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We apply competition colonization tradeoff models to tumor growth and invasion dynamics
to explore the hypothesis that varying selection forces will result in predictable phenotypic
differences in cells at the tumor invasive front compared to those in the core. Spatially,
ecologically, and evolutionarily explicit partial differential equation models of tumor growth
confirm that spatial invasion produces selection pressure for motile phenotypes.The effects
of the invasive phenotype on normal adjacent tissue determine the patterns of growth and
phenotype distribution. If tumor cells do not destroy their environment, colonizer and com-
petitive phenotypes coexist with the former localized at the invasion front and the latter,
to the tumor interior. If tumors cells do destroy their environment, then cell motility is
strongly selected resulting in accelerated invasion speed with time. Our results suggest
that the widely observed genetic heterogeneity within cancers may not be the stochastic
effect of random mutations. Rather, it may be the consequence of predictable variations
in environmental selection forces and corresponding phenotypic adaptations.
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INTRODUCTION
Competition-colonization tradeoffs underlie an important mech-
anism of coexistence in ecological communities with spatial vari-
ation of competitor abundances (Tilman, 1994). In these commu-
nities, some species excel at colonizing unoccupied space whereas
others excel at competing within already occupied space. But,
no species simultaneously excels at both. Ecologists have demon-
strated competition colonization tradeoffs in a number of commu-
nities (e.g., birds: Rodríguez et al., 2007, ants: Stanton et al., 2002,
plants: Turnbull et al., 2004). They can be important in structuring
ecological communities (e.g., Turnbull et al., 1999; Cadotte et al.,
2006).

Competition colonization tradeoffs may also play an important
role in the ecological and evolutionary dynamics of population
invasions and range expansions. Researchers have noted that selec-
tive pressures at an invasion front could be markedly different
than selective pressures at the core of an invasion (e.g., Phillips,
2009; Burton et al., 2010). Evolutionary ecologists have shown
that phenotypic change by natural selection occurs during species
invasions and is critical for understanding invasion dynamics (e.g.,
Simmons and Thomas, 2004; Broennimann et al., 2007; Barrett
et al., 2008).

A well-known example of eco-evolutionary dynamics is the
invasion and spread of the cane toad (Bufo marinus) across north-
ern Australia. Detailed examination of the spreading population
demonstrates two divergent phenotypes based on selection for
colonization along the invasion front (Phillips et al., 2006). The
colonizing phenotype has longer legs, moves more often, and is
found near the front of the invasion. Phillips (2009) has shown

that the phenotype at the invasion front tend to be r-selected, in
that they reproduce sooner than toads in the core. Evidence sug-
gests that a tradeoff for increased dispersal may be manifest in
increased spinal stress and arthritis (Brown et al., 2007).

We highlight the notion that tumor invasion parallels the
process of population invasion into novel habitats and subsequent
range expansion. Accordingly, concepts and modeling from ecol-
ogy and evolution can be applied to understand the ecological
and evolutionary dynamics of tumors. While the modern para-
digm of cancer biology sees cancer as arising because of cell level
selection pressures, oncologists have largely neglected the role of
ecology in determining these selection pressures and subsequent
evolution (Gatenby, 2012). Integrating these viewpoints has the
potential to further our understanding of the growth and invasion
of tumors.

There is clear evidence of evolutionary processes within clinical
cancers resulting in multiple genetically distinct clones (Yachida
et al., 2010; Gerlinger et al., 2012). However, this is typically attrib-
uted to random mutations that result in an overall proliferative
advantage rather than local adaptations to specific environmental
selection forces. Selection in tumors could be markedly differ-
ent at the tumor host interface than within the host. Moreover,
there is evidence that suggests the presence of both coloniza-
tion and competition phenotypes among cancer cells within a
tumor. For example, invadopodia are actin rich invasive cell mem-
brane protrusions that degrade the extracellular matrix (Weaver,
2006). Invadopodia have been observed in a wide range of cancers
and appear to confer invasion potential. In contrast, the pheno-
types of many cancer cells appear to promote the development
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of a local tumor infrastructure. For example, vascular endothe-
lial growth factor (VEGF) is a protein secreted by many tumor
cells and promotes tumor vascularity and blood flow by induc-
ing growth and movement of endothelial cells (Carmeliet and
Jain, 2000; Goodsell, 2003). The former phenotype may arise
due to selection pressures at the invasion front, and the latter
may arise due to selection pressures within the interior of the
tumor.

In this article we use partial differential equation (PDE) models
that are spatially, ecologically, and evolutionarily explicit to explore
the effects of competition colonization tradeoffs on the evolution
of tumors. PDE models of population growth in space have a his-
tory in both the fields of ecology (e.g., Holmes et al., 1994) and
tumor biology (e.g., Chaplain et al., 2006; Eikenberry et al., 2009).
Our approach is novel in that we explicitly model a phenotypic
distribution of the cancer cells (also, see Benichou et al., 2012;
Bouin et al., 2012). In our model, cancer cells are distributed in
physical space and phenotype space. As such our model may better
reflect the ecological and evolutionary dynamics of tumor invasion
by incorporating population dynamics and heritable phenotypic
changes.

We use our models to investigate four important questions rel-
evant to the eco-evolutionary dynamics of range expansions and
tumor biology.

When does cell motility evolve? Models of range expansion
show that motility can evolve, and this has been demonstrated in
general population models and tumor specific models (e.g., Ger-
lee and Anderson, 2009; Aktipis et al., 2012). We use our models
to reaffirm these results and to explore when and if cell motility
evolves.

Does the type of movement matter? Previous work with spa-
tial PDE models has demonstrated that spatial heterogeneity with
temporal homogeneity selects against diffusive movement, but
can select for directed adaptive movement (Dockery et al., 1998;
Cantrell et al., 2006). However, there has not been an analysis com-
paring different movement types in models of range expansion.
We use our models to compare the effects of different types of
movement rules on the overall eco-evolutionary dynamics.

Does the evolution of cell motility result in phenotypic dif-
ferentiation in space? The cane toads are clearly an example of
phenotypic divergence in space. However, recent theoretical work
by Shine et al. (2011) has shown that selection is not necessary for
phenotypic divergence in a spatial context. Rather spatial assort-
ment of phenotypes can simply be a consequence of the fact that
faster moving phenotypes tend to move to the invasion front,
and the slower moving phenotypes tend to stay in the core, and
this facilitates assortive mating. Theoreticians have demonstrated
the effect of spatial sorting in PDE models of range expansion
(Benichou et al., 2012; Bouin et al., 2012). We use our models
to ask if selection for motility results in phenotypic divergence
in space. More specifically, we investigate whether a competition
colonization tradeoff is required for this type of landscape scale
coexistence.

Does invasion speed accelerate? The speed of the cane toad
invasion has accelerated, by as much as five times in a half century
(Phillips et al., 2006, 2007). Researchers attribute this accelera-
tion to the evolution of a more specialized colonizer phenotype.

Individual toads have been shown to move longer distances per
unit time in recent times as compared to historic records. The-
ory also predicts accelerated invasion speed with the evolution of
dispersal (Travis and Dytham, 2002). Thus, we explore with our
models whether the evolution of motility results in accelerated
invasion speed.

MODEL DESCRIPTION
We develop two spatially and evolutionarily explicit PDE mod-
els to explore tumor invasion with a competition colonization
tradeoff. The models contrast two extreme perspectives on tumor
dynamics. In the first model, cancer cells invade the surrounding
microenvironment and subsequently reach a carrying capacity. In
the second model, cancer cells invade the surrounding microenvi-
ronment and subsequently destroy the environment, resulting in
local extinction of the cancer cells. In both models, cancer cells are
characterized by their phenotype and location in physical space.
Thus, we include a phenotypic dimension (w), which describes a
phenotypic distribution (Cohen, 2009) of cancer cells. To model
a competition colonization tradeoff, we assume that increased w
corresponds to increases in a cell’s ability to move in physical space
and decreases its ability to compete for resources. Numerical solu-
tions to the models describe the time evolution of the phenotypic
distribution of cells in space. Mutation and differential success of
phenotypes results in ecological and evolutionary dynamics. Cell
movement produces spatial ecological dynamics.

MODEL 1 – A HABITAT–CONTINUUM TUMOR MODEL
With the first model, we consider an ecological situation where
cancer cells invade the surrounding environment and engineer the
environment, such that it is a suitable habitat. This model is a phe-
nomenological representation of angiogenesis and other types of
environmental engineering by the cancer cells. We model a logis-
tically growing population of cancer cells (c) in one-dimensional
space (x), with phenotype (w). We consider two different versions
of the model; one for the evolution of random movement and one
for the evolution of directed movement. The corresponding PDEs
are given by

∂c (x , w , t )

∂t
= λc

(
K (w)− Tc

K (w)

)
+ µ (w)

(
∂2c

)
∂x2

−
∂

∂x

(
χc

∂F

∂x

)
+M (w) . (1)

∂c (x , w , t )
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= λc

(
K (w)− Tc

K (w)

)
+ µ

∂2c

∂x2

−
∂

∂x

(
χ (w) c

∂F

∂x

)
+M (w) . (2)

The first term in the equations describes standard logistic pop-
ulation growth, with an intrinsic growth rate λ, and carrying
capacity K (w). Tc represents the total cell density at a spatial
position x. Tc is calculated by integrating over the phenotypic

dimension, giving Tc =
∫ 1

0 c (x , w) dw .
The second and third terms are derived by Fick’s first and sec-

ond laws of flux. The second term describes random movement
in space, as characterized by a Laplacian operator scaled by the
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cell motility coefficient µ. The third term describes directed cell
movement in space via the spatial fitness gradient (∂F /∂x) and
proportional to the tactic sensitivity coefficient χ. The tactic sen-
sitivity coefficient scales the tendency of cells to move in response
to a chemical gradient. Here, the fitness function is defined as the
per capita growth rate of cells in the absence of cell movement or
mutation:

F = λ

(
K (w)− Tc

K (w)

)
.

Since the fitness term is density dependent, the cells“adaptively”
move to areas with lower cell densities. The fourth and final term
in the model describes mutation or movement in phenotype space
(see below for description).

The competition colonization tradeoff enters the model
through the carrying capacity K (w) and the cell movement para-
meters. To explore the effect of the evolution of different cell
movement rules on invasion dynamics, we model the evolution
of cell movement in two different ways (Eqs 1 and 2). The phe-
notypic variable w either increases the cell motility coefficient µ,
µ= ρ1w Eq. (1), or increases the tactic sensitivity coefficient χ,
χ= ρ1w Eq. (2). Throughout, we refer to the former as random
cell movement and the latter as directed cell movement. In both
cases, increasing w necessarily decreases cell competitiveness by
decreasing the carrying capacity of a specific phenotype,

K (w) = κ exp (−ρ2w) .

Following Cohen (2009), we use a discrete function (Eq. 3) to
describe mutation with regard to a continuous phenotypic trait
(w). The B function describes the per capita birth rate of a par-
ticular phenotype, with ε describing the mutational step size. As
in Cohen (2009) we assume for simplicity that each phenotype
has a constant per capita birth rate λ, such that the negative part
of the per capita logistic growth equation represents death rates.
This simplification then leads to Eq. 4. We use second order Taylor
series approximations of the terms in Eq. 3 to convert the discrete
equation into a continuous approximation. Equation 4 shows the
second order Taylor series approximation to Eq. 3. We use Eq. 5 as
the mutation term in the model.

M ′ (w) =
1

2
η[B (w + ε) c (w + ε)

+ B (w − ε) c (w − ε)− 2B (w) c (w)] (3)

M ′ (w) =
1

2
ηλ [c (w + ε)+ c (w − ε)− 2c (w)] (4)

M (w) =
1

2
ηλε2 ∂2c

∂w2
(5)

MODEL 2 – A HABITAT-DESTRUCTION TUMOR MODEL
Our second model considers an ecological scenario where cancer
cells invade and subsequently destroy the microenvironment. This
model represents tumors with a significant necrotic core. We use a
modified version of the haptotaxis model introduced by Anderson

(2005). The system of PDEs is given by

∂c
(
x , y , w , t

)
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= νZ
(
p
)

c − D (w) c + µ∆x ,y c

−∇x ,y
(
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(
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(
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)
∂t

= −αmTc (8)

∂p
(
x , y , t

)
∂t

= γm − σp − Z
(
p
)

Tc + ω∆x ,y p (9)

This model includes, cancer cell density (c), extracellular matrix
density (m), and oxygen concentration (p) as state variables. The
model assumes that cancer cells use extracellular matrix macro-
molecules for movement, and in the process, degrade these mole-
cules. Furthermore, the matrix molecules produce oxygen, which
the cancer cells depend on for reproduction. Thus, as cancers
cells invade the surrounding environment they leave a wake of
habitat-destruction by degrading the extracellular matrix and their
oxygen supply. We assume that oxygen uptake by the cancer cells
is described by a saturating function Z (p)=ψp/(θ+ p), where
ψ is the maximum uptake rate and θ is the half saturation con-
centration of oxygen. ν Is the conversion efficiency of consumed
oxygen to new cancer cells. δ Is the per capita death rate of cancer
cells. As in the previous model, µ and χ represent the cell motil-
ity coefficient and the tactic sensitivity coefficient respectively.
M represents mutation, which we modify slightly from before
(see below). Equation 6 shows that the matrix macromolecules
decline from an initial abundance. In Anderson’s original model,
the degradation of the matrix was mediated through a matrix
degradation protein that the cancer cells produced. For simplic-
ity, here we consider that the cancer cells directly degrade the
matrix molecules. Empirically, this mechanism may be captured
by invadopodia for instance. α Describes the per capita rate at
which cancer cells contact and degrade matrix molecules. Finally,
the rate of change of oxygen concentration is linearly dependent
on matrix molecules, where γ is the per molecule production of
oxygen (Eq. 9), and σ is the per capita degradation rate of oxygen.
Oxygen also declines through consumption. ω Is the diffusion
coefficient for oxygen.

To explore the effects of the evolution of different cell move-
ment rules on invasion dynamics, we model two different versions
of the tradeoff. Since the cells use the matrix molecules for move-
ment, we assume that the cell motility coefficient is small and
that the main mechanism of cell movement is through hap-
totaxis or chemotaxis. In both versions, the cost of increased
tactic sensitivity is mediated through increased per capita death
rate of cancer cells. Thus, D= δ+ ρ2w. Where δ is the mini-
mum per capita death rate, and ρ2 scales the effect of increased
cell motility on cell death rate. In the haptotaxis version of the
model Eq. (6), we assume that directed cell movement is in
the direction of increasing matrix molecules, with a speed pro-
portional to the haptotactic coefficient, which is a function of
the cells phenotype. χ= ρ1w. In the chemotactic version of the
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model Eq. (7), directed cell movement is in the direction of
increasing oxygen concentration. The chemotactic sensitivity coef-
ficient is a function of the density of matrix macromolecules
and cell phenotype. χ=mρ1w. This models a situation where
cells move toward areas with higher oxygen concentrations, but
depend on matrix macromolecules for movement. As with the
first model, this second version considers adaptive movement
of cells.

The mutation term in this model is slightly different than the
last model, since we have a specific function that describes the
birth rate of each phenotype. The birth rate, B(w) is given by the
first terms of Eqs 6 and 7, B(w)= νZ (w)c(w), substituting this
into Eq. 3 above, and performing the Taylor series approxima-
tion as described above, gives M (w)= (1/2)ηε2∂2B/∂w2 for the
mutation term in the model.

In the first model, we consider a spatial line of 10 mm. In the
second model, we consider a spatial area of 10 mm× 10 mm. We
used Neumann (no flux) boundary conditions for both the spatial
and the phenotypic boundaries.

NUMERICAL ANALYSIS
We analyzed both models through numerical simulations, for
which we used the method of lines approach (Schiesser and Grif-
fiths, 2009). We used upwind spatial finite differences for the tactic
terms. Anderson’s (2005) original model is particularly difficult to
solve numerically. We confirmed the validity of our scheme, by
solving Anderson’s original model and comparing our results to
those of Walker and Webb (2007) and Chertock and Kurganov
(2008). We found our results to be in good agreement with those
of others.

For the first model, we used two different initial conditions. For
an initial condition of mostly the competitor phenotype, we used

c (x , w , 0) = 5 max
{

0,
(
0.3− (x − 5)2)}

∗ exp (−100 ∗ w) .

For an initial condition with mostly colonizers, we used:

c (x , w , 0) = 5 max
{

0,
(
0.3− (x − 5)2)}

∗exp (−100 ∗ (1− w)) .

Both initial conditions represent a small population of cancer
cells in the center of the spatial domain.

We used the following parameters for first model:
λ= 0.5, κ= 1e–5, η= 1e−3, ρ2= 1. ρ1= 1e−2 and µ= 1e−5

for the evolution of chemotactic sensitivity. χ= 1e−4 and
ρ1= 1e−3 for the evolution of cell motility.

For the second model, we used the following initial conditions
for both versions of the model:

c
(
x , y , w , 0

)
= 500 max

{
0,
(

0.3− (x − 5)2
+
(
y − 5

)2
)}

× exp (−100 ∗ w) .

m
(
x , y , 0

)
= 0.05 cos

((
πx2) /20

)
∗ sin

((
πy2) /20

)
+ 0.1.

p(x, y, 0)= 5m(x, y, 0). These initial conditions are similar to
those of Walker and Webb (2007). They represent a small popula-
tion of cancer cells in the center of the domain and a heterogeneous
spatial distribution of ECM and oxygen.

We used the following parameters for the second model:
µ= 1e−5, α= 1e−2, σ= 0.1, γ= 30, ω= 5e−2, η= 1e−3,

δ= 0.2, ρ1= 0.1, ρ2= 5e−2, θ= 0.5, ν= 10, ψ= 0.1.
To investigate selection for cell motility we compare three

evolutionary situations with both models: (1) there is no cost
to increased cell motility (no tradeoff, ρ2= 0), (2) there is a
cost, but no benefit – variation in the phenotypic variable (w)
does not correspond to increased cell motility (i.e., ρ1= 0), and
(3) there is a cost to increased cell motility (tradeoff, ρ1 > 0,
ρ2 > 0). The strongest selection for cell motility should occur
when there is no cost. On the contrary, in the situation, where
the phenotypic variable (w) does not correspond to increased
cell motility, there is a cost, but no benefit. This situation is
considered because mutation and selection create a phenotypic
distribution. Thus, even if cell motility is selected against (i.e.,
w = 0 is optimum) there will still be an increase in the mean
value of cell motility due to mutation. So this serves as a null
case for comparison. When there is both a cost and a potential
benefit, then the trait should increase in the population beyond
when there is just a cost, but below the value when there is
no cost.

RESULTS
MODEL 1 – COMPETITION COLONIZATION TRADEOFFS IN A
HABITAT–CONTINUUM TUMOR MODEL
We first investigate natural selection for cell motility. We do this by
comparing the three evolutionary situations discussed above. The
strongest selection pressure for cell motility should occur when
there is no cost to increased cell motility. When there is only a cost
and no benefit to the trait, then there should be selection against
the trait. In this case, the fittest phenotype is the most competitive,
and the distribution will simply reflect a mutational spread around
this most fit phenotype. When there is a tradeoff, and motility is
selected for, the mean trait value should intuitively lie somewhere
between these extremes. Figure 1 shows the dynamics of the mean
evolutionary trait for the three scenarios. After around 30 days,
sufficient phenotypic variation has accumulated and the popu-
lation size has achieved a size that manifests a positive selection
for motility. After close to 100 days, most of the space has been
colonized, and there is selection against motility and in favor of
competition instead.

Figure 2 shows the dynamics of the total cancer cell density in
time and space. There are no major differences in the dynamics
produced by the two different movement rules. However, there are
large differences between the phenotypic initial conditions. When
the majority of the population is initially composed of strong
competitors, the population increases rapidly, and then begins
to spread laterally. When the initial composition of the popula-
tion is mostly motile cells, the population first spreads rapidly in
space and then grows up to carrying capacity. The dynamics of
our model are characterized by traveling waves of cancer cells in
physical space (e.g., Murray, 2003).

Selection for motility should be occurring at the margins of the
tumor, and thus this can potentially create phenotypic divergence
in space. Figure 3 shows snapshots of the distribution of cancer
cells in physical space and in phenotype space. There is a clear pat-
tern of phenotypic divergence in space, with the evolution of both
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FIGURE 1 | Selection for motility when the phenotypic variable
affects random versus directed movement. The “neutral trait” has
only a cost, but does not actually correspond to variation in motility.
Therefore, it simply shows the mutation selection balance when the trait
has no benefit and thus there is no selection for the trait (ρ1 =0). At the
other extreme, the “no tradeoff” scenario corresponds to a situation
where there is no cost to increased cell motility (ρ2 =0). Finally,

“tradeoff” is a situation where increased motility comes at a cost of
decreased competitiveness (ρ1 > 0 and ρ2 > 0). Note that the y variable in
the plots is k 1w, which represents the cell motility coefficient or the tactic
coefficient. When there is no benefit to increasing the phenotypic
variable w (ρ1 = 0), we set ρ1 =0.1 to plot the variable for comparison
(solid lines); although the variable does not actually correspond to
variation in cell motility it does reflect changes in w.

random and directed movement and with both initial conditions.
This pattern still exists without a tradeoff (k1= 0). However, in
the absence of a tradeoff the phenotypic differentiation in space
is not as well defined. This is because motile phenotypes are not
selected against in the core of the tumor.

Finally, we were interested in how the evolution of cell motil-
ity would affect invasion speed. To this end, Figure 4 shows
contours of cancer cell densities in space and time. The inva-
sion speed is calculated as the slopes of the contour lines. The
figure shows that in general, the evolution of cell motility pro-
duces linear invasion speeds over time. There are only slight
non-linearities. As we have shown, mean cell motility is increas-
ing over time due to natural selection. Invasion speed should
increase with the cell motility and with the chemotactic coef-
ficients. This is shown by the fact that the invasion speed is
much quicker if the cell population is initially composed of highly
motile cells (Figures 4A,C). However, the phenotypic distribu-
tions tend to obscure the effect of increasing cell motility on
invasion speed. This occurs because once an area is crowded
with cells; there is selection to invade adjacent un-crowded areas.
As cells invade the adjacent areas, the fittest phenotype is the
best competitor. Because of this, a wide range of phenotypes
can coexist in space. Figure 5 shows the normalized phenotypic
distributions at 100 days. The distributions are wide and skewed
toward the competitors. So even though mean motility increases
over time, the variance obscures this signal for the population
as a whole. Even when there is no tradeoff, and thus stronger
selection for motility, invasion speeds remain relatively constant
over time.

MODEL 2 – COMPETITION COLONIZATION TRADEOFFS IN A
HABITAT-DESTRUCTION TUMOR MODEL
The second model is fundamentally different from the first in
that there is no permanent niche for competitors in this model.
Instead, the environment is consumed and destroyed as the cancer
cells advance and spread. Therefore, selection for motility should
be strong, since it is the only niche for the cells. Figure 6 shows that
there is selection for motility. The lines in the plot correspond to
the same three evolutionary scenarios we considered with model
1. Given the parameters we chose, there is strong selection for
motility. In this model, the cells do not reach a carrying capacity,
and so there is not a strong reversal of selection once the space is
filled.

As in the habitat–continuum model, the two different move-
ment rules produce very similar tumor invasion dynamics.
Figure 7 shows snapshots in time of the tumor cell densities in
two dimensional physical space. As the dynamics proceed, there
is an expanding wavefront of cancer cells in physical space. Even-
tually, the cancer cells destroy the ECM and their oxygen supply.
Thus, the model reaches an equilibrium with zero cancer cells,
ECM, or oxygen.

In this model there is no clear spatial coexistence of pheno-
types. Due to the ephemeral nature of oxygen following invasion
into a new area, phenotypes that move less frequently or slower
are less fit.

Figure 8 shows the contours of total cancer cell densities in time
and space. In this plot, we fix the x dimension to the center of the
domain. The thin distribution of cancer cell densities at any time
show how the cancer cells spread into an area and subsequently
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FIGURE 2 |The dynamics of the total cancer cell density in space
and time. The total cancer cell density (T c) at a particular spatial
location is integrated over the phenotypic dimension. (A) Random cell
movement with an initially competitive phenotype distribution.

(B) Random cell movement with an initially motile phenotypic
distribution. (C) Directed cell movement with an initially competitive
phenotypic distribution. (D) Directed cell movement with an initially
motile phenotypic distribution.

decline as the matrix molecules are degraded. The contours clearly
show that there is an acceleration of invasion speed. This happens
because there is stronger and more consistent selection for motil-
ity. Because of this, there are bigger fitness differences maintained
between the phenotypes, and phenotypic variation is reduced.
Figure 9 shows the phenotypic distributions for the evolution of
the two different movement types at t = 100 days. In this case, the
phenotypic variance is much reduced compared to the results of
the habitat–continuum model.

DISCUSSION
Competition colonization tradeoffs are commonly observed in
ecological communities. Furthermore, during biological invasions
the populations in the leading edge adapt to different selection

forces compared to those in the geographic core (e.g., Phillips
et al., 2006). We address the influence of competition colo-
nization tradeoffs on tumor invasion dynamics, since tumors
dynamics in many ways parallel species invasions and range
expansions into new habitats. We used two different models.
The habitat–continuum tumor model sees the tumor has hav-
ing a continuum from interior to edge habitats. Due to angio-
genesis and other “ecological engineering,” regions of the tumor
interior remain suitable habitat for the cancer cells. The habitat-
destruction tumor model sees the cancer cells as “consuming” the
environment. This creates a tumor with a necrotic interior and an
expanding edge.

Both of our models clearly predict that evolution of cell motil-
ity. Furthermore, this evolution is mainly due to natural selection,
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FIGURE 3 |The distributions of cells in physical space and phenotypic
space at t = 100 days. (A) Random cell movement with an initially
competitive phenotype distribution. (B) Random cell movement with an

initially motile phenotypic distribution. (C) Directed cell movement with an
initially competitive phenotypic distribution. (D) Directed cell movement with
an initially motile phenotypic distribution.

since the motile phenotypes increased in abundance relative to
other phenotypes in the population. Many other researchers have
shown that motility is selected for during population invasion into
new habitats. For example, Aktipis et al. (2012) recently showed
that cell motility evolves in response to local environmental degra-
dation, and may be a co-adaptation or consequence of altered cell
metabolism.

We also found that in general the evolution of different types of
cell movement has almost no effect on the global dynamics of the
invasion. The more adaptive movement will likely be evolutionar-
ily favored, but we predict that this will have very little impact on
the overall invasion dynamics. However, if evolution affects hap-
totaxis or chemotaxis, and the underlying spatial distribution of
the molecules, which direct movement are sufficiently different,
then it is plausible that the evolution of different movement rules

may produce drastically different invasion dynamics. In the tumor
specific model we considered, oxygen is produced by the matrix
macromolecules and as a consequence their spatial distributions
are similar and thus haptotaxis and chemotaxis produce similar
results.

We did find important differences between the habitat–
continuum and the habitat-destruction models in terms of tumor
invasion dynamics and phenotypic evolution. In the habitat–
continuum tumor model, we found that the invasion speed was
relatively linear over time. This occurred because there is relatively
weak and ephemeral selection for cell movement at a particular
location, which allows for the coexistence of many phenotypes
and hence large diversity. The resulting variance in the pheno-
typic distribution obscures the signal of increasing cell movement.
Our habitat-destruction tumor model on the other hand does
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FIGURE 4 | Contour plots of the total cancer cell density in time and
space. (A) Random cell movement with an initially competitive phenotype
distribution. (B) Random cell movement with an initially motile phenotypic

distribution. (C) Directed cell movement with an initially competitive
phenotypic distribution. (D) Directed cell movement with an initially motile
phenotypic distribution.

FIGURE 5 | Normalized phenotypic distributions for directed and random movement at t = 100 days. These distributions are integrated over space to
include the entire spatial domain.
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FIGURE 6 | Selection for motility when chemotactic versus
haptotactic movement evolves. The “neutral trait” has only a cost, but
does not actually correspond to variation in motility. Therefore, it simply
shows the mutation selection balance when the trait has no benefit and
thus there is no selection for the trait (ρ1 =0). At the other extreme, the
“no tradeoff” scenario corresponds to a situation where there is no cost
to increased cell motility (ρ2 =0). Finally, “tradeoff” is a situation where

increased motility comes at a cost of decreased competitiveness (ρ1 > 0
and ρ2 > 0). Note that the y variable in the plots is k 1w, which represents
the cell motility coefficient or the tactic coefficient. When there is no
benefit to increasing the phenotypic variable w (ρ1 = 0), we set ρ1 =0.1
to plot the variable for comparison (solid lines); although the variable
does not actually correspond to variation in cell motility it does reflect
changes in w.

FIGURE 7 | Snapshots of the total normalized cancer cell density in two-dimensional physical space. The left and right panels show t =50 and
t =75 days, respectively. The top and bottom panels show the evolution of chemotaxis and haptotaxis, respectively.

include strong selection for cell movement, which reduces phe-
notypic diversity and results in a strong directed increase in cell
movement and invasion speed with time. Since, the environment
is destroyed as cancer cells grow in a particular spatial location
there is constant selection to invade the frontier, and this selec-
tion drives an accelerated invasion speed. Hence, we predict that
in tumors with a narrow band of living cells and a large necrotic
core invasion speed will accelerate with time.

As empirical research into tumor dynamics progresses, it will
be important to determine, whether models with evolving cell
motility provide better predictions of tumor growth than models
without evolutionary changes. Data on tumor growth has been
of low resolution and only very simple models have been fit to
this data. For example, it appears that the best dynamic model we
currently have to explain tumor dynamics is the power law model
(Hart et al., 1998). Higher resolution data, for example data that
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FIGURE 8 | Contour plots showing total cancer cell densities in space and time. Blue corresponds to lower cell densities and red corresponds to higher cell
densities. The x dimension is fixed at 5 mm. The left and right panels show the evolution of chemotaxis and haptotaxis, respectively.

FIGURE 9 | Normalized phenotypic distributions for the evolution of chemotaxis and haptotaxis at t = 50 and t = 75 days. The evolution of chemotaxis
and haptotaxis are shown in the top and bottom panels, respectively.

resolves cell densities in space, and more sophisticated predictive
models will ultimately progress our understanding of the mech-
anisms that produce patterns of tumor growth and invasion (see
McDaniel et al., 2012).

In our habitat-destruction model, the wake of habitat-
destruction precludes a permanent niche for a competitive
phenotype. As a result, there is no spatial coexistence of pheno-
types. However, the habitat–continuum tumor model generates
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the coexistence of the colonizer and competitor phenotypes. Fur-
thermore, there is clear phenotypic differentiation in space. Part of
this differentiation may be due to spatial sorting. Benichou et al.
(2012) demonstrated the effect of spatial sorting in a very similar
model. However, there is selection for movement in our model,
and this creates an even stronger pattern of spatial differentia-
tion. Furthermore, given the competition colonization tradeoff,
the phenotypes are even more strictly localized in space than
they otherwise would be. We predict that in tumors characterized
by smaller regions of necrosis and successful angiogenesis, there
will be two distinct phenotypic populations – motile and inva-
sive cells at the tumor margin and angiogenic cells in the tumor
interior.

While distinct genetic populations have been observed in
tumors, there has been no attempt to determine a specific spa-
tial distribution. We predict that spatial mapping of both clinical
and experimental tumors should show invasive cellular features
such as invadopodia to be most common in the tumor rim while
cells expressing VEGF should be more common in tumor regions

deep to the edge. Interestingly, Grillon et al. (2011) recently exam-
ined spatial distribution of a few cell membrane proteins in C6
glioblastoma tumors growing in a rat brain. They found Na+/H+

exchanger (NHE-1) and lactate-H+ cotransporter (MCT1) were
upregulated at the tumor edge, while MCT4 and carbonic anhy-
drase (CAIX) were not upregulated at the tumor edge. A future
research challenge in characterizing cancer cell phenotypes will
be to differentiate phenotypic plasticity (changes that can occur
within an individual cell) from heritable phenotypic changes
(inter-generational changes).

In conclusion, we propose that understanding the role of
ecology and evolutionary adaptations in tumors is necessary to
fully understand tumor biology. The genetic evolution occurring
within tumors is well documented, but the governing dynamics
for that evolution should be strongly influenced by environmental
selection forces. It is plausible that the competition coloniza-
tion tradeoff that commonly influences spatial distributions of
species and phenotypes in nature also influences intratumoral
evolution.
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