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Random mutations and epigenetic alterations provide a rich substrate for microevolutionary
phenomena to occur in proliferating epithelial tissues. Genetic diversity resulting from ran-
dom mutations in normal cells is critically important for understanding the genetic basis of
oncogenesis. However, evaluation of the cell-specific role of individual (epi-)genetic alter-
ations in living tissues is extremely difficult from a direct experimental perspective. For this
purpose, we have developed a single cell model to describe the fate of every cell in the
uterine epithelium and to simulate occurrence of the first cancer cell. Computational simula-
tions have shown that a baseline mutation rate of two mutations per cell division is sufficient
to explain sporadic endometrial cancer as a rare evolutionary consequence with an inci-
dence similar to that reported in SEER data. Simulation of the entire oncogenic process
has allowed us to analyze the features of the tumor-initiating cells and their clonal expan-
sion. Analysis of the malignant features of individual cancer cells, such as de-differentiation
status, proliferation potential, and immortalization status, permits a mathematical character-
ization of malignancy at the single cell level and a comparison of intra-tumor heterogeneity
between individual tumors. We found, under the conditions specified, that cancer stem
cells account for approximately 7% of the total cancer cell population.Therefore, our math-
ematical modeling describes the genetic diversity and evolution in a normal cell population
at the early stages of oncogenesis and characterizes intra-tumor heterogeneity.This model
has explored the role of accumulation of a large number of genetic alterations in oncoge-
nesis as an alternative to traditional biological approaches emphasizing the driving role of
a small number of genetic mutations. A quantitative description of the contribution of a
large set of genetic alterations will allow the investigation of the impact of environmental
factors on the growth advantage of and selection pressure on individual cancer cells for
tumor progression.

Keywords: evolution, oncogenesis, genetic mutation, endometrial cancer, fitness, phylogenetic analysis, tumor
heterogeneity, mathematical modeling

INTRODUCTION
An evolutionary model has been established to describe the entire
process of tumor development in colorectal cancer with detailed
molecular mechanisms for the stepwise oncogenic progression
driven by sequential accumulation of several genetic mutations
(Fearon and Vogelstein, 1990; Jones et al., 2008a). However, in our
view, this model can be expanded to understand evolution among a
population of normal cells in the uterine epithelium with inclusion
of random mutations. Several studies have estimated the mutation
rates in normal cells to be around 10−7 per cell per generation (for
a specific gene) through measurement of the frequency of muta-
tions in the gene in proliferating cells (Elmore et al., 1983; Araten
et al., 2005). The more accurate estimates are done in a living tis-
sue and a rate of ≈5–10× 10−10 mutations per base pair per cell
per generation is reported (Jones et al., 2008a). This rate can be
approximately translated into about two to three mutations per
cell per division. This reported mutation rate of two to three ran-
dom mutations per cell per generation would produce billions of

mutations in the proliferating uterine epithelial tissue and may be
sufficient to explain the large number of genetic mutations uncov-
ered in human tumors (Gallo et al., 2012; Kuhn et al., 2012; Liang
et al., 2012). Interestingly, these studies have not found a significant
difference in the mutation rate between normal and transformed
cells (Elmore et al., 1983; Araten et al., 2005; Jones et al., 2008a),
indicating that the genetic diversity universally reported in cancer
cell populations may be present in normal cell populations as well,
serving as fertile ground for evolution at the earliest stage of onco-
genesis. Therefore, genetic mutations in normal cells can provide
significant genetic diversity for subsequent selection, allowing for
a unique, albeit extremely rare, consequence: a cell may escape the
typical fate of normal cells and become immortalized.

However, the process of evolution in a normal cell popula-
tion is rarely a popular cancer research subject. Normal cells in
a tissue are often not considered to harbor any dysfunctional
mutations nor are they considered to demonstrate any pheno-
type commonly seen in cancer. Furthermore, any suggestion that
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minor random mutations are sufficient for oncogenesis in some
cancers may be seen as a contradiction to the genetic theory that
certain notable genetic mutations and oncogenic pathways are the
driving forces for tumor development. These seeming contradic-
tions can be reconciled by considering that a significantly larger
number of pathways than was commonly believed are present
in well-developed tumors (Jones et al., 2008b), meaning that the
genetic slot machine for transformation of an individual cell has
many reels. Phenotypically normal cells, with no apparent growth
advantage, may quietly harbor multiple accumulated alterations in
multiple pathways before transformation by a single major muta-
tion or by minor mutations in remaining key pathways. While
the chance of complete transformation of an individual cell may
be negligible, genetic diversity represents the non-negligible col-
lective chances of many individual cells, each with a particular
set of mutations after a number of generations with a steady
mutation rate.

The appearance of the first cancer cell, the tumor-initiating
cancer cell (TICC) which propagates to form the entire cancer cell
population in a tumor, seems to be an extremely rare occurrence.
For instance, endometrial cancer incidence is about 6 per 100,000
women at reproductive age according to the SEER database (2008,
female, all races,<50 years) and the peak cell number in the uterine
epithelium is several billion with monthly turnover, which gives
an approximate probability of the occurrence of the TICC of less
than 5× 10−15 per normal cell per year. This manuscript, utilizing
mathematical modeling and numerical simulation, tests whether
the baseline mutation rate in a normal cell population, such as the
uterine epithelium, is sufficient for the rare occurrence of a TICC.
Simulation of the longitudinal and prospective process of tumor
initiation and development, including following the evolution of
individual normal cell lines in the uterine epithelium, has allowed
us to describe the clonal progression of a TICC into a clinically
detectable tumor.

MATERIALS AND METHODS
The goal of this manuscript is to explore whether the baseline
mutation rate in a normal endometrial cell population is suffi-
cient to explain endometrial cancer incidence. We will also explore
whether description of the fate of every single cell in our model can
demonstrate in sufficient detail the development of heterogeneity
within the mass, and the corresponding properties of the ancestor
cells of endometrial tumors. This is analyzed through numerical
simulations of a recently published model for the proliferation of
uterine epithelial cells (Dai et al., 2011).

OUTLINE OF CELL PROPAGATION
The mathematical model under consideration views the prolifer-
ation of epithelial cells in terms of a continuous-time bifurcating
process. The simulation begins with an initial progenitor cell. The
time required for the cell to either divide or die is governed by
a set of equations describing various properties of the cell (Eqs
1–7, individual variables are described in Tables 1 and 2). In
the event of division, the daughter cells inherit their properties
from the parent cell, with the quantitative values of the proper-
ties subject to stochastic variation. We then follow the fates of
each daughter cell, which follow Eqs 1–7 independently. The cells

are simultaneously viewed as traversing a differentiation pathway,
with each cell existing along a spectrum from progenitor cell to
a fully differentiated descendant clone typically seen in the uter-
ine epithelium (Dai et al., 2011). Therefore the cell’s properties are
also influenced due to this “biological progression.” The size of the
uterine epithelium is determined by the total number of descen-
dant cells existing at time t. The fate of each individual constituent
cell is calculated through Monte Carlo simulation.

Cell cycle status value:

c (t ) =

∫ t

tn

α (s) ds, where tn denote the cell’s birth time (1)

Programmed proliferation potential:

αp (t ) =
1

7

(
10− g (t )

)
g (t ) (2)

Programmed differentiation coefficient:

kp (t ) = 3.78
[

1− e−0.4·g (t )
]
+ 0.03g (t ) (3)

Generation number: g (t ) = 1+ floor

(∫ t

0
|α (s)| ds

)
(4)

Resistance potential: r (t ) = k (t )
(
αp (t )− α (t )

)
(5)

Differentiation coefficient: k (t ) = kp (t )+
n∑

i=1

mi (6)

Proliferation potential rate of change:
dα

dt
= r (t )+ β (t ) (7)

The cell cycle status c(t ) of a cell, governed by the cell’s
growth rate (proliferation potential) α(t ), denotes the progres-
sion toward apoptosis (death) or division (bifurcation) in the
branching process. When a cell is born at a time tn, this value
is 0. If c(t∗)= 1 for some t∗> tn, the cell undergoes division
into two daughter cells, while if c(t∗)=−1 for some t∗> tn, the
cell undergoes apoptosis. This measurement of cell cycle status is

related to P (t ) = 2
∫ t

tn
α(s)ds , the solution of the differential equa-

tion for doubling of a population, dP/dt = ln(2)α(t )P. However,
we utilize the measurement c(t ) since, in the above mathematical
system, we are considering the fate of a single cell instead of a
population.

Equations 2–4 describe a hypothetical trajectory (fate) of a sin-
gle cell which is genetically determined and automatically proceeds
along cellular time, g, free of any perturbing influence, such as
genetic alterations and environmental factors. Equations 2 and
3 describe the parallel process of a cell’s proliferation [αp(t )]
and differentiation [kp(t )]. Equation 4 represents cellular time
(g, generation), which is determined by factors related to cell divi-
sion such as telomere length, and depends on physical time (t, in
months, and related to patient age). Equations 5–7 incorporate
the hypothetical trajectory, perturbations from it, and resistance
to these perturbations as part of homeostasis. Additional explana-
tion of the rationale of these equations were provided previously
(Dai et al., 2011).

OUTLINE OF CELL PROPERTIES
Each cell’s status is described by four quantities: proliferation
potential (α), differentiation coefficient (k), resistance potential
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Table 1 |Terms for hypothetical cellular growth of a single cell.

Term Definition Unit Description

c(t ) Measurement of the status of

cell cycle of a cell with a

numerical value between

−1 and +1

Cycle The status of a cell cycle is provided with a numerical value in order to describe the

quantitative progression of cell proliferation. A cell cycle exists between two endpoints:

death and birth (of two daughter cells). In either case, the cell ceases to exist. A cell divides

if c(t )=1, dies if c(t )=−1, for some t > tn, where tn is the time that the cell was born

N (t ) Size of a tissue or a mass at

time t

Cell The total number of cells in a tissue or a mass at time t with summation of the value of all

individual cells. A clone is comprised of all descendant cells from a progenitor cell borne

from asymmetrical division of a tissue stem cell

t Physical time, as it relates to

patient age and menstrual cycle

Month It is the physical time and can be assigned with a unit of day, month, or year. We assume

that 1 year=12 months and 1 month=30 days for convenience

αp(t ) (Programed) proliferation

potential (Eq. 2)

Cycles/month Programed rate of a cell’s multiplication according to the cell’s progression in clonal

development (progression of generations) and expressed as the number of cell cycles per

unit time

kp(t ) (Programed) differentiation

coefficient (Eq. 3)

1/month Measurement of a cell’s differentiation status, commonly with a range from 0 to K max (a

tissue specific constant)

g(t ) Generation number (Eq. 4) Cycle Measurement of lineage progression in a clone and cellular senescence. A daughter cell

assumes a new generation value of g +1 with g as the parent generation number. It has

the same unit as the cell cycle. It represents how a cell perceives senescence, and is

determined by its cellular mechanism, for instance by telomere length. Although g(t ) and

division (d ) synchronize most of time, there is a possibility that they may differ. For

instance, active telomerase may maintain telomere length after many divisions

These terms are for cells living under conditions free of any genetic insults and environmental influences, a hypothetical scenario used as a frame of reference to

study the effect of genetic and environmental factors on cell growth.

Table 2 |Terms for the growth of a single cell.

Term Definition Unit Description

mi Mutational

coefficient (Eq. 6)

1/month Quantifies the effect of each genetic alteration on a cell’s ability to maintain differentiation

status, k (t )

α(t ) Proliferation

potential (Eq. 7)

Cycles/month A measurement of the number of completed cell cycle per unit time. A cell’s proliferation

potential is the function of resistance potential (r ) and environmental stimulation (β) over time

(t ) in Eq. 7, indicating the pace of cell cycling under influence. Therefore, cell death induced by

anti-growth signals can be simulated by a negative α induced by a negative β over time

k (t ) Differentiation

coefficient (Eq. 6)

1/month Measurement of a cell’s differentiation status under influence as the sum of programmed

differentiation coefficient and mutational effect

r (t ) Resistance

potential (Eq. 6)

Cycles/month2 Measurement of a cell’s inherent ability to adhere to the development program by restoring

α(t ) to αp(t ) which will lead to the control of cell number and progression of differentiation

β(t ) Environmental

coefficient (Eq. 7)

Cycles/month2 All environmental factors affecting cell multiplication. Hormonal stimulation on cell

proliferation is an example

These terms are for experimental measurement of (clonal) cellular growth under our experimental observations with genetic insults and under environmental

influences.

(r), and generation number (g ). A cell lineage begins with the
birth of an initial progenitor cell at time t = 0. Its physical position
within the lineage is given by the number of divisions the cell is
removed from the initial progenitor cell (d). An alternate mea-
surement of progression is used to measure a cell’s biological

progression along the differentiation pathway (g ). This parameter
may be viewed as a measurement of how a cell perceives the
passage of time, which may not necessarily sync with the num-
ber of divisions its lineage has undergone. Progression of a cell’s
g value is accompanied by the gain of additional mutations and
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a corresponding alteration in αp and kp, which denote behaviors
inherent to position along the differentiation pathway (Table 1).

An individual cell’s proliferation potential is denoted by α(t ),
and is distinguished from its programed rate that is inherent
to its position along the differentiation pathway [αp(t )]. The
cell has a draw toward this inherent rate which is reflected by
dα/dt ∝ αp(t )− α(t ), but may be influenced by other environ-
mental effects (such as hormones). The strength of this restorative
force is defined by the cell’s differentiation coefficient (k). Cells
early in the lineage have a limited ability, due to their similar-
ity with the initial progenitor cell, to maintain homeostasis with
respect to properties inherent to the differentiation pathway. Con-
versely, this ability is increased, consistent with their similarity to
the fully differentiated cell type, for cells late in the lineage. This
idealized restorative strength is denoted kp and is inherent to a cell’s
position along the pathway. Mutations alter this ability, resulting
in the cell’s k-value. The cell’s resistance potential (r) defines its
ability to resist deviations from normal proliferative behavior, and
cells early in the pathway have a weak resistance to alterations in
proliferative behavior, while those later in the pathway will have a
strong resistance, provided there are few strong mutations affect-
ing the cell. A more thorough description of these terms has been
provided previously (Dai et al., 2011).

ENVIRONMENTAL AND MUTATIONAL EFFECTS
Simulations are performed with β ∼N (5, 0.52) to represent rela-
tively low hormone level with constant mean (µ= 5) and SD= 0.5

to indicate a slight variation of hormone levels among individual
cells, consistent with a typical postmenopausal hormone level. A
fixed and typical mean β value allows us to focus on the role of
genetic diversity (accumulation of mi in an individual cell) among
the population. The importance of overexposure of estrogen, and
other environmental factors in endometrial oncogenesis will be
reported in separate manuscripts. We also assume two mutations
per cell division in accordance with the hypothesis under con-
sideration. As a consequence of evolution in epithelial cells due
to immortalization and de-differentiation, a clinically detectable
tumor is defined as a mass of at least 106 cells derived from an
initial progenitor cell. In this early exploration of the model, the
initial progenitor cells within the uterine epithelium are assumed
identical and independently follow the seven equations.

RESULTS
CELLULAR PROLIFERATION AND DIFFERENTIATION IN THE UTERINE
EPITHELIUM
We first examine the clonal expansion from a progenitor cell in
order to understand the life cycle of epithelial cells in the uter-
ine epithelium. Simulations are initiated with an initial progenitor
cell born through asymmetric division or differentiation of a tis-
sue stem cell. The clone is allowed to proliferate until it dies out.
The size curve of each clone over time for a single progenitor
cell is fairly consistent, however, as can be seen from 1,000 ran-
domly selected trajectories generated through simulation of the
fate of 106 progenitor cells (Figure 1). We find that the peak size
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FIGURE 1 | Graphic illustration of trajectories for the number of living cells within a clone and its lifespan (days) over time. One-thousand trajectories,
each as the result of clonal expansion from a single progenitor cell, are shown.
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of each clone ranges from 1,024 to 1,277 cells, with a median
value of 1,033.5 cells and a standard deviation of 16.2. This can be
interpreted both as the typical fate of a clone spawned from each
progenitor cell and is the common physiological scenario. Thus,
for any cell and any clone, their lifespan is limited and they follow
a predictable course and fate. One feature of tissue homeostasis,
interpreted as the maintenance of a relatively stable cell number,
is largely accomplished by the balance between two mechanisms,
the constant commitment of tissue stem cells to produce new cells
and the limited lifespan (number of generations) of individual
cells to allow cell death. Thus, a significant extension of a cell’s
lifespan and a substantial expansion of its descendant size beyond
the typical physiological range will disrupt tissue homeostasis and
serve as an early step of oncogenesis. Analysis of simulations on
106 progenitor cells has shown that the lifespan of the clones was
found to have a wider range, varying between 205 and 901 days,
with a median of 576 days and a standard deviation of 67.5, a
significant extension from the observation in Figure 1. Immortal-
ization will be expected if the simulation involves a significantly
larger population.

Indeed, a further analysis of the fates of 305,505,000 prog-
enitor cells resulted in the detection of 8 tumors, translated

into an endometrial cancer incidence of 94 tumors per 100,000
menopausal women, similar to the epidemiological data of 78
per 100,000 women based on the 2008 SEER database for all
races of age ≥50. This also yielded an empirical probability
of 2.61862× 10−8 [95% confidence interval (1.13053× 10−8,
5.15998× 10−8)] that a progenitor cell will spawn a primary
tumor under the experimental conditions. Our simulation has
shown the progression from common physiological tissue regen-
eration (in 103 randomly selected progenitor cells) to partial
immortalization (in 106 progenitor cells) and the occurrence of
neoplasm (in 3× 108 progenitor cells), demonstrating oncogen-
esis as a seemingly rare stochastic event which occurs only in a
sufficiently large number of simulations under specific environ-
mental (hormone) conditions. More importantly, this experiment
indicates that a random mutation rate of two per cell division may
be sufficient for sporadic endometrial cancer.

PHYLOGENETIC TREE ANALYSIS
A unique ID is assigned to each cell born during the lifespan of
the clone. The cell passes information about its lineage to each
daughter cell after division by assigning the daughter cell the ID
10x + i, where x is the ID of the parent and i is either 1 or 2,

A

B

FIGURE 2 | Phylogenetic tree for illustration of lineage relationship
during the earliest stage of oncogenesis. The number indicates the size
of descendants in the tumor from the cells (nodes). (A) The lineage map

formed within the first five divisions; (B) a subset of the phylogenetic tree,
centered on the most recent common ancestor (MRCA) of the tumor of
generation 16.
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unique to each daughter. Figure 2 shows how a tumor arises from
a clone. Figure 2A shows the number of descendants from each
cell in the first five generations starting from a progenitor, which
eventually give rise to the most recent common ancestor (MRCA)
of a tumor, where division 1 denotes the birth of the progeni-
tor cell through an asymmetric division of a stem cell. Note that
there is one dominant branch with more than 106 descendants,
whereas other branch points have few descendants (the node with
78 descendant cells in the tumor), which coexist with the tumor
and survive longer than a typical normal cell because of slow pro-
gression in the completion of senescence (and cell death) due to
a low α value. Cell feature analysis shows that they have a high
k-value (still differentiated) and are not immortalized since their
generation number is less than 12 [see Cells within the tumor that
are not descendant from MRCA(0.995) in Appendix]. Figure 2B
shows the MRCA of the tumor at generation 16 with subsequent
divisions demonstrating different lineages with varying descen-
dant sizes. Thus, there is remarkable clonal heterogeneity in that
the number of descendant cells varies substantially in different
branches.

THE PHENOTYPIC HETEROGENEITY OF THE TUMOR-INITIATING
CANCER CELLS
The heterogeneity of a tumor during its clonal development was
analyzed by considering distributional information aggregated
from 74 tumors generated through this mathematical model. The
heterogeneous features in individual cells are described based on
three criteria: the immortalization status by generation number g,
proliferation status by proliferation potential α, and differentiation
status by differentiation coefficient k. The median time required
to form masses of size 106 cells was found to be approximately
270 days.

We utilized a phylogenetic analysis of each tumor in order to
examine the development of endometrial cancer. The MRCA of
x × 100% of the mass of 106 cells will be denoted by MRCA(x).
We first considered the number of divisions between the MRCA(x)
and the initial progenitor cell. The lifespan typical for a normal cell
clone is commonly estimated to be between 10 and 12 divisions,
where cells would reach the fully differentiated cell type and enter
senescence. Some cells, as our analysis shows, remain in the process
of their senescence for some time before their death. Data for
MRCA(x) from the 74 tumors is presented in Table 3. MRCA(1)
is found to be 1 division for each mass, however MRCA(0.999)
and MRCA(0.995) jump to a median of 16.7 and 17.2 divisions,
respectively, which indicates the immortalization (Table 3A).

The phenotype of MRCA(x) can be further defined by the
values for its proliferation potential (α) and its differentiation
coefficient (k) in addition to the generation number in Table 3A.
Data for these values are provided in Tables 3B,C, respectively.
The evolution of low k-values is the underlying mechanism of
uncontrolled tumor growth due to loss of differentiation, as this
parameter defines the differentiation status of a cell. As this value
decreases, the cell becomes more susceptible to any external stim-
ulation such as hormones. The MRCA for all cancer cells in a
tumor must be a cancer cell if, as we assume based on consen-
sus in the literature, cancer is monoclonal in origin (Weinberg,
2007; Hanahan and Weinberg, 2011). We define, based on the

Table 3 | (A) d For MRCA(x ); (B) α for MRCA(x ); and (C) k for MRCA(x ).

MRCA(x ) Median SD Min Max

(A)

1 1 0 1 1

0.999 16.70 2.36 9 22

0.995 17.20 2.09 11 22

0.99 17.30 2.05 11 22

0.95 18.18 2.34 13 23

0.90 18.72 1.99 14 23

0.80 19.04 2.18 14 24

0.70 19.62 2.35 14 25

0.60 20.22 2.41 14 27

0.50 21.18 2.43 15 28

(B)

1 2.95 0.004 2.80 3.09

0.999 3.43 1.25 1.13 5.95

0.995 3.66 1.41 1.13 6.26

0.99 3.73 1.41 1.13 6.26

0.95 4.23 1.22 1.66 7.39

0.90 4.49 1.39 1.66 7.39

0.80 4.65 1.49 1.66 7.39

0.70 6.02 1.97 1.66 7.95

0.60 6.66 1.72 2.24 7.95

0.50 6.53 1.44 4.24 9.12

(C)

1 1.90 0.015 1.65 2.24

0.999 0.23 0.05 0 1.43

0.995 0.18 0.03 0 0.90

0.99 0.17 0.03 0 0.90

0.95 0.11 0.02 0 0.76

0.90 0.08 0.01 0 0.30

0.80 0.07 0.01 0 0.30

0.70 0.07 0.01 0 0.30

0.60 0.05 0.005 0 0.30

0.50 0.03 0.002 0 0.27

analysis of the formation of 74 tumors, a TICC as a cell with the
median properties of MRCA(0.995). Although there is substan-
tial heterogeneity in the phenotypes among MRCA(0.995)s, these
cells are immortalized with generation number g between 11 and
22, proliferative with α between 1.1 and 6.3, and most impor-
tant of all, de-differentiated with k between 0 and 0.9. We define
a typical TICC as a cancer cell with the following median fea-
tures: k = 0.18, α= 3.66, g = 17. Consequently, we define a typical
tumor-initiating cancer stem cell (TICSC) as a TICC with com-
pletely undifferentiated status: k = 0, α= 3.66, g = 17. Using the
features of a typical TICC, simulation of the fate of 10,300 TICCs
showed a 71.7% probability that they will spawn a tumor, while
the corresponding TICSC had roughly a 94% probability.

DISTRIBUTIONAL ANALYSIS OF THE HETEROGENEITY OF A TUMOR
FORMED BY A TICC
The primary tumor formed from a TICC is a heterogeneous mass
of cells. Continuous proliferation of cancer cells have resulted
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in the accumulation of an increasing number of genetic muta-
tions and produced a cancer cell population with an enormous
genetic diversity, which will drive further tumor evolution and
progression. This genotypic and phenotypic variability increases
the difficulty for a therapeutic intervention, such as targeted ther-
apies aiming at a specific genetic alteration, to kill all cancer cells.
A distributional analysis of a single tumor formed from a TICC
was performed in order to analyze the spectrum of phenotypes
and overall properties of the tumor. Table 4 describes the division
number d of each cell within the clinically detectable mass, that is,
the number of divisions that have passed between the cell and the
initial progenitor cell. Note that most cells possess at least d = 30,
with a median value of d = 44, indicating that almost all cancer
cells in a tumor are immortalized.

The intra-tumor heterogeneity is also illustrated by the distri-
bution of k-values within the mass. A terminally differentiated
cell will typically have a k ≈ 4.0, indicating a strong capability to
maintain homeostasis. However, Table 5 shows that the median
k-value within the mass is only 0.3, with no values above 1.7, illus-
trating the de-differentiation (malignant transformation) that the
cells have undergone. Interestingly, there are approximately 7% of
cancer cells with k = 0, indicating that they are completely undif-
ferentiated, and are the cancer stem cell portion in the tumor (see
Evolution of low k-values in the mass in Appendix). Finally, we
consider the heterogeneity in cell proliferation through analysis
of the distribution of proliferation potential among cancer cells
within the mass in Table 6. We observe that 98% of cells are
proliferative [α(t ) > 0], with a median value of α= 10.3.

ANALYSIS OF THE MEDIAN PROPERTIES OF TUMORS FORMED BY
TICCs AND TICSCs
We extend the above analysis to 500 tumors generated from TICCs.
The median properties of each tumor are recorded, and the dis-
tribution of these values is then analyzed. Table 7A lists statis-
tical information for the median properties of the 500 tumors
produced by TICCs, with corresponding histograms presented in
the Figures A3(A)–(C) in Appendix. Based on this information,
we define a median cancer cell (MCC) in a clinically detectable
tumor as a cell with the properties: k = 0.295, α= 10.3, g = 45.

The tumors appear to be very similar with respect to median pro-
liferation potentials and division numbers, both of which have
statistical properties similar to normal distributions. However, the
distribution of median k-values deserves more attention. Whereas
most tumors had median k-values similar to the single TICC
tumor examined above (median and mean of k around 0.3), some
of the median values are significantly lower, approaching k = 0.
These tumors are poorly differentiated and particularly aggressive,
with the capability to undergo rapid proliferation when receiving
environmental stimulation conducive to growth. For the pur-
pose of controlled comparison, we define a median cancer stem
cell (MCSC) in a clinically detectable tumor as a MCC with a
completely undifferentiated feature: k = 0, α= 10.3, g = 45.

A similar analysis was performed on 500 tumors spawned from
TICSCs, with distributions for the median properties presented in
Table 7B and illustrated as histograms in the Figures A4(A)–(C)
in Appendix.

COMPARISON OF THE MEDIAN PROPERTIES OF TUMORS AMONG
THOSE FORMED BY A TICC VS. TICSC
The types of distributions derived from the median properties
from the 500 tumors are unknown. However, the non-parametric
two-sample Kolmogorov–Smirnov test (Hollander and Wolfe,
1999) can be utilized to examine whether the empirical distri-
butions of a specific property are statistically equivalent among
primary tumors formed from either a TICC or TICSC.

The distributions of median values of k,α, and d among tumors
formed by TICCs were tested against the corresponding distribu-
tions among tumors formed from TICSCs. In each case, we find
that the null hypothesis can be rejected to at least a 99% confidence
(α: p= 0.00428, k: p= 1.3× 10−157, d : p= 9.5× 10−17). We con-
clude that a qualitative difference exists between tumors formed
from a cancer cell as compared to those formed from a cancer stem
cell. However, it should be noted that the median of the median
properties appear to be similar for the primary tumors regardless
of whether they were spawned from a TICC or TICSC.

DISCUSSION
Carcinogenesis as an evolutionary consequence can be viewed as
the result of environmental selection among billions of genetically

Table 4 | d -Value cdf for cancer cells in a clinically detectable tumor.

d0 28 30 32 34 36 38 40

Pr(d ≤d0) 1.34E−5 8.81E−5 6.28E−4 2.89E−3 1.18E−2 4.11E−2 0.126

d0 41 42 43 44 45 46 47

Pr(d ≤d0) 0.207 0.328 0.489 0.673 0.818 0.927 0.993

Table 5 | k -Value cdf for cancer cells in a clinically detectable tumor.

k0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr(k ≤ k0) 0.0695 0.210 0.351 0.500 0.641 0.762 0.857 0.922 0.962

k0 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Pr(k ≤ k0) 0.984 0.994 0.998 0.9994 0.99986 0.99996 0.999991 0.999999 1

www.frontiersin.org April 2013 | Volume 3 | Article 61 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Howk et al. Cancer evolution and intra-tumor heterogeneity

Table 6 | α-Value cdf for cancer cells in a clinically detectable tumor.

α0 −7.5 −5 −2.5 0 2

Pr(α≤ α0) 8.33E−5 1.50E−3 6.25E−3 1.91E−2 4.26E−2

α0 4 5 6 7 8

Pr(α≤ α0) 8.72E−2 0.120 0.163 0.216 0.280

α0 9 10 11 12 13

Pr(α≤ α0) 0.359 0.451 0.556 0.669 0.784

α0 14 15 16 17 18

Pr(α≤ α0) 0.883 0.954 0.989 0.9992 1

Table 7 | Properties of the distributions of median values of cancer

cells among 500 tumors derived from (A)TICC and (B)TICSC.

Property Median Mean SD Skewness Kurtosis

(A)

k 0.295 0.271 0.0672 −2.34 6.87

α 10.3 10.326 0.236 7.10E−4 3.15

d 45 44.978 1.90 0.484 2.96

(B)

k 0.31 0.297 0.0469 −4.13 18.72

α 10.4 10.36 0.207 0.0835 3.42

d 43 43.92 1.79 1.63 7.39

diverse cells in a tissue. Theoretical approaches have the unique
strength of modeling the behavior of individual cells in a tissue and
to construct the landscape of a dynamic and diverse cell population
in order to identify and define a much smaller spectrum of cancer
cells. This prospective strategy is necessary and should be comple-
mentary to the common biological approach to characterize the
decisive role of a single or a few genetic alterations.

We have developed a mathematical model to simulate evolution
in an epithelial tissue with an individual cell as the basic member
and the entire tissue as the population. This model is unique in
that it assigns quantitative value (due to varying mi) to genetic
features in each individual cell and a quantitative value (α) of
growth advantage translated from combined effect of genetic fea-

tures

(
n∑

i=1
mi

)
and environmental factors (β) in a single cell at a

given time. Hormone level (β), the dominant environmental factor
in uterine epithelium, is fixed at a level typical for the majority of
menopausal women. The influence of these environmental factors
will be further explored in a future manuscript.

Our simulations have shown that a rate of two random muta-
tions per cell division has the potential to provide sufficient genetic
diversity for enabling evolution among the simulated uterine
epithelial cells. The rare event of immortalization and malignant
transformation is observed when the simulation has been per-
formed for a sufficiently large number of progenitor cells with
the resultant cancer incidence comparable to the level found in
epidemiological data. Our model of normal cells in the uterine
epithelium gives phylogenetic context to the clonal progression
of a TICC into a clinically detectable tumor and, more generally,
simulates the longitudinal and prospective process of tumor devel-
opment, including evolution in a normal cell population, the birth

of the TICC and formation of a tumor. Cancer cells and can-
cer stem cells are defined based on their major features which
distinguish them from normal (non-cancer) cells such as the
status of de-differentiation (k-value), uncontrolled proliferation
(α value), and immortalization (g value). Since all these three
criteria are quantitatively expressed, a meaningful definition of
cancer cells and cancer stem cells at the single cell level and of
a tumor at the clinical level can be derived by their probability
to form a tumor and a metastatic lesion in defined environmen-
tal conditions. The empirical and pathological terms of benign
tumor, precancerous lesion, well-differentiated tumor (good out-
come), and poorly differentiated cancer can be quantitatively and
progressively described by the probability for tumor progression
and development of metastatic diseases under a specific genetic
and environmental set of conditions. Furthermore, interaction
of genetic factors (mi) and environmental factors (β) can be
quantitatively studied along a timeline to determine their com-
bined effect (probability) on tumor development. Additionally,
our model is built upon the description of single cells, and can
thus be used to describe intra-tumor heterogeneity based upon
features of individual cells. Description of cell-specific features is
important to understand the heterogeneous nature of a tumor
and to identify the cells with the greatest potential for metasta-
sis. While the difference in heterogeneity between tumors can be
described statistically as we did in Section “Comparison of the
Median Properties of Tumors Among Those Formed by a TICC
vs. TICSC,” documentation of the features of individual cells,
such as immortalization, proliferation, and de-differentiation,
also allows investigation of the malignant potential of individ-
ual cells, for instance, to investigate the difference in metasta-
tic potential between a cancer stem cell and a non-stem cancer
cell.

This manuscript is primarily focused on the understanding
of genetic diversity in evolution. The important role of environ-
mental factors in the selection of cells with fitness has not been
presented, and remains a relevant subject for this model. Addi-
tionally, our model remains a single cell model which should be
further developed to include terms to address cell–cell interac-
tions and the role of tissue structure. For instance, angiogenesis
and the molecular mechanisms underlying migration of cancer
cells from the primary tumor are extremely important factors
to determine cancer cell migration dynamics and the efficacy of
metastasis.

Taken together, our model has provided a novel approach
to demonstrate genetic diversity and evolutionary dynamics in
a normal cell population at the earliest stage of oncogenesis.
Cell-specific description of genotypes and phenotypes has also
provided a potentially powerful tool to quantitatively analyze and
understand the evolutionary process in tumor development.
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APPENDIX
RESULTS
Cells within the tumor that are not descendant from MRCA(0.995)
There are a few cells remaining in the developed tumor that are
descendant from early branch points during the development of
the mass (Figure A1(A) in manuscript). All other cells are from
the main branch forming the tumor, with the branch point spawn-
ing the tumor found to be MRCA(0.995). Among the 74 tumors
under analysis, the number of cells not emanating from the main
branch was found to range from 38 to 728, with a median value of
244.824. These cells have undergone between 11 and 12 divisions,
with a median of 11.0196 (Figure A1(A)). Their k-values are quite
high (Figure A1(B)), and values range from 2.64 to 4.45, with a
median of 3.37. These cells are following the inherent physiological
lifespan, and are near the point of senescence. They are undergo-
ing or preparing to undergo apoptosis. This is evidenced by their
proliferation potentials (Figure A1(C)) which ranges from −3.37
to 0.164 with a median value of −0.44. These “remnant” cells are

still following the normal status of development and will soon
die out.

Evolution of low k-values in the mass
The evolution of low k-values within the mass as it develops is
illustrated by quantile plots in Figure A2, where the quantiles
are determined based on the proportion of the tumor with these
low k-values at the time the mass reaches 106 cells. After these
low k-values appear, they quickly (over a period of approximately
1 month) form subpopulations comprising roughly 25% of the
mass. This evolution is likely occurring within the dominant sub-
population that is driving the formation of the tumor. We find
that roughly 7% of the mass will comprise cells with k = 0, cells
that have lost all draw toward behavior inherent to the path-
way and thus have stem cell-like behavior, with approximately
13% having k < 0.033 and 18% having k < 0.067. Moreover, the
dynamic nature of the composition of the tumor during its early
development is illustrated in Figure A2.
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Table A1 | Data for the max sizes of masses that eventually die out.

Experiment Median Mean SD Skewness Kurtosis

A 5 16496.5 83716.5 6.78706 52.5286

B 5 13981.3 75298.7 7.90778 75.1809

C 5865 123907 220817 2.04835 6.35482

Table A2 | Proportion of masses with max sizes surpassing thresholds.

Experiment 10 K 50 K 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900 K

A 0.092 0.053 0.042 0.024 0.02 0.015 0.013 0.008 0.005 0.001 0

B 0.08 0.05 0.038 0.023 0.014 0.01 0.009 0.005 0.003 0.002 0.002

C 0.47 0.35 0.287 0.211 0.157 0.122 0.094 0.069 0.042 0.025 0.01
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FIGURE A1 | (A) Histograms for the median values of division number, d, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(B) Histograms for the median values of differentiation coefficient, k, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(C) Histograms for the median values of proliferation potential, α, of cells
that are not descendant from the main branch. Values are recorded from 74
primary tumors. The properties in these histograms are similar to those of
“normal” cells, ones that are following the differentiation pathway.
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FIGURE A2 | Quantile plots for the evolution of low k -values during the formation of primary tumors. Proportion of the mass with [(A)-left] k =0,
[(B)-middle] k ≤0.033, and [(C)-right] k ≤0.067.
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FIGURE A3 | (A) Histograms for the median values of differentiation
coefficient k from 500 tumors spawned from TICCs. (B) Histograms for the
median values of proliferation potential α from 500 tumors spawned from
TICCs. (C) Histograms for the median values of division number d from 500
tumors spawned from TICCs.
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FIGURE A4 | (A) Histograms for the median values of differentiation
coefficient k from 500 tumors spawned from TICSCs. (B) Histograms for
the median values of proliferation potential α from 500 tumors spawned
from TICSCs. (C) Histograms for the median values of division number d
from 500 tumors spawned from TICSCs.
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