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The PI3K-Akt pathway together with one of its downstream targets, the mechanistic target
of rapamycin (mTOR; also known as the mammalian target of rapamycin) is a highly dereg-
ulated pathway in cancers. mTOR exists in two complexes, mTORC1 and mTORC2. Akt
phosphorylated at T308 inhibits TSC1/2 complex to activate mTORC1; mTORC2 is recog-
nized as the kinase phosphorylating Akt at S473. Inhibition of autophagy by mTORC1 was
shown to rescue disheveled (Dvl) leading to activation of Wnt pathway. Cyclin D1 and the
c-Myc are activated by the Wnt signaling. Cyclin D1 is a key player in initiation of cell cycle.
c-Myc triggers metabolic reprograming in G1 phase of cell cycle, which also activates the
transcription factors like FoxO and p53 that play key roles in promoting the progression of
cell cycle. While the role of p53 in cancer cell metabolism in arresting glycolysis and inhibi-
tion of pentose phosphate pathway has come to be recognized, there are confusions in the
literature on the role of FoxO and that of rictor. FoxO was shown to be the transcription fac-
tor of rictor, in addition to the cell cycle inhibitors like p21. Rictor has dual roles; inhibition of
c-Myc and constitution of mTORC2, both of which are key factors in the exit of G1-S phase
and entry into G2 phase of cell cycle. A model is presented in this article, which suggests
that the PI3K-Akt-mTOR and Wnt pathways converge and regulate the progression of cell
cycle through G0-G1-S-phases and reprogram the metabolism in cancer cells. This model
is different from the conventional method of looking at individual pathways triggering the
cell cycle.
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INTRODUCTION
The protein kinase B (between protein kinase A and C ; Cof-
fer and Woodgett, 1991), or Akt designated after the viral acute
transforming retrovirus, Akt8 (Staal et al., 1977; Bellacosa et al.,
1991; Downward, 1995) is recognized as the regulator of cell sur-
vival. Aberrant activation of the kinase is associated with many dis-
eases, including cancer and diabetes (Pearce et al., 2010). Phospho-
rylation of Akt at threonine 308 (T308; in activation loop) and the
serine 473 (S473; in hydrophobic motif) are considered important
for its activity (Nicholson and Anderson, 2002). Akt is activated

Abbreviations: Akt, protein kinase B (T308, S473 – phosphorylated sites
Threonine 308 and Serine 473); APC, adenomatous polyposis coli; AXIN,
axis inhibition protein; CDK2, cyclin-dependent kinase 2; CK, casein kinase;
CKI, cyclin-dependent kinase inhibitors; c-Myc, the oncoprotein activated by
Wnt signaling; COX-2, cyclooxygenase-2; Dvl, Dsh homolog in mammals; 4E-BP,
eukaryotic translation initiation factor (eIF4E) binding protein1; FoxO, fork
head transcription factors of O group; G0, G1, and S are phases of cell cycle;
GLUT, glucose transporter; GSK3β, glycogen synthase kinase3β; HIF, hypoxia
inducible factor; IGF, insulin like growth factor; IIS, insulin/insulin like growth
factor signaling; IRS, insulin receptor substrate; LEF, lymphoid enhancer-binding
factor; LRP, LDL receptor protein; mTORC1, 2, mechanistic target of rapamycin
complex 1 and 2 (mTOR, formerly known as mammalian target of rapamycin);
p16INK 4a ARF, cyclin-dependent kinase inhibitor 2A family of cell cycle inhibitors;

by insulin/insulin like growth factor (IGF) signaling (IIS). The
autophosphorylation of the internal domains of IIS receptors
leads to the recruitment of insulin receptor substrate (IRS) and
activation of phosphatidylinositol 3-kinases (PI3K). PI3K phos-
phorylates phosphatidylinositol 4, 5 bisphosphate (PIP2) to PIP3
(Engelman et al., 2006; Manning and Cantley,2007). PIP3 activates
the phosphatidylinositol dependent protein kinase 1 (PDPK1)
and recruits Akt to the plasma membrane. PDPK1 phospho-
rylates Akt T308 in the activation loop (Alessi et al., 1997).
Several kinases, integrin-linked kinase (ILK), protein kinase Cα

p16INK 4aARF, cyclin-dependent kinase inhibitor 2A family of cell cycle inhibitors;
PDPK1, phosphoinositide dependent kinase 1 (the abbreviation PDPK1 is pre-
ferred over the original PDK1 in the article to avoid confusion with the pyruvate
dehydrogenase kinase, which is also abbreviated as PDK1 in the literature); PDK2,
phosphoinositide dependent kinase2 (a putative kinase thought to phosphorylate
Akt on S473); PI3K, phosphatidylinositol 3-kinases; PIP2, phosphatidylinositol 4,5
bisphosphate; PIP3, phosphatidylinositol 3,4,5 trisphosphate; PPP, pentose phos-
phate pathway; PTEN, phosphatase and tensin homolog deleted from chromosome
ten; rictor, a component of mTORC2; ROS, reaction oxygen species; S6K, the
p70 ribosomal S6K; sestrins, stress response proteins; snail/slug, transcriptional
inhibitors of E-Cadherin; TCF, T-cell factor; TIGAR, TP53-induced glycolysis and
apoptosis regulator.
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(PKCα), double-stranded DNA-dependent protein kinase (DNA-
PK) ataxia telangiectasia mutated (ATM) gene product, and the
mammalian target of rapamycin (mTOR) were proposed to phos-
phorylate Akt on Ser-473 (Dong and Liu, 2005). The mTORC2
(Sarbassov et al., 2005) is widely recognized as the key kinase that
phosphorylates the Akt at S473. Ambiguity on the phosphoryla-
tion of this site however, remains; an atypical IκB kinase ε and
TANK-binding kinase 1 (IKKε/TBK1) was reported to induce this
phosphorylation in rictor (−/−) cells (Xie et al., 2011). There
are reports that phosphorylation of Akt S473 could be cell spe-
cific (Riaz et al., 2012) or may not be required for full activation
(Moore et al., 2011). T308 phosphorylation is considered a reli-
able biomarker of Akt activity especially for mTORC1 function
(Jacinto et al., 2006; Breuleux et al., 2009; Vincent et al., 2011).
Several tyrosine kinases are reported to phosphorylate Akt at dif-
ferent sites (Mahajan and Mahajan, 2012). Two phosphatases, the
phosphatase and tensin homolog deleted from chromosome ten
(PTEN) and the SH2 domain containing inositol-5-phosphatase
2 (SHIP2) regulate Akt function through dephosphorylation of
3-OH position of PIP3 (Leslie et al., 2003) and the 5-OH position
(Aman et al., 1998) respectively.

The mechanistic target of rapamycin (mTOR: formerly known
as mTOR; also known as FK506 binding protein 12-rapamycin
associated protein 1 (FRAP1; Moore et al., 1996), in mammals
exists in two multi protein complexes, mTORC1 and mTORC2,
distinguished by their sensitivity to rapamycin. The catalytic cores
of the two complexes have the kinase mTOR domain. While raptor
(regulatory associated protein of mTOR) regulates the function of
mTORC1, rictor (Rapamycin insensitive companion of mTOR)
was shown to control the activity of mTORC2 (reviewed by Loe-
with et al., 2002; Laplante and Sabatini, 2009). DEPTOR is a
negative regulator of the two complexes (Wang et al., 2012).

The complex mTORC1 responds to the nutrients and con-
ditions that promote cellular growth. It is activated by AktT308
downstream of IIS (Wullschleger et al., 2006; Gamper and Powell,
2012). mTORC1 is activated both by the oncogenic PI3K-Akt as
well as the Ras-Erk pathways, which inhibit the tuberous sclerosis
complex (TSC1 and TSC2) (TSC complex) through the phospho-
rylation of the TSC2 (Manning and Cantley, 2007). The inhibition
of TSC complex releases the inhibitory effect of TSC on the GTP-
bound Rheb (Ras homolog enhanced in brain), which controls
the activity of mTORC1. TSC is also inhibited by the Wnt pathway
(Inoki et al., 2006). Activation of mTORC1 by amino acids is medi-
ated by Rag GTPases. (Sancak et al., 2010), which is independent
of IIS. AMP activated protein kinase (AMPK) inhibits mTORC1
by activating the TSC2 (Corradetti et al., 2004; Kwiatkowski and
Manning, 2005; Inoki et al., 2006) and drugs that activate AMPK
reverse the activation of mTORC1 (Guppy et al., 2011; He et al.,
2011).

mTORC1 IS A FEEDBACK REGULATOR OF IIS PATHWAY AND
IT ALSO REGULATES mTORC2
One of the key downstream targets of mTORC1, the p70 ribo-
somal S6 Kinase (S6K) phosphorylates IRS and inhibits the IIS
in a feedback regulatory step (Zhang et al., 2008; Veilleux et al.,
2010; Kang et al., 2011). An inverse relation is reported both in
relative abundance and activation of mTORC1 and mTORC2 in

cells (Sarbassov et al., 2004). S6K also phosphorylates rictor and
inhibits mTORC2 assembly (Dibble et al., 2009; Julien et al., 2010;
Treins et al., 2010).

S6K is also shown to inhibit glycogen synthase kinase3β

(GSK3β) (Zhang et al., 2006). Recognized as one of the key targets
of Akt, GSK3β was also shown to phosphorylate rictor (Chen et al.,
2011). GSK3β has multiple roles ranging from glucose homeosta-
sis (Kim and Kimmel, 2000) to inflammation (Wang et al., 2011),
and it plays a key role in Wnt signaling (Wu and Pan, 2010). GSK3β

phosphorylates the voltage-dependent anion channel (VDAC) and
regulates the mitochondrial metabolite exchange and apoptosis
(Shoshan-Barmatz et al., 2010); its depletion was shown to increase
the beta cell proliferation (Stein et al., 2011). GSK3β cooperates
with AMPK in activation of TSC complex that leads to inactivation
of mTORC1 (Kwiatkowski and Manning, 2005).

Regulation of protein synthesis is recognized as one of the
conserved role of mTORC1; it phosphorylates and inhibits, the
eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-
BP1/2), which are the inhibitors of translation (Castellvi et al.,
2006; Ma and Blenis, 2009). The two functions of mTORC1, phos-
phorylation of S6kinase and inhibition of 4E-BP, have come to
be accepted as routine markers for its activity and activation of
protein synthesis in cells (Miron et al., 2003).

RAS-Erk MAP KINASE SIGNALING ALSO ACTIVATES mTORC1
Over expression of epidermal growth factor receptors belonging to
the proto-oncogene erbB (Thompson and Gill, 1985) and abber-
rant activation of RAS-Erk MAP kinase signaling was recognized as
the cause of several cancers and antibodies targeting the receptors
were developed during early 1980s (Sato et al., 1983; Schlessinger,
2000; Mendelsohn and Baselga, 2003; Lemmon and Schlessinger,
2010). The MAP kinase Erk was shown to phosphorylate and inac-
tivate TSC2 (Ma et al., 2005) leading to activation of mTORC1.
Several drugs that target the nutrient and growth factor (PI3K-Akt
and Ras-Erk MAP kinase) pathways claim that the targeted drugs
arrest the progression of cell cycle. The convergence of the two
pathways at mTORC1 led to a surge in the activity in targeting
of mTORC1 for the control of carcinogenesis. Rapamycin, which
was initially recognized as an immunosuppressant for its ability
to reduce organ rejection (Abraham and Wiederrecht, 1996) was
subsequently found useful in treatment of cancers (Mita et al.,
2003). But, the realization that rapamycin is inadequate in com-
pletely inhibiting mTORC1 functions (Shor et al., 2009) led to
a search for the ATP competitive inhibitors (Bhagwat and Crew,
2010; Schenone et al., 2011). These inhibitors are claimed to arrest
the cells in quiescent or gap1 (G0/G1) phase of the cell cycle (Evan-
gelisti et al., 2011). But the exact link between the growth factor,
mTOR pathways and cell cycle remains unexplained.

Wnt PATHWAY IS THE KEY PATHWAY IN ACTIVATION OF
CELL CYCLE
Wnt pathway is the key pathway in activation of cell cycle. Wnt
signaling in general activates the Cyclin D, the c-Myc ; matrix met-
alloproteinases, COX-2, peroxisome proliferator-activated recep-
tors (PPARs), and the growth factors, and their receptors, and
down regulates E-Cadherin, the cell cycle inhibitor P16ink4A
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(ARF) and p53 (http://www.stanford.edu/group/nusselab/cgi-
bin/wnt/human_genetic_diseases; 2010). Wnt pathway thus,
regulates the cancer cells entry into the cell cycle through the
production of cyclin D. Cyclin D complexes with cyclin-dependent
kinase 4/6 (Cdk4/6), inactivates the tumor suppressor protein
retinoblastoma (Rb), and promotes the entry of the cell from G0
to G1 phase of cell cycle. E2F uncoupled from the phosphorylated
Rb transcribes the cyclin E, which binds to Cdk2 and promotes the
progression of the cell cycle. The up regulation of cyclin E/CDK2
is reported to correlate with the G1/S transition (Stott et al., 1998;
Arima et al., 2004; Soto Martinez et al., 2005; Sun et al., 2007).
Aberrant activation of Wnt pathway was shown to lead cells to
malignant transformation (Polakis, 2012).

Activation of Wnt pathway is usually based on destabilizing
the commonly known “destruction complex” comprising of the
APC, the Axin, and the casein kinase I (CKI) and GSK3β. The
disheveled (Dvl ; Dsh gene homolog in mammals) protein is rec-
ognized as the key component in the signaling (Nusse, 2005; Gao
and Chen, 2010).

AUTOPHAGY PROMOTES DEGRADATION OF Dvl AND
NEGATIVELY REGULATES THE Wnt PATHWAY
The process of autophagy involves the fusion of phagophores with
lysosomes (Yang and Klionsky, 2010); it plays a key role in human
diseases like immune disorders (Deretic, 2011), neurodegenera-
tive disorders (Weihl, 2011), and also in cancers (Brech et al., 2009;
Stipanuk, 2009; White and Lowe, 2009; Chen and Klionsky, 2011;
Nyfeler et al., 2011). mTORC1 was shown to inhibit autophagy by
phosphorylation of ULK1 at Ser 757 (Kim et al., 2011).

Gao et al. (2010) demonstrated that autophagy is a negative
regulator of the Wnt pathway by promoting the degradation of
Dvl, a component of Wnt pathway. All the three isoforms of Dvl
(Dvl1, Dvl2, and Dvl3) were shown to be degraded. Inhibition
of autophagy by mTORC1 therefore, releases the Dvl. Autophagy
mediated down regulation of Wnt signaling was confirmed by
rapamycin treatment, which resulted in down regulation of the
Wnt target genes axin2, c-Myc, and cyclin D1. Dvl appears to be
the link for the cooperative interaction between the MAP kinase
and PI3K-Akt-mTOR pathways converging at autophagy to acti-
vate cell proliferation. In addition, c-Myc, a downstream target of
the Wnt signaling, was shown to be involved in carcinogenesis
along with erbB2 as early as in 1980s (Dotto et al., 1986; Land
et al., 1986). Pacheco-Pinedo et al. (2011) recently demonstrated
that cooperation between K-Ras mutant and the Wnt/β-catenin
signaling is the cause of aggressive lung tumor phenotype. Heallen
et al. (2011) demonstrated that Hippo pathway inhibits the Wnt
signaling to prevent cardiomyocyte proliferation; Dvl was shown
to be the link between the two pathways. Apart from reusing Dvl
from autophagic degradation, mTORC1 inactivation of GSK3β by
S6K (Zhang et al., 2006) blocks the β-catenin degradation. Dvl was
also shown to translocate into nucleus and in conjugation with the
transcription factor of AP1 complex, c-jun is reported to stabilize
the β-catenin-TCF/LEF signaling (Gan et al., 2008).

ONCOGENES AND TUMOR SUPPRESSORS ARE BOTH
INVOLVED IN METABOLIC REPROGRAMING
Progression of cell cycle also requires the activation of metabolic
pathways in G1 phase. Glycolysis, Krebs cycle, and the pentose

phosphate pathways are the key pathways involved in metabolic
reprograming of cells. Warburg, in the early twentieth century, was
the first to suggest that cancer cells utilize the aerobic glycolysis for
promotion of tumorigenesis (Warburg, 1956). A re-examination
of Warburg hypothesis in the last part of twentieth century led
to a search for the role of oncogenes and tumor suppressors in
metabolism (Figure 1A). Akt was named as the“Warburg enzyme”
(Robey and Hay, 2009), p53 was recognized to suppress both gly-
colysis through TIGAR (TP53-induced glycolysis and apoptosis
regulator; Bensaad et al., 2006) and Pentose phosphate pathway by
inhibiting the G6PD (Jiang et al., 2011). It was shown to activate
glutamine metabolism and control the ROS production (Gottlieb,
2011; Maddocks and Vousden, 2011). HIF and c-Myc were shown
to up regulate the enzymes of glycolysis (Kim et al., 2007). The sig-
nature of cancer cells is recognized by loss of function of the tumor
suppressors p53, PTEN and by activation of Akt, Myc, HIF-1α, and
NFkB (Markert et al., 2012). The oncogene c-Myc is recognized to
play an important role in activation of genes of enzymes of gly-
colysis and Krebs cycle as well as those involved in chromatin
structure, and its transcriptional networks that are involved pre-
dominantly in cell cycle regulation and cellular metabolism and
protein synthesis specific to the G0-G1-S transition in cancer cells,
lymphocytes, and in embryonic stem cell (Kim et al., 2010; Swami,
2010; Lin et al., 2012).

THE ROLE OF FoxO TRANSCRIPTION FACTORS
One of the consequences of metabolic reprograming in cancer
cells is activation of FoxO transcription factors (Ronnebaum and
Patterson, 2012). The FoxO transcription factors are reported to
sequester β-catenin away from the TCF/LEF transcription fac-
tors (Hoogeboom et al., 2008; Hoogeboom and Burgering, 2009).
Although the exact mechanism is still enigmatic, deregulation of
adherens junction (AJ) was reported to result in translocation
of the FoxO transcription factors into nucleus (Fournier et al.,
2009). One of the critical steps in the progression of cell cycle is
the crossover of restriction point in G1, which is regulated by the
E2F-pRb. The role of FoxO in up regulating cell cycle inhibitors
p15 (INK4b) and p19 (INK4d) is viewed as an arrest of cell cycle
(Katayama et al., 2008). Rictor transcribed by FoxO is a key com-
ponent of the mTORC2 (Chen et al., 2010). Guo et al. (2012)
reported that rictor promotes ubiquitination and degradation of
c-Myc and cyclin E and suggested that it leads to the arrest of
cell cycle in G1 phase. Rictor is also reported to be involved in
regulation of Rho GTPases (Jacinto et al., 2004) and RhoA acti-
vation is crucial for G1-S progression of cell cycle (Zhang et al.,
2009). The up regulation of cell cycle inhibitors (p21WAF1/CIP1
and p27KIP1) and transcription of rictor by FoxOs and inhibi-
tion of c-Myc and cyclin E reported by Guo et al. (2012) should
therefore, be viewed as a regulation of the exit of G1/S phase of
cell cycle rather than inhibition of cell cycle in G1 phase. FoxO
is also reported to transcribe the antioxidant genes like sestrins
(Chen et al., 2010; Lee et al., 2010) which inhibit mTORC1 and
inhibit the mitochondrial metabolism (Ferber et al., 2012). Young
et al. (2009) demonstrated a feedback link between mTORC1 and
C2 signaling and the timing of inhibition of mTORC1 correlated
with activation of autophagy and cyclin A. These results suggest
the role of FoxO in progression of cell cycle and assembly of
mTORC2. mTORC2 was shown to be required for proliferation
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FIGURE 1 | (A) Oncogenes and tumor suppressor modulate metabolic
reprograming in cancer cells. HIF, hypoxia inducible factor; TIGAR,
TP53-induced glycolysis and apoptosis regulator; MYC, Proto oncogene
c-Myc; G6PD, glucose-6-phosphate dehydrogenase; GLS2, glutaminase 2.
(B) Proposed model highlighting the role of PI3K-Akt-mTOR and Wnt
pathways in regulation of the cell cycle progression in cancer cell:
according to the presented model, activation of insulin/IGF receptor by
nutrients/growth factors activates PI3K-Akt pathway. Akt phosphorylated
on T308 activates mTORC1. One of the downstream target of mTORC1,
the p70S6Kinase, phosphorylates the serine residues on IRS and inhibits
the insulin/IGF signaling in a regulatory feedback control. The activated
mTORC1 activates the protein synthesis, but inhibits autophagy. Inhibition
of autophagy rescues Dvl and this lead to activation of Wnt pathway. The
activated Wnt pathway up regulates cyclin D and C-Myc, which trigger the
activation of cell cycle and metabolic reprograming. The metabolic

activation in cancer cells leads to the production of reaction oxygen
species (ROS), which activate the FoxO. FoxO is the transcription factor of
rictor, one of the key components of mTORC2 recognized as the kinase
phosphorylating Akt on S473. Rictor also inhibits c-Myc, which according
to the present model is required for exit of G1/S restriction point. Akt,
protein kinase B (T308, S473 are the phosphorylated sites Threonine 308
and Serine 473 of Akt), c-Myc is the oncoprotein activated by Wnt
signaling, FoxO, fork head transcription factors of O group; GLUT, glucose
transporter; IGF, insulin growth factor; IRS, insulin receptor substrate;
mTORC1, 2, mammalian target of rapamycin (mTOR) Complex 1 and 2,
PIP2, phosphoinositide 4,5 bisphosphate; PIP3, phosphoinositide 3,4,5
trisphosphate; rictor, a component of mTORC2; P70S6K, the p70
ribosomal S6K; PTEN, phosphatase and tensin homolog deleted from
chromosome ten; ROS, reaction oxygen species; PDPK1 (also abbreviated
as PDK1), phosphoinositide dependent protein kinase.

and survival of TSC2-Null cells (Goncharova et al., 2011). The
hypothesis that FoxOs are involved in the progression of cell
cycle is further strengthened by the fact that FoxOs also regu-
late the expression of mitotic genes such as cyclin B, polo-like
kinase (Plk) (Alvarez et al., 2001). In addition, recent reports indi-
cate the role of FoxO1 in dedifferentiation of pancreatic β-cells
(Talchai et al., 2012) and in osteoblast proliferation (Kode et al.,
2012).

THE PROPOSED MODEL
Based on the foregone discussion, we propose that activation of
PI3K-Akt-mTORC1 leads to inhibition of autophagy and res-
cues Dvl, which activates the Wnt pathway (Figure 1B). The

transcriptional activation of Cyclin D by Wnt pathway triggers the
entry of cells from G0 to G1 phase. c-Myc promotes reprogram-
ing of cancer cell metabolism in the G1 phase, which apart from
generating ROS, activates the transcription factors like p53 and
FoxO and autophagy. The transcription of rictor by FoxO leads to
the inhibition of c-Myc and promotes exit of the restriction point
of G1-S phase of cell cycle. Rictor also constitutes mTORC2 in
G2 phase. Phosphorylation of Akt at S473 by mTORC2 leads to
feedback inhibition of FoxO.

SOME UNANSWERED QUESTIONS
Cancer cells consume lots of glucose, but it is reported that glucose
transporters are activated only following phosphorylation of Akt
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at S473 (Kumar et al., 2010) and it coincides with the inactivation
of FoxO proteins. Under hypoxic conditions, loss of p53 pro-
motes the expression of mono carboxylate transporters (MCT1)
and lactate export which is reported to promote cell prolifera-
tion by fueling mitochondrial respiration (Boidot et al., 2012).
Do cancer cells exiting the divisional phase depend on excess
glucose and glycolytic flux fuels respiration, while actively pro-
liferating cells depend on lactate as a fuel resulting in a Warburg
effect?
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