose positron emis-
sion tomography (FDG-PET) can significantly improve treatment
decisions and the accuracy of highly precise radiotherapy.

Locally advanced cervical cancer is treated with chemo-
radiotherapy (CRT), which has shown to improve local con-
trol and survival. Nevertheless, increasingly more radio- and

chemo-resistant tumors still recur. New research strategies have
focused on the development of tumor biomarkers aiming to com-
bine CRT with new molecular targets. In this setting FDG-PET/CT
and other molecular tracers might help to identify more aggressive
tumors.

The aim of this article is to review the evidence and illustrate
the role of FDG-PET/CT in the pre-treatment evaluation, dis-
ease delineation, and treatment response, with a particular focus
on new and emerging metabolic tracers that could eventually
performed better as biomarkers of tumor response to therapy.

STAGING OF CERVICAL CANCER
PRIMARY TUMOR
The local extent of cervical carcinoma is usually determined by
clinical examination, often performed under anesthesia. Consid-
ering imaging modalities, MRI has been shown to be the best
examination due to its soft tissue resolution and multiplanar capa-
bilities, allowing the accurate determination of tumor volume,
size, and parametrial infiltration. The range of accuracy of MRI
is 90–100%, as compared with 60–70% for CT. MRI is considered
the gold standard method to evaluate loco-regional extension of
cervical cancer.
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Fluorine-18-labeled fluoro-2-deoxy-D-glucose positron emis-
sion tomography – computed tomography can also be used in the
initial evaluation of the primary tumor, which is usually FDG-
avid, and can provide additional information regarding involved
lymph nodes, and distant metastases.

Wong et al. (2004) reported a series of 61 patients with cervical
cancer who had a FDG-PET in the initial work-up. Their conclu-
sion was that the PET was able to detect 100% of primary cervical
tumors. Another study, which included 60 patients, and reported
low sensitivity of FDG-PET for patients with cervical cancer stage
1A2–2A, but this study was performed without combined CT
(Chou et al., 2006). It has been demonstrated that PET/CT has a
higher accuracy than separate PET and CT scans read side-by-side
(Metser et al., 2005).

The degree of FDG-activity in the primary tumor, as mea-
sured by the maximum standardized uptake value (SUVmax), is a
predictive biomarker of lymph node status and disease outcome
(Kidd et al., 2007). Cervical cancer histology and tumor differen-
tiation has shown to affect FDG uptake. In a study performed by
Kidd et al. (2009), 240 women with cervical cancer stage IB2–IVB
were evaluated with pre-treatment FDG-PET/CT. In this study
the mean SUVmax was significantly different between well differ-
entiated vs. poorly differentiated tumors (p = 0.047). Squamous
vs. non-squamous tumors demonstrated a significant difference in
SUVmax (p = 0.015). The influence of tumor volume as a prognos-
tic factor in cervical cancer has been previously established (Eifel
et al., 1994; Fyles et al., 1995; Perez et al., 1998). Poor regression of
initial tumor volume has been found by several groups to confer a
poor overall survival. Mayr et al. (2002) used MRI scans to evalu-
ate tumor regression at 40–50 Gy of external beam RT combined
with chemotherapy in 34 cervical cancer patients. Regression to
less than 20% of residual tumor volume resulted in a cumulative
incidence of local recurrence of 9.5 vs. 77% in patients with more
than 20% residual volume (p < 0.001).

In line with these results, a recent prospective study that
included 32 patients who underwent FDG-PET/CT during the
course of radiotherapy showed that after 19.8 Gy of external beam
radiotherapy, the mean physiologic tumor volume was reduced
from 102 to 72 cm3, representing a 29% reduction in volume
(Lin et al., 2006). After an additional 13 Gy from high dose rate
(HDR) brachytherapy, the mean volume was reduced to 15.4 cm3

and subsequently to 8.6 cm3. Patients with residual disease after
3 months of CRT had a worst outcome. This study has important
implications for the use of image-guided adaptive radiotherapy.
For example, patients with important tumor response during the
course of treatment can potentially benefit from dose-volume
modifications, which might help to reduce acute and late toxic-
ity, whilst patients with persistent disease might be candidates for
other research strategies such as adjuvant chemotherapy or eval-
uation of new biological therapy (Gaffney, 2005; Herrera et al.,
2006; Duenas-Gonzalez et al., 2011; Townsley et al., 2011; Gaffney
et al., 2012; Schefter et al., 2012).

A recent publication evaluating 47 patients with stage IB–IV
cervical cancer compared quantitative and qualitative discrepan-
cies between MRI and PET/CT using a conformity index and an
overlap factor (Ma et al., 2011). Tumor volume measurements
were not statistically different with either modality, although the

study shows that for tumors larger than 60 cm3 the overlap fac-
tor was 0.68, indicating 32% discordance, and for smaller tumors
the overlap factor fell to 0.28, indicating 72% discordance. The
authors concluded that MRI and PET/CT show a similar perfor-
mance in evaluating tumor volume but that the location of the
tumor can vary significantly between these two imaging modal-
ities possibly due to tumor and organ movement between scans.
This has important implications for contouring the gross tumor
volume (GTV) in radiotherapy. In our institution, both imaging
modalities are fused on the planning-CT. To delineate tumor GTV
on fused PET/CT-planning CT, we use a method of automatic
3D volume segmentation of the functional image based on the
relationship between source to background ratio. The lesion is
segmented based on a given level of radio-activity from the func-
tional image (Daisne et al., 2003). In our clinic, we have chosen
Velocity Advanced Image Software (Atlanta, USA), a commercially
available software, which provides a different algorithm to auto-
segment the region of interest based on the principles previously
described (Figure 1). Both MRI-GTV and automated segmented
FDG-PET/CT-GTV are then joining for accurate delineation of
the final GTV.

NODAL STAGING
Nodal status can significantly influence disease outcome with 90%
overall survival in patients with small tumors and negative lymph
nodes, and less than 50% in patients with positive pelvic lymph
nodes. Patients with positive para-aortic lymph nodes have a bleak
prognosis with an overall survival of <20–30% at 5 years. The
evaluation of nodal status can therefore have a tremendous impact
in the treatment planning with radiotherapy. For example, the
presence of metastatic lymph nodes in the pelvis or para-aortic
area can lead to plan an intensity-modulated radiation therapy
(IMRT)-integrated boost with dose escalation on that involved
area (Kidd et al., 2010b; Figures 2A,B). Tsai et al. (2004) found that
28% of patients had their treatment modified due to additional
PET findings in untreated cervical cancer with MRI-defined pelvic
node metastasis.

Positron emission tomography – computed tomography is
more accurate than CT for evaluating lymph node staging,
although the sensitivity and specificity of FDG-PET/CT are vari-
able depending on the stage of the disease (Kidd et al., 2010a).
In early stage disease PET/CT has a sensitivity of 53–73%, and a
specificity of 90–97% for the detection of lymph node involvement
(Reinhardt et al., 2001; Roh et al., 2005; Wright et al., 2005; Chou
et al., 2006; Sironi et al., 2006).

In more advance disease (>IB2), the sensitivity for detect-
ing para-aortic lymph node involvement increases to 75% with
a specificity of 95%. PET sensitivity has been reported to be
superior to MRI. Sugawara et al. (1999) reported 86% FDG-PET
sensitivity for pelvic and para-aortic lymph node metastasis, com-
pared with a CT sensitivity of 57% in a series of 21 patients with
advanced cervical cancer. Rose et al. (1999) reported a study of
locally advanced cervical cancer assessed by PET before surgical
staging, in which FDG-PET had a sensitivity of 75%, a specificity
of 92%, a positive predictive value (PPV) of 75% and a nega-
tive predictive value (NPV) of 92% for para-aortic lymph node
metastasis.
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FIGURE 1 | A 62-year-old woman with a FIGO IIB cervical cancer,

treated with concomitant cisplatin based chemotherapy and

radiotherapy. Image shows the radiotherapy contouring process
on fused planning-CT and FDG-PET/CT images. Contouring is done on

VelocityAI Software (Velocity, Atlanta, GA, USA), based on a
method of automatic 3D volume segmentation of the functional
image, that depends on the relationship between source to
background ratio.

FIGURE 2 | (A) A 48 year-old lady with a cervical cancer stage FIGO IIB,
presenting with multiple positive lymph nodes in continuity located in the
bilateral iliac and para-aortic regions on FDG PET/CT. She was treated with
chemo-radiotherapy using helical TomoTherapy. (B) Three level of radiotherapy
dose were design and treated simultaneously. Pelvis and para-aortic areas

received 44.8 Gy/1.6 Gy in 28 fractions. The PAO and pelvis regions
surrounding positive nodes but without metabolic uptake were treated with
50.4 Gy/1.8 Gy in 28 fractions. Positive FDG PET/CT lymph nodes were
treated with a simultaneous integrated boost up to 59.36 Gy/2.12 Gy in 28
fractions. Scale dose banding shows the 95% of the dose.

In the series of the Gustave Roussy Institute, histological
results of complete para-aortic lymphadenectomy were reported
in patients treated for stage IB2/II cervical carcinoma who had
no para-aortic uptake on FDG-PET/CT: three out of thirty-
eight patients had histologically proven para-aortic involvement
(metastatic nodes with capsular rupture in the para-aortic area),
leading to a NPV of 92% for para-aortic nodal involvement
(Boughanim et al., 2008).

Grigsby et al. (2001) retrospectively studied 101 patients before
primary CRT. CT scan demonstrated abnormal pelvic lymph
nodes in 20% and para-aortic lymph nodes in 7%, while PET/CT
detected abnormal FDG uptake in the pelvic lymph nodes in 67%,
in the para-aortic lymph nodes in 21% and in the supraclavicular
lymph nodes in 8%. The 2-year progression-free rates were 64%

for CT (−) PET (−); 18% for CT (−) PET (+); and 14% for CT
(+) PET (+) (p < 0.0001). A recent up-date of that study which
finally enrolled 560 patients treated with surgery alone, surgery
and post-operative radiotherapy, or definitive CRT, showed that
in 47% of patients, lymph node involvement had been shown on
FDG-PET/CT at diagnosis (Kidd et al., 2010a). The frequency of
lymph node metastasis was similar to that in historical surgical
series and increased according to the clinical stage. Patients with
PET-positive lymph nodes had significantly worse disease-specific
survival than those with PET-negative lymph nodes (p < 0.001).
Disease-specific survival was stratified into distinct groups based
on the most distant level of PET-detected nodal disease (none,
pelvic, para-aortic, or supraclavicular). The hazard ratios for
disease recurrence increased incrementally based on the most
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distant level of nodal disease: pelvic 2.4 (95% CI, 1.6–3.5), para-
aortic 5.9 (95% CI, 3.8–9.1), and supraclavicular 30 (95% CI
17–55).

Most significantly, in a subgroup of 83 patients with positive
FDG-PET/CT lymph nodes, the lymph node SUVmax was pre-
dictive of treatment response, risk of pelvic disease recurrence,
disease-specific survival, and overall survival. The SUVmax at the
level of the lymph nodes was found to be predictive of persistent
disease in the pelvic lymph node region after treatment, and more
than 80% of patients who demonstrated persistent disease in their
post-treatment FDG-PET/CT were eventually confirmed to have
a pelvic disease recurrence (Kidd et al., 2010b).

These results have important implications for treatment deci-
sions, and raise the question if lymphadenectomy staging is still
necessary. Narayan et al. (2001) compared PET with MRI and
assessed whether using either of these methods would avoid surgi-
cal staging in 27 patients with locally advanced cervical carcinoma
assigned to receive local radiotherapy. PET demonstrated sensitiv-
ity superior to MRI, and had a PPV of 98% to detect para-aortic
lymph node metastasis. However, small volume micro-metastatic
disease was still missed on PET. They recommended para-aortic
lymphadenectomy in all patients with positive pelvic nodes
on PET.

In our institution, independently of the FDG-PET status, we
routinely perform lymphadenectomy as a standard approach. This
has the advantage of detecting the 5–8% positive lymph nodes not
visible on PET allowing a better treatment assignment of either
surgery or CRT for early stage disease.

EVALUATION OF TREATMENT RESPONSE AND DISEASE
RECURRENCE
One third of patients with locally advanced cervical cancer will
have disease recurrence, usually within 2 years of completing treat-
ment. Predictors of disease recurrence include clinical stage, lymph
node status at diagnosis, and tumor response after treatment.

After CRT as definitive treatment of locally advanced cervical
cancer there is sufficient evidence to support the use of PET/CT
for the assessment of treatment response. The presence of FDG
activity (either persistent or new) can predict survival outcome.
A study in which FDG-PET/CT was performed 3 months after
completion of treatment showed that a metabolic response was
predictive of long-term survival, with a 3-year survival rate of 78%
in patients with a complete metabolic response, 33% in patients
with a partial metabolic response, and 0% in those with progressive
disease (Schwarz et al., 2007). Multivariate analysis in that study
showed that post-treatment response and lymph node status at
diagnosis were the only accurate predictors of progression-free
survival.

Mayr et al. (2002) used MRI scans to evaluate tumor regression
at 40–50 Gy of external beam RT combined with chemotherapy in
34 cervical cancer patients. Regression to less than 20% of residual
tumor volume resulted in a cumulative incidence of local recur-
rence of 9.5 vs. 77% in patients with more than 20% residual
volume (p < 0.001).

Standardized surveillance programs have proposed the use
of routine physical examination and patient’s symptoms educa-
tion to facilitate early disease detection. However, studies have

reported better overall survival in patients with asymptomatic dis-
ease recurrence (Bodurka-Bevers et al., 2000). In that setting, the
use of FDG-PET/CT in a selected group of patients could poten-
tially lead to a salvage curative therapy of local or oligometastatic
disease (Brooks et al., 2009). In a study performed by Mittra
et al. (2009), 30 women with locally advanced tumors who had
undergone FDG-PET/CT during the surveillance period were
evaluated. FDG-PET/CT facilitated the detection of local and dis-
tant metastasis, with a sensitivity of 93–96% and a specificity of
93–95%. Seventy-one percent of the scans performed in symp-
tomatic patients showed true-positive findings against 44% in
asymptomatic patients. This could have significant implications
for the use of salvage radiotherapy (Figures 3A–C). Stereotactic
radiosurgery has been evaluated in several retrospective studies
of metastatic gynecological malignancies and has demonstrated
activity at various doses and schedules. Particularly in patients
with small tumor burden at recurrence and good performance
status, the use of stereotactic body radiation therapy (SBRT) to
treat FDG-PET avid para-aortic disease has shown a 4-year local
control rate of 67.4%, with low incidence of G3-4 complica-
tions (Choi et al., 2009; Kunos et al., 2012a,b). More prospective
studies are needed to confirm the role of molecular imaging as
a routine examination during the follow-up of these patients
(Elit et al., 2010).

RADIOTHERAPY TARGET DEFINITION WITH FDG-PET/CT
The rapid evolution of radiotherapy now makes it possible to
deliver HDRs to tumors located near normal structures with
explicitly sculpted dose sparing of the normal tissues. Anatomical
images have historically been used; however, they lack sensitivity
for defining tumor extent, and the capacity to evaluate the biol-
ogy of the tumor and normal tissue. In this context, the use of
anatomical images associated with biological images is essential.
Biological images allow mapping of molecular distributions and
their surrogates, and can be used to guide external beam radio-
therapy. For example, Ma et al. (2011) has shown important tumor
volume discrepancies between FDG-PET and MRI probably due
to the important geometrical changes in the position of the cervix
and corpus uteri as well as variations in bladder and rectal filling.
Chan et al. (2008) studied the internal movement of the tumor,
cervix, and uterus using weekly cine-MRIs and a point of interest
analysis (POI). The fundus POI drifted 1.5 cm caudally during
CRT, and the cervical canal 1 cm.

As previously stated, pathological uptake of FDG-PET may
modify treatment strategy, either by extending the radiation vol-
umes to the para-aortic area, or by modifying the dose to the
affected lymph nodes (Figures 4A–C). Esthappan et al. (2004)
proposed dose escalation to 59.4 Gy to the positive para-aortic
lymph node and 50.4 Gy to the para-aortic region using CT/PET-
guided IMRT. In a series of 208 patients with cervix cancer, lymph
nodes were scored as either positive or negative for abnormal FDG
uptake PET and lymph node status by CT was classified as <1 cm
(negative) or >1 cm (positive) (Grigsby et al., 2004). All enlarged
lymph nodes detected by CT were PET positive. No patient under-
went lymph node dissection. The dose to pelvic lymph nodes was
dependent on PET and CT findings: PET negative nodes, <1 cm,
66.8 Gy, and 0/76 failures; PET positive nodes, <1 cm, 66.8 Gy,
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FIGURE 3 | A 43 year-old women with cervical cancer, FIGO IIB, without

Kindly specify the same. evidence of macroscopic positive nodes at
diagnosis. She was treated with chemotherapy and 3D conformal
radiotherapy (45 Gy/1.8 Gy/fraction) followed by brachytherapy. (A) The initial
radiotherapy field does not include the irradiation of common iliac nodes. (B)

An FDG-PET/CT performed 2 years after primary treatment shows an isolated
left iliac recurrence (arrow). This recurrence is observed near the border of the
radiation field, which in the context of centrally controlled cervical cancer
makes us suspect a component of marginal recurrence that typically arise

immediately adjacent to the radiotherapy border. Surgical intervention was
considered unfeasible and she underwent salvaged chemotherapy
(carboplatin and taxane), followed by re-irradiation. (C) Re-irradiation was
performed with helical tomotherapy using a hypofractionated schema of 15
daily fractions of 3.5 Gy. All tomotherapy plans were processed on VelocityAI
to evaluate cumulative dose to normal tissue and organs at risk (OAR).
Megavoltage computed tomography (MVCT) was performed every day before
treatment to correct patient setup. The patient is alive without evidence of
disease at the 3-year follow-up.

and 3/89 failures; 1.1 to <2 cm, 66.9 Gy, and 0/21 failures; 2.1 to
<3 cm, 69.4 Gy, and 2/15 failures; and 3.1 to <4 cm, 74.1 Gy, and
0/5 failures. The risk of isolated nodal failure was <2%. Neverthe-
less, most of the patients with para-aortic positive lymph nodes
failed at distant sites. The use of higher doses of radiotherapy
might only help to increase loco-regional control. For instance
the GOG protocol 125 has studied the feasibility of administering
chemotherapy and extended field radiotherapy, and showed that
in patients with positive para-aortic lymph nodes the combined
treatment achieves 33% of progression-free interval at 3 years, this
supports the idea that the treatment of para-aortic nodes is impor-
tant but that better systemic treatments are needed to avoid distant
metastasis (Varia et al., 1998).

Not only can FDG-PET/CT drive tumor dose painting with
IMRT, but it might also help to limit hematological toxicity. In
locally advanced cervical cancer treated with CRT, both modali-
ties are myelosuppressive (Green et al., 2001; Bachtiary et al., 2005;
Vale et al., 2010). Identifying active bone marrow sub-regions with
FDG-PET might facilitate bone marrow sparing and improve
tolerance to chemotherapy (Mell et al., 2006). In a recent study
reported by Rose et al. (2012), a strong correlation was observed
between radiation dose-volume histogram on the active area of
the bone marrow identified by FDG-PET, and the development of
hematological toxicity. IMRT can reduce the dose to bone marrow
sub-regions identified by FDG-PET/CT: the mean functional bone
marrow V10 (volume of bone marrow receiving ≥10 Gy), and V20
(volume receiving ≥20 Gy) has been shown to be significantly less
with total bone marrow sparing IMRT (Liang et al., 2012).

This has important implications in the development of new
therapeutic strategies to treat cervical cancer. A recently pub-
lished trial identified a survival advantage in patients with locally

advanced cervical cancer treated with concurrent gemcitabine,
cisplatin, and pelvic radiation with adjuvant gemcitabine and
cisplatin compared with concurrent cisplatin and pelvic radi-
ation alone. In this study, more than Grade-3 hematological
toxicity occurred in 72% of the experimental arm and was a fre-
quent cause of treatment discontinuation (Duenas-Gonzalez et al.,
2011). Several research groups are now focusing on the imple-
mentation of phase III trials looking at the potential benefits of
adjuvant chemotherapy (NCT01414608). Consequently, reducing
radiation-induced bone marrow damage is essential.

ROLE OF FDG-PET IN BRACHYTHERAPY
The use of image-guided brachytherapy has become standard
in our clinic as well as many other cancer centers. MRI-guided
brachytherapy is the method most frequently used, allowing an
accurate tumor delineation and dose optimization. Recommen-
dations have been published to avoid inter-observer variability in
the delineation of tumors and organs at risk as well as a reliable def-
inition of target volumes with a common language among centers
(Haie-Meder et al., 2005; Potter et al., 2006).

A few studies have assessed the role of FDG-PET-guided
brachytherapy. Malyapa et al. (2002) Compared two-dimensional
(2D) treatment planning orthogonal radiography-based brachy-
therapy with 3D treatment planning based on FDG-PET in 11
patients with cervical cancer. The patients underwent two PETs:
a first one to visualize the tumor and a second one with the
FDG placed inside the tandem and ovoid applicators to visual-
ize the treatment source positions for 3D treatment planning. The
authors concluded that this technique was feasible and accurate
relative to 2D treatment planning. Lin et al. (2007) conducted a
dosimetric study comparing intracavitary brachytherapy using a
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FIGURE 4 | A 62-year-old lady with FIGO stage IIB cervix cancer and

positive pelvic lymph nodes was treated with cisplatin based

chemotherapy and radiotherapy. (A) Positive lymph nodes are delineated
based on FDG-PET/CT uptake and treated with 60 Gy in 2.4 Gy per fraction in

25 fractions. (B) Radiotherapy was delivered with helical tomotherapy. Pelvis
and para-aortic areas were treated with 45 Gy in 25 fractions of 1.8 Gy. (C)

Scale dose banding shows the 95% of the dose. The tumor boost was
delivered with MRI-guided brachytherapy in four fractions of 7 Gy.

standard plan with a PET-defined tumor volume in 11 patients
undergoing intracavitary treatments. The coverage of the target
isodose surface for the first implant with and without optimiza-
tion was 73 and 68%, respectively (p = 0.21). For the mid
and final implant, the coverage was 83 and 70% (p = 0.02).
The dose to point A was significantly higher with the optimized
plans for both the first implant (p = 0.02) and the mid and last
implants (p = 0.008). The dose to the 2 and 5 cm3 of bladder
or rectum were not significantly different. The authors concluded

that FDG-PET-based treatment planning improved tumor dose
coverage without significantly increasing doses to the bladder and
rectum. A recent publication by Nam et al. (2012) confirms these
results; they evaluated the feasibility of FDG-PET/CT conformal
brachytherapy in 12 patients with cervical cancer. Brachytherapy
was performed at 41.4 Gy, and the prescribed dose to point A was
4 Gy. The median dose that encompassed 95% of the target vol-
ume (D95) of the CTV was 3.23 Gy for point A-2D-based plan vs.
3.99 Gy for the FDG-PET/CT optimized plan. They concluded that
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PET/CT conformal brachytherapy was feasible and target coverage
was better than conventional point A plans.

ASSESSING TUMOR HYPOXIA BY PET
The most extensively studied biological predictor of response
to radiotherapy is hypoxia. Hypoxic cells are more resistant
to killing by ionizing radiation and chemotherapy (Brown and
Giaccia, 1998).

In general, cervical cancer hypoxia has been associated with
more malignant phenotypes (Hockel et al., 1999), higher rates
of metastatic disease (Lyng et al., 2000; Fyles et al., 2002, 2006),
and higher recurrence rates regardless of whether treatment is
RT or surgery (Hockel et al., 1996). Hypoxia coupled with abnor-
mal angiogenesis will provoke impaired tumor perfusion and high
interstitial fluid pressure (IFP) which has been further linked with
worst outcome (Milosevic et al., 2004).

Several hypoxic tracers suitable for PET have received spe-
cial attention. Fluoromisonidazole (18-FMISO) is the hypoxia
tracer most extensively studied (Rasey et al., 1987, 1989). How-
ever, its major disadvantages refer to its slow clearance kinetics
and its high lipophilicity. Another PET tracer under study is 18F-
fluoroazomycin-arabinoside (18FAZA). The feasibility of 18FAZA
was evaluated recently in patients with advanced cervical cancer
in a study performed by Schuetz et al. (2010). Fifteen consecu-
tive patients with locally advanced cervical cancer were treated
with CRT. 18FAZA-PET scans were performed before, during and
after external beam therapy and image-guided brachytherapy. Five
patients had visually identifiable tumors on 18FAZA-PET scans
performed prior to therapy, and four patients before brachyther-
apy. One of five PET positive patients had incomplete remission
3 months after RT, and one had regional recurrence. Four of ten
PET negative patients developed distant metastases. The authors
concluded that 18FAZA-PET imaging is feasible, however, its pre-
dictive and prognostic value in cervical cancer remains to be
clarified.

One of the most promising agents currently under study is
60Cu-labeled diacetyl-bis (N4-methylthiosemicarbazone) (60Cu-
ATSM). In a preliminary study by Dehdashti et al. (2008), 38
women with locally advanced cervical cancer were evaluated before
the initiation of definitive CRT. 60Cu-ATSM uptake was eval-
uated semi quantitatively as the tumor-to-muscle activity ratio
(T/M). A log-rang test determined that the T/M cut-off uptake
value of >3.5 was significantly associated with worst outcome.
Higher uptake of 60Cu-ATSM has been shown to correlate with
other biomarkers of tumor hypoxia such as vascular endothe-
lial growth factor receptor (VEGF), epidermal growth factor
receptor (EGFR), cycloxygenase-2, and carbonic anhydrase-IV
(Grigsby et al., 2007).

Most clinical copper-ATSM studies have used the agent labeled
with the short-lived positron-emitting radionuclide of copper,
60Cu (half-life, 0.395 h; β1-decay, 92.5%; electron capture, 7.5%;
Dehdashti et al., 2003). To enable copper-ATSM to be translated
for use in PET centers that do not have an in-house cyclotron,
copper-ATSM labeled with one of the longer-lived positron-
emitting nuclides, 64Cu (half-life, 12.7 h; β1-decay, 17.4%;
β2-decay, 38.5%; electron capture, 43%) or 61Cu (half-life, 3.33 h;
β1-decay, 62%; electron capture, 38%), is required. The longer

half-lives of 64Cu and 61Cu allow for production at a regional
center and distribution to PET facilities in a fashion similar to that
for 18F-labeled radiopharmaceuticals (Blower et al., 1996).

64Cu-labeled diacetyl-di(N(4)-methylthiosemicarbazone)
(64Cu-ATSM) has also been studied in cervical cancer and compar-
isons with 60Cu-ATSM showed better image quality due to reduced
noise. Furthermore the pattern and magnitude of tumor uptake
of 60Cu-ATSM and 64Cu-ATSM were similar (Lewis et al., 2008).
A multicentre, prospective, phase II study is currently recruiting
patients to define the role of pre-therapy 64Cu-ATSM in predict-
ing prognosis and determining the behavior of locally advanced
cervical cancer (NCT00794339).

The development of new PET tracers targeting hypoxic
response is essential because we are now in the era of ratio-
nally designed molecularly targeted therapies combined with CRT,
which poses a significant challenge not only in evaluating mixed
toxicity profiles but also in the evaluation of tumor response.
New molecular targets may work by mechanisms unlikely to cause
tumor regression, and there remains an important need to develop
biomarkers to provide early evidence of drug activity not only in
the tumor but also its vasculature.

ASSESSING TUMOR ANGIOGENESIS BY PET
Targeting the angiogenic pathway is an increasingly important
therapeutic strategy for cervix cancer, and recent phase II stud-
ies have shown encouraging results (Townsley et al., 2011; Schefter
et al., 2012). The choice of agents and combinations is depen-
dent on understanding the biology of cancer and the availability
of anticancer agents and their toxicities. Integrin αvβ3 is up-
regulated in both tumor cells and angiogenic endothelial cells,
making it an attractive therapeutic target. In recent studies in
cervix cancer patients the expression of β3 integrins, had a sig-
nificant prognostic impact on outcome according to univariate
and multivariate analyses (Gruber et al., 2005). In another study
the expression of αvβ6 in cervix cancer correlated with differ-
ent clinico-pathological parameters and with worse overall and
disease-free survival. Over expression of αvβ6 in cervical squa-
mous carcinomas is an unfavorable prognostic factor. This might
reflect an increased capacity of αvβ6-expressing tumor cells to
migrate in a fibronectin-rich extra cellular matrix (ECM) and/or
to activate TGF-β1 at the tumor/stroma interface, both of which
processes may contribute to cervical cancer progression (Hazelbag
et al., 2007).

Tumor-associated vessels express integrin αvβ3 (Brooks et al.,
1994a,b). It is possible that increased expression of integrins αvβ3

and αvβ5 allow angiogenic endothelial cells to bind provisional
matrix proteins such as vitronectin, fibrinogen, von willebrand
factor, osteopontin and fibronectin that are deposited in the
tumor microenvironment. These adhesive interactions could pro-
vide survival cues and/or traction for invading endothelial cells.
Through genetic deletion, or treatment with integrin antagonists,
several additional integrins have been identified as crucial for
angiogenesis, including α1β1, α2β1, α4β1, α5β1, α6β1, α9β1, and
α6β4 (Avraamides et al., 2008).

Cilengitide (EMD 121974, manufactured by Merck KGaA,
Darmstadt, Germany) is an investigational cyclic arginine–
glycine–aspartic acid (RGD) containing pentapeptide
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sequence that selectively inhibits the αvβ3/5 integrins (Dechantsre-
iter et al., 1999). Cilengitide is the first integrin inhibitor to reach
phase III clinical trials in glioblastoma, another highly vascularized
cancer (Reardon et al., 2008a,b, 2011; Maurer et al., 2009; Stupp
et al., 2010). Cilengitide is now being tested in phase II studies in
patients with lung, pancreas, head and neck, and prostate can-
cer in combination with chemotherapy, radiotherapy, and other
molecular targeted agents (Beekman et al., 2006; Friess et al., 2006;
Vermorken et al., 2011; Alva et al., 2012).

As a result, better vascular imaging techniques are being
developed to monitor responsiveness to treatment. In particular,
considerable effort has been expended on characterizing integrin
antagonists for their ability to specifically deliver diagnostic agents
to tumor cells and associated blood vessels. 68Ga-NODAGA-RGD
is one of them, composed of one pentacyclic motif (RGDyK) and
the 68Galium-chelating reagent NODAGA. CycloRGD-NODAGA
peptide is labeled with 68Ga eluted from a 68Ge/68Ga generator
directly on site (GMP) so as to form the 68Ga-NODAGA-
RGD that will be administrated to the patient. Dosimetry of
68Ga-NODAGA-RGD PET/CT has been extrapolated from mice
(Buchegger et al., 2011), and this radiopharmaceutical agent is
in clinical use in our institution in a Swissmedic-approved study
(NCT01608516). Our group is now evaluating the possibility of
embarking on a phase I–II study to evaluate toxicity and efficacy
of cilengitide combined with CRT in locally advanced cervical
cancer.

CONCLUSION
There is a high level of evidence that FDG-PET/CT plays an
essential role in the primary evaluation of cervical carcinoma,
particularly in evaluating lymph nodal status and distant metas-
tases, contributing to precise tumor staging and changes in
therapeutic attitudes.

In surgical staged patients the diagnostic performance of FDG-
PET/CT has shown a sensitivity of >80%, a specificity of >90%
for detecting lymph node metastasis.

Positron emission tomography – computed tomography has
gained importance in determining prognosis, assessing treatment
response and evaluation of disease recurrence. The use of FDG-
PET/CT is important to accurately define radiotherapy volumes,
spare active bone marrow from high doses of radiation, and deliver
more precise brachytherapy. Despite improved survival with the
use of CRT, loco-regional control still constitutes a major prob-
lem, and other treatments are necessary to improve effectiveness.
Advances in the understanding of the tumor microenvironment
such as hypoxia, and angiogenesis, open the window to imple-
ment new molecular targeted approaches. Advances in biological
images like PET/CT have a tremendous impact on the evaluation
of treatment response to new therapeutic strategies.
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