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In human cancer cells, a constitutive activation of MAPK, STAT3, β-catenin, and various
other signaling pathways triggers multiple immunosuppressive cascades.These cascades
result in the production of immunosuppressive molecules (e.g., TGF-β, IL-10, IL-6, VEGF,
and CCL2) and induction of immunosuppressive immune cells (e.g., regulatory T cells,
tolerogenic dendritic cells, and myeloid-derived suppressor cells). Consequently, immuno-
suppressive conditions are formed in tumor-associated microenvironments, including the
tumor and sentinel lymph nodes. Some of these cancer-derived cytokines and chemokines
impair immune cells and render them immunosuppressive via the activation of signaling
molecules, such as STAT3, in the immune cells. Thus, administration of signal inhibitors
may inhibit the multiple immunosuppressive cascades by acting simultaneously on both
cancer and immune cells at the key regulatory points in the cancer-immune network. Since
common signaling pathways are involved in manifestation of several hallmarks of cancer,
including cancer cell proliferation/survival, invasion/metastasis, and immunosuppression,
targeting these shared signaling pathways in combination with immunotherapy may be a
promising strategy for cancer treatment.
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INTRODUCTION
By the time cancer cells are detected clinically, they have already
evaded the immune-defense system (Robert et al., 2011). Dur-
ing their long development process, such cancer cells have lost
highly immunogenic tumor antigens and acquired immunoresis-
tant and immunosuppressive properties through various mecha-
nisms (Yaguchi et al., 2011). Consequently, elimination of can-
cer cells by immunological strategies may not be easy. How-
ever, it has been revealed that the tumor antigens expressed
by cancer cells are qualitatively or quantitatively different form
the normal counterpart, and that cancer cells can be elimi-
nated by T cells using various immune-interventions in some
patients. We have previously identified human tumor antigens
recognized by T cells (Kawakami et al., 1994a,b), and attempted
to develop various antigen-specific immunotherapies (Rosen-
berg et al., 1998). For instance, the administration of gp100
melanoma antigen peptide vaccine along with IL-2 resulted
in 16% objective response with 9% CR in the recent multi-
center randomized trial (Schwartzentruber et al., 2011). Fur-
thermore, adoptive immunotherapy using cultured melanoma-
specific T cells following lymphomyeloablative treatment, which
depletes various immunosuppressive cells and induces home-
ostatic proliferation of administered T cells, resulted in more
than 70% objective response with about 20% durable CR in
advanced melanoma patients with multiple metastases (Rosen-
berg et al., 2011). These observations indicate that active
immunization may be further improved by various immune-
interventions.

DEVELOPMENT OF EFFECTIVE IMMUNOTHERAPY BY
COMPREHENSIVE REGULATION OF ANTI-TUMOR IMMUNE
NETWORK
Analysis of mouse tumor models and human clinical trials
using the identified tumor antigens revealed that following key
points need to be addressed in order to regulate the anti-
tumor immune network and develop effective immunotherapy
(Figure 1) (Kawakami et al., 2004). (1) Identification of appropri-
ate tumor antigens for immunotherapy : the ideal antigens should
have tumor-specific expression and they should be involved in
cancer cell proliferation/survival. They must also be expressed in
cancer initiating cells. We have identified human glioma anti-
gen SOX6, which is expressed in glioma stem-like cells. SOX6
is involved in cancer proliferation and is recognized by T cells
(Ueda et al., 2004, 2010). Sox6-DNA vaccination was able to
inhibit growth of murine glioma in a therapeutic setting (Ueda
et al., 2008). (2) Development of in situ tumor destruction methods
to induce immunogenic cancer cell death: break down of tumor
releases endogenous tumor antigens and subsequently induces
anti-tumor immune response (Immunogenic cancer cell death).
This may be achieved possibly by using chemotherapy, molecu-
lar targeted drugs, anti-tumor antibody, irradiation, cryoablation,
radiofrequency ablation, or oncolytic viruses. (3) Development
of methods to enhance dendritic cell (DC) functions: the meth-
ods include augmentation of antigen uptake, cross presentation,
and T cell stimulation by using adjuvants, cytokines, or agonis-
tic antibodies. We have previously developed several protocols
for combined immunotherapy of in situ tumor destruction and
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subsequent DC activation. An example of this is the use of
oncolytic HSV, which is capable of both direct tumor destruc-
tion and DC stimulation. Intratumoral administration of HSV
not only inhibited the treated tumor but also suppressed untreated
tumors at remote sites via induction of systemic anti-tumor T cells
(Toda et al., 2002). Another protocol involves a combination of
tumor cryoablation and subsequent intratumoral administration
of DCs pretreated with TLR2-stimulating BCG-CWS (Mycobac-
terium bovis Bacillus Calmette-Guérin cell wall skeleton). This
protocol induced T cell responses to multiple endogenous tumor
antigens and suppressed growth of untreated remote tumors as
well (Udagawa et al., 2006). (4) Development of methods to acti-
vate and expand anti-tumor T cells in vivo: this may be achieved
possibly by immunization with tumor antigens, administration
of cytokines, or agonistic antibodies against co-stimulatory mole-
cules on T cells, or transfer of cultured anti-tumor T cells. We are
currently attempting to use tumor-specific T cells cultured in vitro
to treat patients with melanoma. (5) Development of methods to
reverse immunosuppression: Various immunomodulating reagents
are being studied to evaluate their efficacy in recovering immuno-
suppressive condition in cancer patients. These reagents include
antibodies (e.g., anti-CTLA-4, anti-PD-1/PD-L1), chemotherapy,
and molecular targeted drugs.

In this article, we will focus on the combined use of molecular
targeted drugs with immunotherapy, that could possibly reverse
immunosuppression and augment anti-tumor T cell responses.

MECHANISMS OF IMMUNOSUPPRESSION IN CANCER
PATIENTS
Cancer cells, more specifically oncogene activation and subsequent
signal activation in cancer cells, trigger multiple immunosuppres-
sive cascades. These immunosuppressive cascades involve vari-
ous immunosuppressive molecules such as TGF-β, IL-10, IL-6,
VEGF, PD-L1, COX2, and IDO/TDO as well as immunosuppres-
sive cells such as tolerogenic DCs, myeloid-derived suppressor
cells (MDSCs), and regulatory T cells (Tregs). Ultimately, cancer
cells generate immunosuppressive microenvironments in tumor
and sentinel lymph nodes (Yaguchi et al., 2011). For example, an
over production of TGF-β in tumor microenvironment resulted
in accumulation of MDSCs, M2 macrophages and Tregs, and
impairment of DC functions in tumor tissues and sentinel lymph
nodes. We have shown that TGF-β-induced-Snail not only induces
metastasis-causing epithelial-to-mesenchymal transition (EMT)
of cancer cells but also enhances production of immunosuppres-
sive cytokines and chemokines, including TGF-β, IL-10, CCL2, and
TSP-1 (Kudo-Saito et al., 2009), which further promotes metasta-
sis. These cytokines impair DC function, induce Tregs, and finally
inhibit induction of anti-tumor T cells. CCL2 produced by can-
cer cells recruits MDSCs into tumor and CCL22 produced by M2
macrophages recruits CCR4+ Tregs and Th2 cells into tumor and
sentinel lymph nodes (Kudo-Saito et al., 2009, 2013; Tsujikawa
et al., 2013). Therefore, TGF-β production in tumor microen-
vironment by either cancer cells or infiltrated immune cells
triggers multiple immunosuppressive cascades involving various
immunosuppressive cytokines, chemokines, and immune cells. It
has been reported that inhibition of TGF-β signaling by injection
of plasmid DNA containing TGF-β type II receptor cDNA near

the tumor sites enhanced tumor antigen-specific T cells accom-
panied by decrease of Tregs through blockade of TGF-β signaling
(Fujita et al., 2009). Therefore, blockade of the TGF-β dependent
immunosuppressive cascade at either upstream signaling for TGF-
β production, TGF-β itself, or its downstream events such as Treg
induction may restore immunocompetence of cancer patients.

SIGNAL INHIBITORS MAY AUGMENT ANTI-TUMOR IMMUNE
RESPONSES
To effectively reverse immunosuppressive condition in cancer
patients, which molecules or cells should be targeted in the
immunosuppressive cascades? Where should they be blocked,
upstream, or downstream? Blockade of downstream immuno-
suppressive molecules, such as CTLA-4 and PD-1/PD-L1, was
recently shown to be effective in augmenting anti-tumor immune
responses in clinical trials (Hodi et al., 2010; Topalian et al., 2012).
Targeting downstream immunosuppressive molecules (e.g., TGF-
β, IL-10, IL-6, VEGF, CTLA-4, PD-1, PD-L1, IDO/TDO, Cox2)
and cells (e.g., MDSCs and Treg) with antibodies or small mole-
cule inhibitors may have specific and efficient inhibitory activity
against immunosuppressive cascades. However, inhibition of one
molecule or one cell type may not be sufficient to reverse caner
immunosuppression in patients.

In order to reverse immunosuppression in tumor-bearing
hosts, we have evaluated signal inhibition at upstream mole-
cules, such as BRAF-MAPK, STAT3, and Wnt/β-catenin (Sumi-
moto et al., 2006; Iwata-Kajihara et al., 2011; Yaguchi et al., 2012)
(Figure 2). Targeting a constitutively activated signaling in cancer
cells will not only inhibit multiple downstream immunosuppres-
sive events simultaneously but also suppress multiple intrinsic
malignant features of cancer cells, such as proliferation, survival,
and invasion. The destruction of cancer cells may result in release
of various endogenous tumor antigens and contribute to induc-
tion of anti-tumor immune response, and subsequent decrease
of tumor burden decreases total immunosuppressive activity. In
developing molecular targeted therapy, the idea of personalized
treatment strategy is crucial. This is because the contribution of
target signaling molecules in immunosuppression may be different
even among patients with same type of cancer. Another factor to
consider is that signal inhibitors sometimes have direct effects on
immune cells, including activation of immune cells (e.g., DC) and
inhibition of various immunosuppressive cells (e.g., Treg, MDSC)
(Iwata-Kajihara et al., 2011; Oosterhoff et al., 2012). A combi-
nation of both upstream and downstream blockade is also an
attractive strategy. For instance, administration of signal inhibitors
(e.g., BRAF inhibitor) and blockade of antibodies against major
immuosuppressive molecules (e.g., TGF-β, PD-1/PD-L1, CTLA-4)
may be effective. However, it should be noted that such upstream
blockade may affect various normal cells and cause adverse effects,
including suppression of anti-tumor immune response. There-
fore, a careful evaluation of total in vivo activity of these signal
inhibitors is needed in both animal tumor models and clinical
trials.

MAPK SIGNALING INHIBITORS
A common mutation of BRAF (V600E), a molecule in MAPK
signal pathway, was identified by systematic DNA sequencing of
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FIGURE 1 | Development of effective immunotherapy by
comprehensive regulation of anti-tumor immune network.
Comprehensive regulation of anti-tumor immune network, including
induction of immunogenic cancer cell death, use of appropriate tumor

antigens, enhancement of DC function, activation and expansion of
anti-tumor T cells as well as reversal of cancer-induced
immunosuppression (Figure 2) is important for development of effective
cancer immunotherapy.

FIGURE 2 | Reversal of cancer-induced immunosuppression by targeting
both cancer cells and immune cells using molecular targeted drugs.
Cancer cells not only trigger anti-tumor immune responses but also induce
various immunosuppressive molecules and cells through oncogene and

signaling activation, leading to impaired anti-tumor immune responses.
Molecular targeted drugs including various signal inhibitors may be useful for
augmentation of anti-tumor immune responses by acting on both cancer cells
and various immune cells such as DC, MDSC, and Treg.

signaling molecules in human melanoma cells (Davies et al., 2002).
We have evaluated the role of mutant BRAF (V600E) in human
melanoma cells by using mutant BRAF (V600E)-specific lentiviral
shRNAs, and found that BRAF mutation was involved in enhanced
cell proliferation and invasion (Sumimoto et al., 2004, 2005). We

also found that inhibition of MAPK signaling pathway in human
melanoma cells by genetic depletion of mutant BRAF or specific
inhibitors reduced production of multiple immunosuppressive
cytokines such as IL-6, IL-10, and VEGF, in most cases without
affecting cell viability (Sumimoto et al., 2006). These cytokines
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suppress DCs’ ability to stimulate T cells through decreased pro-
duction of IL-12 and TNF-α and increased production of IL-10 by
DCs. Treatment of melanoma cells with BRAF (V600E)-specific
shRNA or MEK inhibitors resulted in decreased immunosuppres-
sive activity of melanoma cells on DCs, suggesting that MAPK
signaling pathway in cancer is associated with impaired DC func-
tion in melanoma patients. MEK inhibitors were reported to
increase susceptibility of melanoma cells to CTL lysis partly due
to increased expression of melanosomal antigens such as MART-
1/melan-A and gp100 (Kono et al., 2006; Boni et al., 2010). These
results indicate that the BRAF-MAPK axis is important not only
in classical malignant features such as cancer cell proliferation and
invasion, but also in immunosuppression and immunoresistance.
“Avoiding immune destruction” has recently been recognized as
one of the “the hallmarks of cancer” (Hanahan and Weinberg,
2011).

The BRAF-MAPK axis may be a common attractive target
for melanoma treatment, including immunotherapy. However,
MAPK signaling pathway is also important for normal cell func-
tions, such as T cell proliferation. Thus, administration of MAPK
inhibitors may also suppress desirable anti-tumor T cell responses.
Recently, two BRAF inhibitors that preferentially inhibit mutant
BRAF in cancer cells have been developed, and their administra-
tion resulted in regression of melanoma in clinical trials (Chap-
man et al., 2011). These mutant BRAF-selective inhibitors can
be particularly useful in combination with immunotherapies for
melanoma. Melanoma cell death induced by BRAF inhibitors may
lead to release of multiple endogenous tumor antigens including
mutated antigens unique to each patient (Melanoma is known to
have more frequent mutations than other cancers probably due
to UV irradiation). This results in subsequent induction of autol-
ogous tumor-specific T cells. Decreased production of multiple
immunosuppressive cytokines along with decreased number of
melanoma cells may result in simultaneous inhibition of multiple
immunosuppressive cascades, and reduce total immunosuppres-
sive activity of melanoma without suppressing anti-tumor T cell
expansion. Increased expression of melanoma antigens leads to
enhanced susceptibility of cancer cells to CTL lysis (Kono et al.,
2006; Boni et al., 2010). Suppression of melanoma cell prolifera-
tion and invasion may also enhance total anti-tumor activity of
mutant BRAF inhibitors. In fact, it has recently been reported
that administration of the mutant BRAF inhibitors alone resulted
in the increased infiltration of granzyme positive CD8+ T cells
in tumors without inhibiting general immune responses, which
was correlated with tumor reduction and necrosis (Wilmott et al.,
2011; Hong et al., 2012). In a recent study, mutant BRAF-selective
inhibitor and anti-CTLA-4 mAb were used in combination to
treat transgenic mice with mutant BRAF and PTEN deletion that
spontaneously developed melanoma. Despite their expectation,
the combined therapy did not show enhanced anti-tumor effects
compared with the treatment with either inhibitor or antibody
alone. However, in B16 melanoma model using non-transgenic
mice, the anti-CTLA-4 mAb augmented the effects of cancer
vaccine (Hooijkaas et al., 2012). Further analysis revealed that
BRAF inhibitor did not cause cell death in melanoma of trans-
genic mouse model, suggesting that in situ destruction of cancer
cells is an essential step in the enhancement of anti-tumor T cell

responses. The mutant BRAF inhibitors may also be useful for
treating other cancers that are BRAF mutation positive, such as
colon cancer, lung cancer, and thyroid cancer. Although MEK
inhibitor is known to suppress proliferation of melanoma with
either NRAS or BRAF mutation, it remains to be evaluated whether
the inhibitor also has immunological effects, such as stimulating
or suppressing activity on anti-tumor T cells (Flaherty et al., 2012).

JAK/STAT3 SIGNALING INHIBITORS
STAT3 is frequently activated in various human cancers including
melanoma. Similar to the RAS/BRAF/MAPK signaling activation,
down-regulation of STAT3 by lentiviral shRNA in STAT3-activated
melanoma resulted in inhibition of multiple immunosuppres-
sive cytokines, including IL-6, IL-10, and VEGF, indicating that
STAT3 inhibitors may also be useful for immunotherapy (Sumi-
moto et al., 2006). These suppressive cytokines subsequently acti-
vate STAT3 in various immune cells including DCs, MDSCs, and
Tregs, and render them immunosuppressive. For example, these
cytokines generated low IL-12- and high IL-10-producing human
DCs with reduced T cell stimulatory activity. DCs obtained from
myeloid-specific STAT3-conditional knockout mice were found
to be affected less by cancer-derived immunosuppressive factors
(Iwata-Kajihara et al., 2011). In addition, these STAT3-depleted
DCs produced high and sustained level of IL-12 possibly due to
the involvement of STAT3 in a negative feedback mechanism of DC
activation via IL-10. These STAT3-depleted DCs have higher T cell
stimulatory activity than wild type DCs. When STAT3-depleted
DCs were injected into immunosuppressive tumor microenvi-
ronment, stronger anti-tumor effects than wild type DCs were
observed along with induction of stronger IFN-γ producing Th1
and CTL (Iwata-Kajihara et al., 2011). It has been reported that
STAT3 is also involved in expansion of MDSCs (Wu et al., 2011),
activation of CD14+HLA-DRnegative/low MDSCs in blood of can-
cer patients (Poschke et al., 2010), expression of immunosup-
pressive arginase-1 in human MDSCs (Vasquez-Dunddel et al.,
2013), survival of Tregs (Pallandre et al., 2007), and anti-tumor
activity of CD8+ T cells (Kujawski et al., 2010). These reports sug-
gest that constitutive activation of STAT3 in cancer cells triggers
induction of various immunosuppressive immune cells. STAT3
inhibitors are currently being evaluated in clinical trials such as
NCT00955812. In murine tumor model, STAT3 inhibitors have
been shown to augment anti-tumor immunity (Kortylewski et al.,
2005; Yu et al., 2007; Lee et al., 2011). It was recently reported that
STAT3 inhibitors also restored drug sensitivity of melanoma cells
which had acquired resistance to BRAF inhibitors (Liu et al., 2013).
Therefore, STAT3 inhibitors may be useful for reversal of cancer-
induced immunosuppression through acting on both cancer cells
and various immune cells.

Besides direct inhibition of STAT3, inhibitors of the mole-
cules regulating STAT3 activation may also be effective for the
reversal of cancer-induced immunosuppression. An inhibitor of
JAKs, upstream molecules of STAT3, was reported to augment
anti-tumor effects in combination with immunotherapies such as
IL-12 administration (Burdelya et al., 2002). In patients with renal
cell cancer (RCC), administration of a multikinase inhibitor Suni-
tinib capable of suppressing downstream STAT3 signaling resulted
in decrease of MDSCs and Tregs along with increase of IFN-γ
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producing T cells (Ko et al., 2009; Ozao-Choy et al., 2009; Xin
et al., 2009). Another multikinase inhibitor Dasatinib, which also
inhibit downstream STAT3, increased response rate of the patients
with Ph1+ leukemia (CML and ALL) accompanied by LGL lym-
phocytosis and autoimmune like syndrome such as pleuritis and
colitis (Mustjoki et al., 2009; Jalkanen et al., 2010), suggesting that
Dasatinib has immunostimulatory activity partly through STAT3
inhibition. Therefore, various ways of STAT3 signal inhibition may
be applicable in combination with various immunotherapies.

β-CATENIN-SIGNALING INHIBITORS
In some human cancers including colon cancer, liver cancer,
and melanoma, activation of β-catenin pathway (suggested by
nuclear staining of β-catenin) is observed. We found that β-catenin
directly promote transcription of immunosuppressive cytokine
IL-10 in human melanoma (Yaguchi et al., 2012), and protein
expression of β-catenin was correlated with expression of IL-10
when evaluated by immunohistochemical analysis of melanoma
tissues samples. Culture supernatant of human melanoma cells
with accumulated β-catenin-induced high IL-10- and low IL-12-
producing DCs in an IL-10 dependent manner. These DCs pos-
sessed low T cell stimulatory activity in vitro, and induced FOXP3+

immunosuppressive Treg cells. The melanoma derived factors
also inhibited the effector function of melanoma-specific CTLs
in a β-catenin-dependent, but interestingly IL-10-independent
manner, indicating that other immunosuppressive molecules
are also involved in the β-catenin-induced immunosuppression.
Melanoma cells pretreated with β-catenin-specific shRNA had
reduced immunosuppressive activities on both DC and T cells.

When β-catenin-activated human melanoma cell lines were
implanted in immunodeficient mice, human IL-10 in mouse
serum was increased, and function of mouse DCs in spleens and
tumors were impaired for T cell stimulatory activity probably due
to increased human IL-10 which is capable of affecting mouse
DCs (Yaguchi et al., 2012). Systemic administration of a β-catenin
inhibitor restored T cell stimulatory function of the mouse splenic
DCs along with decrease of human IL-10 in serum. β-catenin
was also reported to be involved in generation of regulatory DC
(Fu and Jiang, 2010; Manicassamy et al., 2010a) and survival of
Treg (Ding et al., 2008). In addition, β-catenin inhibitor had a
direct ability on DC to augment their T cell stimulatory activity
partly due to decreased IL-10 production by DC (Manicassamy
et al., 2010b). Therefore, β-catenin inhibitors may also be useful

for reversal of cancer-induced immunosuppression by acting on
both cancer and immune cells.

CONCLUDING REMARKS
As discussed in this article, altered activation of various onco-
genes and signaling in both cancer cells and immune cells can
be an attractive target to reverse immunosuppressive conditions
in tumor-associated microenvironments of cancer patients. Sig-
nal inhibitors may augment current cancer immunotherapy, in
addition to its possible direct anti-tumor effects through inhibi-
tion of cancer cell proliferation and invasion. However, its total
in vivo activity should be carefully evaluated because it may also
cause various adverse effects, including possible inhibition of
anti-tumor immune responses. In this regard, mutated-molecule-
specific inhibition such as that of the mutant BRAF-selective
inhibitors is one of the promising strategies. Activation of STAT3
appears to shift immune response toward cancer’s advantage, thus,
its inhibition is attractive for possible improvement of anti-tumor
immune responses. Altogether, combination therapy using mole-
cular targeted drugs and various immunotherapies such as cancer
vaccines and check point blockade is a promising strategy to treat
cancer patients. Future clinical trials may demonstrate the proof
of concept of this strategy.

However, there are several obstacles to overcome before the
benefits of combination therapy can reach the patients. One
such obstacle is scientific. Although quite a few signal inhibitors,
immunotherapies, and combined therapies have shown promis-
ing results in experimental settings, mouse model, and human are
different. A successful treatment in mouse models may not work
in patients. Therefore, for the selection of appropriate molecular
targets and inhibition methods, further understanding of human
cancer immunopathology is deeply essential and urgently desired.
Another obstacle is a pragmatic one, which may arise when indi-
vidual therapies in a combination therapy are developed and/or
owned by different companies. The issues of company regulations,
patents, and logistics could become a barrier between research
and clinical translation. The core idea of combination therapy is
that by using multiple already-available therapies, cancer patients
are able to gain greater-than-sum benefits. Therefore, it is cru-
cial that institutions and companies to look beyond self-interests
and work together to reach a common goal. Academic institution
may mediate the cooperation between companies and provided
combination therapies to patients.
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