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Tumor suppressor pb3 are frequently mutated in glioblastomas (GBMs) and appears to
contribute, in part, to resistance to temozolomide (TMZ) and therapeutic drugs. WW
domain-containing oxidoreductase WWOX (FOR or WOX1) is a proapoptotic protein and
is considered as a tumor suppressor. Loss of WIWWOX gene expression is frequently seen
in malignant cancer cells due to promoter hypermethylation, genetic alterations, and trans-
lational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces
apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically
bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge
in p53 and WWOX, and postulate potential scenarios that wild type and mutant p53, or
isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX
activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ
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MECHANISMS OF RESISTANCE TO TEMOZOLOMIDE
IN GLIOBLASTOMAS
Glioblastoma multiforme afflicts 12,500 new patients in the U.S.
annually (Friedman et al., 2000; Stupp et al., 2009; Silber et al.,
2012). Glioblastoma (GBM) is highly lethal, and the average sur-
vival expectancy is 14.6 months, and the overall 5-year survival
rate for GBM is only 9.8% (Friedman et al., 2000; Stupp et al,,
2009). High levels of resistance to current therapeutic modalities
and cancer relapse are frequently seen in patients (Haar et al,
2012; Happold et al.,, 2012). The current standard therapy for
GBM mainly includes maximum debulking surgery, radiation,
and treatment with the monofunctional alkylating agent temo-
zolomide (TMZ) (Friedman et al., 2000; Nishikawa, 2010). Mul-
tiple mechanisms are involved in the TMZ resistance, which may
include cancer stem cells, microRNAs, drug efflux, DNA damage
repair, tumor cells under hypoxia, histone deacetylation, epithelial-
mesenchymal transition, STAT3 kinase, and many others (Haar
et al., 2012; Happold et al., 2012; Johannessen and Bjerkvig, 2012;
Kitange et al., 2012; Kohsaka et al., 2012; Zhang et al., 2012b).
Temozolomide induces generation of DNA lesions, including
O6-methylguanine, N3-methyladenine, and N7-methylguanine
(Goellner etal.,2011; Zhang et al., 2012b). The O6-methylguanine
lesion is known to trigger autophagy, rather than apoptosis, to
cause cell death (Kanzawa et al., 2003). Also, inhibition of anti-
apoptotic Bcl-2 by a pan-Bcl-2 inhibitor (—)-gossypol leads to
autophagic death in gliomas and enhances the action of TMZ

resistance and induce GBM cell death.
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(Voss et al., 2010). However, a recent study demonstrated that
TMZ-induced autophagy is pro-survival, and may block the even-
tual apoptosis in GBM cells (Knizhnik et al., 2013). Also, MAPO2
(Clorf201) gene participates in the O6-methylguanine lesion-
induced apoptosis (Fujikane et al., 2012). MAPO2 gene encodes
a novel 37-kDa protein. It is not determined whether this gene is
involved in autophagy.

The O6-methylguanine lesion is a substrate for direct repair
by O6-methylguanine-DNA methyltransferase (MGMT) (Pollack
et al., 2006; Hegi et al., 2008; Fukushima et al., 2009; Zhang
et al., 2012b). Without MGMT repair, O6-methylguanine initi-
ates activation of mismatch repair-deficient (MMR) proteins or
Rad3-related protein kinase that ultimately leads to apoptotic cell
death (Caporali et al., 2004; Wang and Edelmann, 2006; Roos
et al., 2007). High expression of MGMT or loss of MMR con-
tributes significantly to TMZ resistance in many clinical cases
(Pollack et al., 2006; Hegi et al., 2008; Sarkaria et al., 2008). The
initiation of apoptotic signaling fails in the absence of the MMR
system.

Sensitivity to TMZ is significantly associated with the methy-
lation status of MGMT gene promoter in cells committed to
differentiation (Villalva et al., 2012). An increase in MGMT
gene promoter methylation, which blocks MGMT protein expres-
sion, prolongs cancer patient survival. Intriguingly, overexpressed
microRNA-21 reduces Bax/Bcl-2 ratio and caspase-3 activity,
thereby blocking TMZ-induced apoptosis (Shi et al., 2010).
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MicroRNA-21 is considered as a pro-survival factor for cancer
cells (Li et al., 2012). Integrins play a role in the resistance of
advanced cancers to radiotherapy and chemotherapy. a581 inte-
grin negatively regulates p53 signaling, and the event induces
glioma cell resistance to TMZ (Janouskova et al., 2012). a5p1
integrin is considered as a therapeutic target for high-grade
brain tumors. The base excision repair enzyme alkylpurine-DNA-
N-glycosylase (APNG), which repairs the cytotoxic lesions N3-
methyladenine and N7-methylguanine, also participates in the
TMZ resistance (Agnihotri et al., 2012). Upregulation of mito-
chondrial respiratory chain coupling to suppress the production
of reactive oxygen species (ROS) regulated by cytochrome ¢ oxi-
dase contributes in part to TMZ resistance in gliomas (Oliva et al.,
2011).

Reversal of TMZ resistance may be achieved by MGMT pseudo-
substrates, O6-benzylguanine and lomeguatrib to sensitize tumors
to TMZ (Zhang et al., 2012b). Methoxyamine-blocker of base
excision repair contributes significantly to TMZ cytotoxicity par-
ticularly when O6-methylguanine adducts are repaired or toler-
ated (Goellner et al., 2011; Zhang et al., 2012b). Dual targeting
of base excision repair and NAD(+) biosynthesis may reverse
TMZ resistance in patients with resistant and recurrent GBM
(Goellner et al., 2011). Interferon-f (IFN-B), levetiracetam (LEV),
resveratrol, and valproic acid (VAP) increase the sensitivity of
TMZ through MGMT-dependent or -independent mechanisms
(Nakada et al., 2012). Resveratrol, a natural polyphenol, reverses
TMZ resistance via an NF-kB-dependent mechanism (Huang
et al., 2012). STAT3 inhibitor or STAT3 knockdown potentiates
TMZ efficacy in resistant GBM cell lines (Kohsaka et al., 2012).
Intratumoral hypoxia is common in GBMs and may be associ-
ated with the development of TMZ resistance. Induced hyperoxia
can be utilized to reverse TMZ resistance in GBMs (Sun et al.,
2012). Cancer stem cells are probably the key to failure in TMZ
treatment. The concept of cancer stem cell survival from treatment
with TMZ and other chemotherapeutic drugs has been more com-
plicated than previously thought (Beier et al., 2011; Chen et al,,
2012). CD133-positive cancer stem cells are expressed in both
normal stem cells and cancer stem cells (Donovan and Pilking-
ton, 2012). However, the role of CD133 as a marker for glioma
cancer stem cells relative to its biological function has yet to be
established.

WW DOMAIN-CONTAINING OXIDOREDUCTASE WWOX
Recently, tumor suppressors p53 and WWOX were shown to regu-
late the apoptosis of glioblastoma cells (Chiang et al., 2012). WW
domain-containing oxidoreductase, known as WWOX, FOR, or
WOXI1, is encoded by human or mouse WWOX/Wwox gene. This
gene is located in chromosome 16q23.3-24.1, an area known as
the common fragile site FRA16D. The full-length WWOX pro-
tein is composed of two N-terminal WW domains, a C-terminal
short-chain alcohol dehydrogenase/reductase (SDR) domain, and
a proapoptotic C-terminal tail D3 (Chang et al., 2001, 2007, 2010
Ageilan et al., 2004, 2007; Hong et al., 2007; Salah et al., 2012)
(Figure 1). WWOX may act as an alternative receptor for sex
steroid hormones, since its SDR domain possesses an NSYK motif
capable of interacting with androgen and estrogen (Chang et al.,
2005a; Su et al., 2012).

Expression of WWOX is either altered or lost from epigenetic
modification in multiple malignant cancers, such as non-small
cell lung carcinoma (Donati et al., 2007), hematopoietic malig-
nancies (Ishii and Furukawa, 2004), gastric carcinoma (Ageilan
etal.,2004), pancreatic carcinoma (Kuroki et al., 2004), breast car-
cinoma (Guler et al., 2004; Ageilan et al., 2007), and glioblastoma
multiforme (Kosla et al., 2011). Restoration of WWOX gene pre-
vents the growth of lung cancer (Fabbri et al., 2005), pancreatic
cancer (Nakayama et al., 2008), and prostate cancer (Hong et al.,
2009).

The first WW domain of WWOX may interact with proteins
possessing a PPxY motif(s) such as AP-2vy, p73, ErbB4, Ezrin, SIM-
PLE, c-Jun, RUNX4, and many others (Chang et al., 2007; Salah
et al., 20125 Su et al., 2012; Figure 1). Transiently overexpressed
WWOX binds transcription factors AP-2, p73, and c-Jun and block
their nuclear relocation in vitro, which suppresses cancer cell sur-
vival (Salah et al., 2012). In stark contrast, Wwox co-migrates with
proapoptotic and pro-survival transcription factors to the nuclei
of neurons upon sciatic nerve axotomy in rats (Li et al., 2009). No
blocking of translocation of transcription factors to the nuclei by
Wwox was observed.

Under stress conditions, WWOX is activated via phosphory-
lation at Tyr33, and binds proteins independently of the PPxY
motif (Chang et al., 2001, 2003, 2005a,b, 2007, 2010). Activated
WWOX physically interacts with serine 46-phosphorylated p53
(Figure 1), which stabilizes p53 and its apoptotic function (Chang
et al., 2005b). Also, WWOX binds Disheveled proteins (Dvl),
which are key components in Wnt/p-catenin signaling pathway
(Figure 1). No PPxY motif is in Dvl. Transiently overexpressed
WWOX sequesters DvI-2 in the cytoplasm and thereby blocks Dvl-
2-mediated TCF transcriptional activity (Bouteille et al., 2009).

Overexpressed WWOX induces apoptosis and inhibits prolif-
eration of human hepatic carcinoma cells (Hu et al., 2012) and
many cancer cell types (Chang et al., 2007, 2010; Salah et al., 20125
Suetal., 2012). WWOX enhances the cytotoxic function of tumor
necrosis factor by down-regulating apoptosis inhibitor Bcl-2 and
Bcl-xL and up-regulating apoptotic p53 (Chang et al., 2001). Also,
WWOX mediates cell death synergistically with p53. Upon expo-
sure to chemicals or environmental stress, such as UV irradiation
and chemotherapeutic drugs, WWOX undergoes phosphorylation
in Tyr33 and probably others sites, followed by relocating to mito-
chondria or nuclei for inducing apoptosis (Chang et al., 2007,
2010).

WWOX binds MEK in Jurkat T cells (Lin et al., 2011). Phorbol
myristate acetate (PMA) dissociates the MEK/WWOX complex
and induces WWOX to translocate to the mitochondria to induce
apoptosis, whereas MEK relocates to the lipid raft. Inhibition
of MEK activity increases TMZ-induced suppression of cancer
cell growth (Holt et al., 2012). Ectopic expression of WWOX in
A549 cells induces procaspase-3 and procaspase-9 activation and
induces cytochrome C releasing from the mitochondria (Zhang
et al., 2012a). Complement Clq induces ectopic WWOX phos-
phorylation in Try33 and leads to cell apoptosis independently of
the classical complement activation pathway (Hong et al., 2009).
A portion of WWOX is anchored in the membrane/cytoskeleton
area via binding with hyaluronidase Hyal-2 (Hsu et al., 2009) and
Phospho-Ezrin (Jin et al., 2006). Transforming growth factor p1
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FIGURE 1 | Schematic diagrams of WWOX structure and its role in
signaling. WWWOX contains two N-terminal WW domains, a C-terminal
short-chain alcohol dehydrogenase/reductase (SDR) domain, and a D3 region.
A nuclear localization signal (NLS) is in between the WW domains (Chang

et al., 2003, 2007; Del Mare et al., 2011; Salah et al., 2012; Su et al., 2012;
reviews). The SDR domain possesses a mitochondria-binding region. There
are two conserved tyrosine phosphorylation sites, Tyr33 and Tyr287. Other
phosphorylation sites predicted by NetPhos 2.0 Server are Tyr6, Thr12, Ser14,
Tyr61, Tyr293, and Thr393, respectively. Upon stress stimulation, WWOX is
phosphorylated in Tyr33 and binds p53. The WWOX/p53 complex then
translocates to mitochondria or nucleus to induce apoptosis. WWOX also
binds PPxY motif-containing transcription factors, such as RUNX2, c-Jun, and
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ERBB4, via its first WW domain, and the binding blocks the activity of these
proteins by retaining them in the cytoplasm. WWOX binds Tau via its SDR
domain. WWOX participates in the Wnt/B-catenin signal pathway by binding
Dvl and inhibiting its nuclear import. Phorbol ester stimulates the dissociation
of MEK/WWOX complex in Jurkat T cell, and the released WWOX translocates
to the mitochondria for causing cell death. WWOX is recruited to the
membrane area by association with Hyal-2 and phospho-Ezrin. Hyal-2 is an
alternative receptor for TGF-B1. In response to TGF-B1, WWOX binds Hyal-2
and forms a complex, followed by relocating to the nucleus and enhancing the
SMAD-driven promoter activity. Ack1, activated Cdc42-associated kinase 1;
Hyal-2, hyaluronoglucosaminidase 2; CKl, casein kinase; GSK, glycogen
synthase kinase; PKA, protein kinase A.

binds Hyal-2 as a cognate receptor to signal the formation of
the WWOX/Hyal-2/Smad4 complex to relocate to the nucleus for
enhancing the SMAD-driven promoter activity (Hsu et al., 2009).

p53 AND FUNCTIONS

Activated p53 mediates apoptosis, cell cycle arrest, senescence,
DNA repair, or metabolism (Lane and Levine, 2010). The pri-
mary structures of p53 and its isoforms are depicted (Figure 2).
p53 induces cell cycle arrest by transactivating genes such as
cyclin-dependent kinase inhibitor p21, or microRNA miR34. p53
induces apoptosis by transactivating proapoptotic genes such as
BAX, PUMA, SCOTIN, and FAS, and inhibiting the antiapoptotic
gene BCL-2 (Lane and Levine, 2010). p53 triggers pro-survival or
cell death response, depending upon cell types, the intensity of the
stress signal, and the extent of cellular damage (Menendez et al.,
2009). Also, p53 plays a role in controlling cell motility via regulat-
ing the expression of smooth muscle a-actin (Comer et al., 1998),
collagens Ilal and VIal (Sun et al., 1999), and many others.

p53 ISOFORMS

At least nine isoforms of p53 have been identified due to alter-
native mRNA splicing, multiple gene promoters, and alternative
initiation sites of translation (Ghosh et al., 2004; Ray et al,
2006; Figure 2). In cancers, aberrant expression of p53 iso-
forms occurs frequently (Bourdon et al., 2005; Bourdon, 2007).
Full-length p53, A133p53, and p53P are localized mainly in
the nucleus, and only few of them are in cytoplasm. p53y
and A133p53f are localized in the nucleus and cytoplasm.
A133p53y is localized in the cytoplasm (Bourdon et al., 2005).
Co-transfection of p53 and p53p increases p53-mediated apop-
tosis, whereas co-expression of p53 with A133p53 suppresses
p53-mediated apoptosis (Bourdon et al., 2005). A133p53 dif-
ferentially regulates gene expression in p53-dependent and -
independent manners (Aoubala et al., 2011). Co-expression of
A133p53f or A133p53y with p53 does not affect p53 tran-
scriptional activity on p21 and Bax promoters, as well as
apoptosis.
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FIGURE 2 | p53 and WWOX in GBM cell apoptosis. (A) Full-length p53
possesses two N-terminal transactivation acidic domains, a proline-rich
domain, a central DNA-binding region, and a C-terminal domain, containing a
nuclear localization signal, an oligomerization domain, and a basic region.
N-terminal deletion mutants of p53 are also shown. (B) Three likely scenarios
are proposed for WWOX and p53 to regulate GBM cell death. First, ectopic
WWOX fails to induce apoptosis of GBM cells expressing endogenous wild
type p53. It appears that ectopic WWOX binds and functionally antagonizes
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p53, and both proteins nullify each other’s function in inducing apoptosis.
Second, no physical interactions between mutant p53 proteins and WWOX
are expected in GBM cells. Thus, ectopic WWOX induce apoptosis in mutant
p53-expressing cells. Finally, whether WWOX binds p53 isoforms is unknown.
Also, whether ectopic WWOX induction of apoptosis in GBM cells expressing
p53 isoforms remains to be established. TAD, transactivation domain; PrD,
proline domain; NLS, nuclear localization signal; OD, oligomerization domain;
BR, basic region.

p53 AND WWOX ALTERATIONS IN GBMs

P53 mutants are considered as unfavorable factors for the effective-
ness in radiotherapy and TMZ treatment in glioma cells (Gjerset
et al., 1995; Hirose et al., 2001; Squatrito et al., 2010; Blough
et al., 2011). Loss of functional p53 confers sensitivity to TMZ
in glioma cells, whereas wild type p53 increases the TMZ resis-
tance (Blough et al., 2011). p53 mutants reduce TMZ sensitivity
in gliomas (Blough et al., 2011).

Altered WWOX expression is shown in GBMs, in which down-
regulation of WWOX is associated with loss of heterozygosity and
promoter methylation (Kosla et al., 2011). Recently, we demon-
strated that overexpressed WWOX induces apoptosis of glioblas-
toma U373-MG cells harboring mutant p53 by causing hypoploidy
and DNA fragmentation (Chiang et al., 2012). However, ectopic
WWOX has no effect with U87-MG expressing wild type p53.
Unlike TMZ, WWOX induces apoptosis of U373-MG cells via
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a mitochondria-independent and caspase-3-independent path-
way (Chiang et al., 2012). While the underlying mechanisms are
unknown, it is reasonable to assume that the survival of human
glioblastoma cells depends upon interactions between the gain-
of-function of p53 mutants and WWOX. Activated WWOX binds
wild type p53 with Ser46 phosphorylation (Chang et al., 2005b).
UV irradiation enhances the binding interactions. Despite the
presence of Ser46 in A40p53, binding of this protein with WWOX
remains to be determined. We postulate that in GBM cells, both
wild type p53 and ectopic WWOX proteins appear to have a
functional antagonism, thereby nullifying each other’s function
in inducing apoptosis (Figure 2). Mutant p53 proteins cannot
bind ectopic WWOX in GBM cells, and WWOX is able to induce
apoptosis. Whether WWOX causes apoptosis in GBM expressing
p53 isoforms is unknown and remains to be established.

PERSPECTIVES

Whether WWOX affects TMZ sensitivity has never been deter-
mined. Binding proteins for WWOX and/or p53 are likely to affect
apoptosis and TMZ sensitivity in GBM cells. WWOX binds MEK,
and that PMA dissociates this complex for causing apoptosis of
T leukemia cells (Lin et al., 2011). Thus, appropriate chemicals,
which break apart the WWOX/MEK complex, are expected to
cause GBM cell death. Preliminary studies from our screening
of chemicals have selected certain small molecules that induce
apoptosis of many types of cancer cells (Lu et al., unpublished).
Indeed, specific inhibition of MEK by selumetinib enhances TMZ-
induced cancer cell death in vivo (Holt et al., 2012). Serum factors
can be utilized for blocking cancer growth. For example, serum
complement Clq induces apoptosis of prostate cancer and neu-
roblastomas cells without participation of downstream proteins in
the classical activation pathway (Hong et al., 2009). In this event,
ectopic WWOX is activated for inducing apoptosis.

Failure of ectopic WWOX in inducing apoptosis of glioma
cells possessing wild type p53 is unusual (Chiang et al., 2012).
In most cases, we have shown that p53 functionally interacts with
WWOX, and both proteins induce apoptosis in a synergistic man-
ner (Chang et al., 2001, 2003, 2005a,b, 2007, 2010, 2012; Su et al.,
2012). A likely scenario is that p53-binding proteins, which are
present in GBMs, may interfere with the apoptotic function of
WWOX and p53. Functional antagonism among tumor suppres-
sors has never been documented in the literature. However, it
is not surprising to find that many tumor suppressor proteins,
e.g., p53, WWOX, Smad4, PTEN, PP2A, and etc., are signifi-
cantly upregulated during the early stage of cancer progression
(Lai et al., 2005; Chang et al., unpublished). Do these proteins
act synergistically in blocking cancer progression but lose con-
trol eventually? Or, do they counteract each other’s function, thus
allowing cancer growth? Whether endogenous WWOX counter-
acts with the function of endogenous p53 is unknown and remains
to be established.

One of the unique characteristics for malignant gliomas is
their diffuse infiltration into distant brain tissue. Signal path-
ways, involving PI3K, Akt, mTOR, NF-kB, and autophagy, are
believed to confer these migrating cells resistant to apoptotic death
(Lefranc et al., 2005). Glioma cells possess CD44 as a receptor
for interacting with brain matrix hyaluronan (Murai et al., 2004;

Yoshida et al., 2012), and secrete hyaluronidases and metallopro-
teinases to facilitate their migration (Delpech et al., 2002; Junker
et al., 2003; Hagemann et al., 2012). Also, lack of WWOX expres-
sion is expected to enhance cell migration. For example, loss
of WWOX facilitates migration of ovarian cancer and osteosar-
coma cells (Gourley et al., 2009; Del Mare et al., 2011). Ectopic
expression of TIAF1 (TGF-B-induced antiapoptotic factor), p53,
and WWOX suppresses anchorage-independent growth and cell
migration and causes apoptosis in cancer cells (Chang et al,
2012). We believe that glioma cells, with stem cell-like proper-
ties, migrate individually rather than collectively. This assumption
is based upon our observations that mouse Wwox gene knockout
cells (e.g., embryonic fibroblasts) migrate individually and aggres-
sively. In contrast, wild type cells migrate collectively (Chou et al.,
unpublished). While a portion of WWOX is anchored on the cell
membrane/cytoskeleton, WWOX-negative cells lose recognition
by parental WWOX-positive cells, and this increases the mobility
of WWOX-negative cells to move away from the WWOX-positive
cells. Conceivably, WWOX-negative glioma cells migrate individ-
ually and turn away from WWOX-expressing brain cells to low
WWOX expression areas. Apparently, the migratory behavior of
WWOX-negative glioma cells may account for the diffuse invasion
into distant brain tissue (Chou et al., unpublished).

Metabolic alterations have been shown in Wwox knockout
mice, including postnatal lethality, bone metabolism defects,
ataxia, steroidogenesis, and generation of osteosarcomas (Del
Mare et al., 2011; Salah et al., 2012). In a Drosophila model, Wwox
is shown to participate in pathways involving aerobic metabolism
and oxidative stress for generation of ROS (O’Keefe et al., 2011).
Under UV stress, functional Wwox gene expression induces ROS
production in Drosophila. Cancer cells are known to overly utilize
glycolysis for growth advantage — the so-called Warburg (Moncada
etal.,2012). Conceivably, WWOX is likely to override glucose con-
sumption in cancer cells and exerts generation of ROS to curb the
cancer cell growth and invasion.

In summary, in this perspective article we have discussed the
potential role of tumor suppressors p53 and WWOX in regulating
TMZ sensitivity in GBM cells. We have shown the role of WWOX
in controlling cell migration and metabolic alterations, and dis-
cussed the effects of WWOX deficiency and TMZ resistance in
cancer cells.
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