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Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a
median survival of 12–15 months with treatment consisting of surgical resection followed
by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative
due to near universal recurrence. Therapeutic resistance has been linked to a subpopula-
tion of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent
efforts have focused on elucidating resistance mechanisms activated in GICs in response
to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result
in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk
tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET,
signaling cascades that play critical roles in promoting proliferation, invasion, and resistance
to apoptosis.These pathways are preferentially activated in GICs and represent targets for
pharmacologic intervention. While IR provides the benefit of improved survival, it para-
doxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed
here, finding effective combinations of radiation and molecular inhibitors to target GICs
and non-GICs is essential for the development of more effective therapies.
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INTRODUCTION
Glioblastoma (GBM) is the most common and aggressive type of
primary brain cancer in adults with approximately 18,000 patients
diagnosed each year [(http://www.CBTRUS.org); Schwartzbaum
et al., 2006]. GBM can arise as de novo (primary) cancer or may
progress from lower grade gliomas (secondary). Despite aggres-
sive multimodality treatment consisting of maximal safe resec-
tion, adjuvant chemoradiation with temozolomide, and main-
tenance temozolomide, median survival remains dismal at 12–
15 months (Stupp et al., 2009). Patients typically respond initially
to therapy, but ultimately relapse within the high-dose irradi-
ation field (Hochberg and Pruitt, 1980; Lee et al., 1999), sug-
gesting the presence of a subpopulation of resistant cells. While
inter tumoral heterogeneity between patients can, in part, explain
differential patient responses (Maher et al., 2006; Phillips et al.,
2006; Dang et al., 2009; Yan et al., 2009; Snuderl et al., 2011),
intratumoral heterogeneity is now recognized as a critical fac-
tor in determining therapeutic response (Bao et al., 2006; Liu
et al., 2006). GBM initiating cells (GICs) are a subgroup of can-
cer cells that exhibit the ability to self-renew and express puta-
tive stem cell markers such as CD133, SSEA-1 (CD15), L1CAM,
and CD44high (Galli et al., 2004; Singh et al., 2004; Bao et al.,
2008; Son et al., 2009; Anido et al., 2010). GICs are defined
functionally by their ability to repopulate the tumor upon ser-
ial transplantation (Ignatova et al., 2002; Singh et al., 2003,
2004; Galli et al., 2004). When non-GICs are assayed in par-
allel, these cells fail to form tumors, even when their num-
bers are increased by orders of magnitude. Therefore, tumor
recurrence is likely due to tumorigenic GICs equipped with

resistance mechanisms to survive and proliferate following therapy
(Figure 1A).

The factors that influence stem-like characteristics are more
complex than previously recognized. Recently, studies have
revealed the microenvironmental effects of hypoxia, low glu-
cose, low pH, and perivascular niches in promoting GIC survival,
maintenance, and cellular plasticity (Gatenby and Gillies, 2004;
Calabrese et al., 2007; Heddleston et al., 2009; Soeda et al., 2009;
Anido et al., 2010; Charles and Holland, 2010; Seidel et al., 2010;
Zhu et al., 2011). For example, hypoxia has been shown to drive
expression of stem cell genes and increase the tumorigenic capacity
of GICs, particularly through hypoxia inducible factors (Heddle-
ston et al., 2009; Soeda et al., 2009; Seidel et al., 2010). These effects
were also seen in acidic conditions regardless of oxygen concentra-
tion (Hjelmeland et al., 2011). Under these conditions, non-GBM
initiating cells (non-GICs) can assume stem-like features and ini-
tiate tumor formation in vivo (Heddleston et al., 2009; Hjelmeland
et al., 2011), underscoring the plasticity of GBM cells (Figure 1B).
Notably, many of these pro-GIC signaling components, such as
c-MET and NOTCH, are activated by radiotherapy (Wang et al.,
2010; Joo et al., 2012).

Exposure to ionizing radiation (IR) elicits a preferential acti-
vation of the DNA damage response (DDR) pathway, along with
enhanced DNA repair kinetics in GICs compared to their non-
GIC counterparts (Bao et al., 2006). These data suggest that
GICs are better able to activate the DDR in response to geno-
toxic stress. Radiation causes extensive cellular damage, primarily
through generation of reactive oxygen species leading to DNA
double-strand breaks (DSBs). Activation of the DDR signaling
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FIGURE 1 | Ionizing radiation in combination with c-MET or NOTCH
inhibitors prevents tumor recurrence. (A) Treating GBM with IR reduces
tumor volume, but radioresistant GICs remain. IR promotes activation of
the pro-survival pathways NOTCH and c-MET in GICs, leading to tumor
recurrence. (B) Single treatment of GBM tumors with either gamma
secretase inhibitors (GSIs) to target NOTCH or tyrosine kinase inhibitors
(TKIs) to target c-MET would kill GICs specifically and have a minor effect
on tumor volume. (C) Combinatorial treatment of GSIs or TKIs with IR
would target both GICs and non-GICs and prevent tumor recurrence.

cascade elicits a host of cellular responses including cell cycle
regulation, DNA repair, autophagy, mitotic catastrophe, necrosis,
senescence, and apoptosis. Moreover, irradiated (Bao et al., 2006)
and temozolomide-treated (Firat et al., 2011) GICs have a lower
percentage of apoptotic cells than their non-GIC counterparts,
highlighting their intrinsic therapeutic resistance (Figure 1A).
This expansion of GICs has been confirmed by histological analy-
sis of recurrent GBM after initial treatment with chemoradiation
at the time of salvage surgery (Tamura et al., 2010). Many, although
not all, clinical trials have failed to show a benefit to radiation dose-
escalation (Chan et al., 2002), radiosurgery boost (Souhami et al.,
2004), or brachytherapy boost (Laperriere et al., 1998; Selker et al.,
2002). Taken together, these studies suggest that GICs can over-
come even high doses of radiation (Figure 1A). While traditional
therapy may initially reduce the bulk of the tumor by targeting
non-GICs, it ultimately selects for the outgrowth of a more aggres-
sive tumor through expansion of GICs. This manifests as clinical
and/or radiographic progression within several months.

ACTIVATION OF THE DNA DAMAGE RESPONSE PATHWAY
Genotoxic stressors, including oncogenic stressors, induce DNA
damage and activate the DDR pathway. The DDR pathway is a
signaling cascade with multiple sensor, transducer, and effector
proteins. Two such transducers are the serine/threonine protein

kinases ataxia telangiectasia mutated (ATM) and ataxia telangiec-
tasia and Rad3-related protein (ATR). ATM and ATR are members
of the phosphatidylinositol 3-kinase (PI3K) family and are key reg-
ulators of DSB repair (Matsuoka et al., 2007). Upon DNA breakage,
ATM senses the damage and the MRE11-RAD50-NBS1 (MRN)
complex is recruited to the damaged site to accelerate phosphory-
lation of inactive ATM dimers. These dimers then dissociate and
each phosphorylated ATM monomer further activates the protein
by auto-phosphorylation in a feed-forward mechanism to activate
effector proteins including CHK2 kinase (Matsuoka et al., 1998).
CHK2 represents a molecular switch by directly activating various
targets responsible for cell cycle progression, DNA repair, and, if
the damage is extensive, apoptosis. Additionally, ATM-CHK2 acti-
vates transcription factors that alter the expression of numerous
genes including the receptor tyrosine kinase c-MET (De Bacco
et al., 2011). The implications of promoting c-MET expression
will be explained below.

ATR functions in response to endogenous DNA damage; how-
ever, it may also be activated in response to DSBs induced by IR,
albeit to a lesser extent than ATM. The signaling cascade activated
by ATR works through a second checkpoint kinase, CHK1 (Guo
et al., 2000). CHK1 and CHK2 demonstrate both overlapping and
non-redundant roles, such as those affecting cell cycle progres-
sion, DNA repair, and apoptosis (Zhou and Elledge, 2000). The
contributions of the ATM-CHK2 and ATR-CHK1 signaling path-
ways to GIC radiation resistance remain unclear. The ATM-CHK2
pathway is preferentially activated in GICs and targeting CHK1/2
results in improved response to DNA damaging agents (Bao et al.,
2006). In addition, ATM overexpression in GBM patient speci-
mens correlates with better overall survival. Taken together, these
results indicate a potential role for CHK1/2 kinase inhibitors in the
treatment of GBM. Indeed CHK1 inhibitors are currently being
investigated in phase I trials for advanced cancers (LY2606368, Eli
Lilly and Company,2000–2013; LY2603618,Eli Lilly and Company,
2000–2013). Further studies are needed to elucidate the mecha-
nisms by which checkpoint kinases can be therapeutic targets or
have cellular-protective roles.

c-MET
MET undergoes focal amplification in ∼5% of GBM patients
(Maher et al., 2006; Brennan et al., 2009; Dunn et al., 2012).
Overexpression of c-MET occurs in ∼29% of GBM and directly
correlates with poor patient prognosis (Maher et al., 2006; Can-
cer Genome Atlas Research, 2008; Brennan et al., 2009; Kong
et al., 2009; Verhaak et al., 2010; Snuderl et al., 2011; Dunn et al.,
2012; Joo et al., 2012). c-MET becomes activated upon interaction
with its ligand, hepatocyte growth factor/scatter factor (HGF/SF),
which is secreted in an autocrine fashion by GICs (Joo et al., 2012).
This autocrine/paracrine loop helps maintain the GIC phenotype
and underscores the significance of this signaling pathway in GBM.
Enrichment of c-METhigh-expressing cells from primary GBM dis-
play stem-like characteristics including in vivo tumor initiation
(Li et al., 2011; De Bacco et al., 2012; Joo et al., 2012). Activation
of c-MET stimulates proliferation, migration, and invasion (Kong
et al., 2009; Joo et al., 2012; Kim et al., 2013). c-MET also stimulates
angiogenesis through the induction of vascular endothelial growth
factor (VEGF) expression (Abounader et al., 1999), and resistance
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to bevacizumab, an anti-VEGF monoclonal antibody, occurs by
c-MET activation of pro-survival and invasion mechanisms (Lu
et al., 2012).

IR increases c-MET expression, activation, and ligand secre-
tion in GBM (De Bacco et al., 2011) and GICs (Joo et al., 2012).
These effects were abrogated by treatment with an ATM inhibitor
(De Bacco et al., 2011). Collectively, this suggests that blocking
IR-induced c-MET up-regulation may provide therapeutic ben-
efit (Figure 1B). This hypothesis was tested both in vitro and
in pre-clinical models by targeting c-MET receptor with genetic
approaches in combination with IR. The combinatorial approach
decreased cell proliferation and tumor volumes compared to IR
or c-MET inhibition alone, highlighting the synergistic benefit
of combined treatment (Abounader et al., 1999; Jin et al., 2011).
Targeting HGF specifically with three neutralizing antibodies also
decreased tumor volume (Cao et al., 2001). Furthermore, dual
inhibition of c-MET receptor and HGF-ligand expression together
with IR not only reduced proliferation and tumor volume, but
also increased apoptosis, DNA fragmentation, and survival (Lal
et al., 2005; Li et al., 2009). These findings provide a foundation
for investigating c-MET inhibitors, such as cabozantinib (XL-184;
Exelixis), in combination with conventional GBM therapy.

Many new drugs targeting HGF/c-MET signaling are progress-
ing into clinical trials. Some of these studies have been completed
in other solid tumors, including skin, lung, and thyroid can-
cers, which are often driven by similar molecular mechanisms
found in GBM. Multiple c-MET pathway inhibitors are in the
developmental pipeline (Liu et al., 2010). Those that have been
evaluated in GBM are listed in Table 1. Most notably, cabozanti-
nib, a pan-tyrosine kinase inhibitor with high affinity for c-MET
and VEGFR2, is being tested in a phase II clinical trial for recurrent

GBM with encouraging tumor responses and acceptable toxicity
(Zhang et al., 2010). Other tyrosine kinase inhibitors that sec-
ondarily target c-MET are in various stages of clinical evaluation
(Table 1). The HGF/c-MET pathway may also be targeted by ligand
sequestration. Rilotumumab (AMG-102; Amgen), a monoclonal
antibody against HGF-ligand, has shown promise in a phase II
trial in patients with solid tumors (Amgen, 2012).

NOTCH
NOTCH receptor is over-expressed in multiple types of cancer
initiating cells including GICs (Rizzo et al., 2008; Wang et al.,
2012). Upon DELTA/JAGGED ligand binding, the NOTCH recep-
tor is proteolytically cleaved by γ-secretase to promote the release
and subsequent nuclear translocation of the NOTCH intracellular
domain (NICD) (Guruharsha et al., 2012). This event promotes
activation of the PI3K/AKT pathway and expression of NOTCH-
regulated genes (Stockhausen et al., 2010; Wang et al., 2010, 2012).
These target genes, including c-myc, hes1, and hey1, are respon-
sible for promoting self-renewal and GIC maintenance (Hitoshi
et al., 2002; Jeon et al., 2008; Wang et al., 2010; Zhu et al., 2011;
Guruharsha et al., 2012).

IR induction of NOTCH activation results in an expansion of
GICs (Wang et al., 2010). Combining TGF-β inhibition and IR
failed to induce the DDR and NOTCH activation, underlining
the interplay between the DDR and NOTCH signaling path-
ways (Hardee et al., 2012). In vitro studies of glioma cells with
γ-secretase inhibitors (GSIs) decreased cell proliferation, viabil-
ity, and percentage of CD133-positive cells, while inducing cell
death exclusively in GICs (Fan et al., 2010; Hovinga et al., 2010).
Exogenous expression of NICD2 in GICs was able to rescue the
phenotype even in the presence of GSIs (Wang et al., 2010).

Table 1 | Clinical trials of GBM targeting c-MET or NOTCH.

Drug Tumor type Target Phase Trial number Outcomes Side effects

R4733 (RO4929097),

Roche

Recurrent GBM,

AMO, AO

NOTCH I/II NCT01189240,

NCT01131234,

NCT01269411,

NCT01122901

Terminated. Outcomes not

available

Not available

Vandetanib (ZD6474),

AstraZeneca

Recurrent GBM,

AA, AO, AMO

RTK I/II NCT00441142 Ongoing. Outcomes not

available

Rash, diarrhea, headache,

hypertension

Cediranib (AZD2171),

AstraZeneca

Recurrent GBM RTK II NCT00305656 APF6 27.6%, PRR 56%,

PFS 111 days, OS 226 days

Hypertension, fatigue, diarrhea

Cabozantinib

(XL-184), Exelixis

Recurrent GBM RTK II NCT00704288 ORR 23%, PR 23%, DoR

2.9 months

Fatigue, transaminase elevation,

thromboembolic events

Dovitinib (TKI-258),

Novartis

Recurrent GBM RTK II NCT01753713 Ongoing. Outcomes not

available

Fatigue, diarrhea, nausea

Rilotumumab

(AMG-102), Amgen

Recurrent GBM HGF II NCT01113398 No response Fatigue, headache, peripheral

edema

AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; AMO, anaplastic mixed oligoastrocytoma; GBM, glioblastoma; APF6, alive and progression-free at

6 months; PRR: partial radiographic response (>50% reduction in contrast-enhancing volume); PFS, median progression-free survival; OS, median overall survival;

ORR, overall response rate; PR, partial response; DoR, median duration of response; RTK, receptor tyrosine kinase; HGF, hepatocyte growth factor.
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Furthermore, in vivo studies of GBM xenografts treated with GSIs
impaired tumor growth and increased survival (Fan et al., 2010),
and these effects synergized with radiation (Hovinga et al., 2010;
Lin et al., 2010; Wang et al., 2010). Collectively, these data indicate
that GSIs effectively target GICs and may be synergistic with IR
(Figure 1C).

Currently, there are several phase I or phase I/II clinical trials
examining GSIs for the treatment of patients with GBM (Table 1).
RO4929097 is a GSI that has shown early promise in a phase I trial
with chemoradiation for newly diagnosed glioma [Princess Mar-
garet Hospital, National Cancer Institute (NCI), 2000b; National
Cancer Institute (NCI), 2000]. Single agent or neoadjuvant use
of RO4929097 has moved into a phase II trial for recurrent or
progressive GBM [Sydney Kimmel Comprehensive Cancer Cen-
ter, National Cancer Institute (NCI), 2000]. RO4929097 is also
being used in combination with the tyrosine kinase inhibitor cedi-
ranib (AZD2171/AstraZeneca) in multiple solid tumors, including
high grade gliomas [Princess Margaret Hospital, National Cancer
Institute (NCI), 2000a] as well as with bevacizumab in patients

with recurrent or progressive high grade gliomas NCT01189240
[National Cancer Institute (NCI), 2000]. We eagerly await the
results of these studies.

CONCLUSION
Glioblastoma initiating cells have evolved the ability to activate
c-MET and NOTCH pathways after IR, highlighting the cunning
ways by which GICs overcome standard cytotoxic treatment. Pre-
clinical data on targeting of these pathways have shown potential
and have led to multiple clinical trials. Ultimately, too many single
agents have failed due to the presence of multiple resistance mech-
anisms that render single agent therapies ineffective. Combined
modality therapy with radiation, chemotherapy, and inhibitors of
growth factor signaling will likely be necessary to improve therapy.
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