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Despite the advances in biomedical research and clinical applications, cancer remains a
leading cause of death worldwide. Given the limitations of conventional chemotherapeu-
tics, including serious toxicities and reduced quality of life for patients, the development
of safe and efficacious alternatives with known mechanism of action is much needed.
Prevention of cancer through dietary intervention may hold promise and has been investi-
gated extensively in the recent years. AMP-activated protein kinase (AMPK) is an energy
sensor that plays a key role in the regulation of protein and lipid metabolism in response to
changes in fuel availability. When activated, AMPK promotes energy-producing catabolic
pathways while inhibiting anabolic pathways, such as cell growth and proliferation – thereby
antagonizing carcinogenesis. Other anti-cancer effects of AMPK may include promoting
autophagy and DNA repair upon UVB damage. In the last decade, interest in AMPK has
grown extensively as it emerged as an attractive target molecule for cancer prevention and
treatment. Among the latest developments is the activation of AMPK by naturally occurring
dietary constituents and plant products – termed phytochemicals. Owing to their efficacy
and safety, phytochemicals are considered as an alternative to the conventional harmful
chemotherapy.The rising popularity of using phytochemicals for cancer prevention and ther-
apy is supported by a substantial progress in identifying the molecular pathways involved,
including AMPK. In this article, we review the recent progress in this budding field that
suggests AMPK as a new molecular target in the prevention and treatment of cancer by
phytochemicals.
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INTRODUCTION
Despite the advances in biomedical research and clinical applica-
tions, cancer remains a leading cause of death worldwide. Given
the limitations of conventional chemotherapeutics, including seri-
ous toxicities and reduced quality of life for patients, the develop-
ment of safe and efficacious alternatives with known mechanism
of action is much needed. In recent years, there has been increasing
interest in the potential cancer chemopreventive properties of diet-
derived agents, and many studies suggest that prevention of cancer
through dietary intervention may hold promise. It is estimated that
an average of 35% of human cancers (certain types up to 70%) can
be attributed to diet (1), and epidemiological research has shown a
link in the geographical distribution of cancer incidence to specific
diet consumption. According to the World Health Organization
report 2002, there are at least 2.7 million deaths globally per year,
which are primarily attributable to low fruit and vegetable intake
(2). This is not surprising, as the National Cancer Institute identi-
fied about 35 plant-based foods that possess anti-cancer benefits,
including garlic, soybeans, ginger, onion, turmeric, tomatoes, and
cruciferous vegetables (broccoli, cabbage, cauliflower, and Brussels
sprouts). Furthermore, the chemopreventive efficacy of these diet
constituents has been demonstrated in vitro and in vivo. The sub-
stantial anticarcinogenic and antimutagenic properties of these

tested dietary agents can be attributed to the non-nutritive com-
ponents of these foods, termed phytochemicals. There could be
more than 100 different phytochemicals in just a single serving of
vegetables (2), and they can be extracted for therapeutic purposes.
Since phytochemicals have not been shown to have any known tox-
icities, they can be considered as an alternative to the conventional
chemotherapy that may be harmful. A number of phytochemicals
have been found to have notable efficacy in preclinical mod-
els of carcinogenesis, such as those of colorectum, breast, lung,
and hematological origin. These include epigallocatechin gallate
(EGCG) from tea, the flavonoids quercetin and genistein from
onions and soya, respectively, curcumin in curry spice and resver-
atrol from red grapes (3). Chemopreventive phytochemicals can
block the initiation or reverse the promotion of carcinogenesis
and impede the progression of precancerous cells into malignant
ones. A substantial progress has been made in identifying the sig-
nal transduction pathways involved in the antineoplastic effects of
these substances, such as MAPK, MEK, PI3K, AP-1, COX-2, JNK,
ERK, AP-1, and p53 (3–8). Elucidating the molecular mechanisms
of phytochemicals fortifies the possibility in developing safe and
effective preventative and therapeutic agents for cancer. In this
review, we highlight (1) the role of the energy sensing enzyme
AMP-activated protein kinase (AMPK) (9–11) in the prevention
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and treatment of cancer and (2) the recent developments in this
budding field that suggest AMPK as a new molecular target in the
prevention and treatment of cancer by phytochemicals.

FUNCTION AND REGULATION OF AMPK
AMP-activated protein kinase is a well-conserved energy sensor
that plays a key role in the regulation of protein and lipid metabo-
lism in response to changes in fuel availability (9–11). AMPK exists
as heterotrimeric complexes comprising a catalytic α-subunit and
regulatory β- and γ-subunits. In mammals, each subunit occurs as
multiple isoforms encoded by multiple genes that can be assem-
bled to form up to 12 heterotrimeric combinations (12). Although
AMPK is traditionally thought to play a major role in the reg-
ulation of cellular metabolism, it is now widely recognized to
have antineoplastic efficacy and as a target for chemotherapy. A
key characteristic of tumor cells is their ability to rapidly grow
and divide, thus requiring a tremendous demand for energy. An
extensive body of evidence has demonstrated that AMPK inhibits
essentially all anabolic pathways that promote cell growth, such as
synthesis of fatty acid, phospholipid, protein, and ribosomal RNA
synthesis (12, 13). Thus, it is not surprising that AMPK antago-
nizes cancer cell growth. The first hint that AMPK may be linked
to cancer was provided by the finding that liver kinase B1 (LKB1),
a known tumor suppressor, acted as an upstream kinase of AMPK
(14, 15). LKB1 is mutated in the inherited cancer disorder Peutz–
Jeghers syndrome and in many lung and cervical cancers, suggest-
ing that AMPK could play a role in tumor suppression (16, 17).

ACTIVATORS OF AMPK
AMP-activated protein kinase can be activated by various types
of metabolic stress that lead to ATP depletion, such as conditions
of low nutrient supply or prolonged exercise, or via an increase
in intracellular Ca2+ concentration (9). The upstream kinases,
LKB1 and calcium/calmodulin-dependent protein kinase kinase-
β (CaMKKβ) activate AMPK by phosphorylating Thr172 in the
activation loop of the catalytic α-subunit (18–20). The finding
that CaMKKβ can also activate AMPK, independently of LKB1,
broadened the potential for AMPK to be used for therapy in can-
cers that have mutant LKB1 and thus low AMPK activation. Loss of
function of the tumor suppressor LKB1 occurs in 30–50% of lung
adenocarcinomas. Memmott et al. (21) found that lipid-based
AKT inhibitors, phosphatidylinositol ether lipid analogs (PIA),
activate AMPK independently of LKB1 in LKB1-mutant non-
small cell lung cancer (NSCLC) cell lines. The more well-known
activators of AMPK include several pharmacological agents that
stimulate the LKB1 pathway. Metformin, the most widely pre-
scribed Type-2 diabetes drug for more than 30 years, has been
shown to activate AMPK in an LKB1-dependent manner (22, 23).
Metformin mimics an energetic stress because it inhibits the mito-
chondrial complex I in hepatocytes and cancer cells which leads
to the decrease in intracellular ATP and an increase in glycoly-
sis and lactate production (24, 25). Consistent with this, diabetic
patients treated with metformin had a lower incidence of cancer
compared to those on other medications (26). In light of this, other
retrospective studies have been performed, one of which showed
that breast cancer patients on metformin for diabetes responded
significantly better to chemotherapy than other diabetic patients

not on metformin and non-diabetic patients (27). Since then,
several studies have shown that metformin exerts antineoplastic
effects in other cancer cells and animal models. Phenformin, a
biguanide more potent than metformin, and A-769662, a direct
AMPK activator developed by Abbott also delayed tumorigenesis
in a mouse cancer model (28). 5-Amino-1-β-Dffff-ribofuranosyl-
imidazole-4-carboxamide, or AICAR, is an analog of AMP and
widely used to activate AMPK in experiments. Interestingly,AMPK
is also activated by ionizing radiation (IR) in lung, prostate, and
breast cancer cells, independent of LKB1. This suggests that AMPK
may play a role as a target for radiosensitization of human cancer
cells (29). Since the discovery of antineoplastic effects of AMPK,
the number of patents describing potential AMPK activators has
grown rapidly (30, 31). Among the most recent developments is
the activation of AMPK by naturally occurring dietary constituents
and plant products, to be reviewed in the latter part of this article.

DOWNSTREAM TARGETS OF AMPK
One of the major growth regulatory pathways controlled by
LKB1–AMPK is the mammalian target of rapamycin (mTOR)
pathway (Figure 1). The mTOR pathway controls various bio-
logical processes that are important for normal functioning
of the cell via cell-cycle progression, survival, migration, tran-
scription, translation, and metabolism. AMPK is linked with
the phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin
homolog (PTEN)/protein kinase B (AKT) pathway and mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated
kinases (ERK) cascades – all known for being frequently dys-
regulated in cancer. mTOR can be activated downstream of the
PI3K-AKT and Ras-Raf-MEK-ERK signaling pathways (32),which
converge on TSC1-TSC2 (33). Moreover, AMPK has been shown
to be necessary for cell-cycle arrest at the G1 phase during limited
nutrient supply, via phosphorylation of the tumor suppressors
p53 (34, 35) and p27 (36). The mTOR complex also controls
AMPK-mediated autophagy (37), a cellular process in which the
cell breaks down its own organelles and cytosolic components to
ensure sufficient metabolites during starvation states. Under cer-
tain circumstances, autophagic cells may engage a specific mode
of cell death called type II cell death or autophagic cell death
(ACD). A number of studies have revealed the role of AMPK in
ACD of cancer cells (38, 39). The most upstream components of
the autophagy pathway include Atg1 (ULK1 in mammals) and
its regulatory subunits Atg13 and Atg17 (40). The mTOR/Raptor
pathway is thought to suppress ULK1 and ULK2 and their regu-
latory subunits (41), while AMPK phosphorylates ULK1, leading
to autophagy-mediated cancer cell death. Furthermore, AMPK
has been shown to downregulate the expression of cyclooxygenase
(COX)-2, which contributes to the pathophysiological progres-
sion of certain human cancers and inflammatory disorders (42).
AMPK is required for the expression of xeroderma pigmentosum
C (XPC) to promote DNA repair following UV damage (43).

ROLE OF AMPK IN CANCER CELL LINES AND ANIMAL
MODELS OF CANCER
Since the AMPK cascade has emerged as an important pathway
implicated in cancer control, many discoveries have been made
in the past decade revealing robust anti-cancer effects of AMPK
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FIGURE 1 | Function and regulation of AMPK leading to tumor
suppression. AMPK is activated when AMP/ATP or ADP/ATP ratios in
the cells rise due to various physiological stresses, such as
hypoglycemia and hypoxemia, leading to the activation of LKB1.
Metformin and phenformin can also mimic these stressors and lead
to AMPK activation in a LKB1-dependent manner. CaMKKβ activates
AMPK in response to calcium increase. Catabolic pathways, such as
fatty acid oxidation, are activated by AMPK. For example, AMPK
phosphorylation leads to the inactivation of acetyl CoA carboxylase
(ACC2). On the other hand, AMPK inhibits anabolic pathways, such as
fatty acid synthesis, mediated by ACC1. One of the most well-known
pathways of AMPK is through the TSC1/TSC2 complex, leading to the
downregulation of mTOR, which can also can be activated

downstream of the PI3K-AKT and Ras-Raf-MEK-ERK signaling
pathways. The mTOR pathway suppresses apoptosis via its effect on
the tumor suppressors p53 and p27 and inhibits autophagy by
suppressing UNC-51-like kinase 1 (ULK1) and ULK2. AMPK
downregulates these effects of mTOR, thus leading to increased
apoptosis and autophagy-mediated cell death. Independent of mTOR,
AMPK phosphorylates and activates ULK1 and ULK2, thus triggering
autophagy. Furthermore, AMPK has been shown to downregulate the
expression of cyclooxygenase (COX)-2, which contributes to the
pathophysiological progression of certain human cancers and
inflammatory disorders. AMPK is necessary for the expression of
xeroderma pigmentosum C (XPC) to promote DNA repair following
UV damage.

in vitro and in vivo, including animal cancer models of breast, lung,
colorectum, skin, and hematological malignancies. We review the
role of AMPK in major cancers, as outlined below.

BREAST CANCER
Observations that diabetics treated with biguanide drugs have a
reduced risk of developing cancer have prompted an enthusiasm
for these agents as anti-cancer therapies. Metformin, which acti-
vates AMPK, was shown to inhibit cell proliferation and induce
apoptosis in the triple-negative breast cancer cell line, as well as
the estrogen receptor (ER) α-positive and the human epidermal
receptor (HER) 2-positive cell lines. Moreover, synergistic inhi-
bition of the G1 phase of the cell cycle was demonstrated by
the combination treatment of metformin and chemotherapeutic
agents carboplatin, paclitaxel, and doxorubicin (44). Moreover, a
novel small molecule AMPK activator, OSU-53 derived from inac-
tive peroxisome proliferator-activated receptor gamma (PPARγ),

was reported to inhibit the proliferation of the triple-negative
breast cancer, a disease for which there are limited therapeu-
tic options (45). Phenformin, a stronger biguanide than met-
formin and also a direct activator of AMPK, was demonstrated
to be effective in the prevention and treatment of ER-positive
and receptor triple-negative xenografts in immunocompromised
mice (46). In another study, AICAR and phenformin elicited
clear anti-proliferative effects in ER-positive, ER-negative, and
triple-negative breast cancer cell lines (47).

LUNG CANCER
AMP-activated protein kinase is considered a potential prog-
nostic and therapeutic target for lung cancer. In tumors from
patients with resected non-small cell lung cancer (NSCLC),
the expression of proteins in the AMPK pathway, including
pLKB1, AMPK, p-Acetyl-CoA, pTSC2, was inversely correlated
with NSCLC recurrence (48). Consistent with this, another study
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showed a significant association between high phosphorylated
AMPK (pAMPK) expression levels with increased overall survival
and recurrence-free survival in patients with NSCLC, especially
those with adenocarcinoma (49). Never smokers also showed
significantly higher levels of pAMPK compared to former and
current smokers. In NSCLC cells in vitro, LKB1/AMPK signaling
was shown to negatively regulate mTOR activity and contribute
to cell growth inhibition in response to 2-deoxyglucose (2-DG),
which mimics energy stress (50). Moreover, metformin treatment
led to increased apoptosis in human lung cancer cell lines (A549
and NCI-H1299) and significantly inhibited cell proliferation in
a dose- and time-dependent manner, which was confirmed by
results from A549 tumor xenografts in nude mice (51). Sim-
ilarly, A/J mice treated with oral metformin after exposure to
the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK) showed a 72% reduction in tumor burden com-
pared to the control mice, which correlated with decreased cellular
proliferation and marked inhibition of mTOR in the tumors (52).

HEMATOLOGICAL CANCERS
AMP-activated protein kinase has been shown to inhibit cancer cell
growth in various hematological cancers. In acute lymphoblas-
tic leukemia (ALL) cell lines, AICAR induced dose- and time-
dependent cell growth inhibition (53), leading to increased AKT
phosphorylation and decreased mTOR phosphorylation (54).
When used in combination with methotrexate or pemetrexed,
AMPK showed a synergistic cytotoxic effect and cell growth inhi-
bition (53). Sengupta et al. (55) reported that the apoptotic effect
of AMPK was mediated by activation of the p38 MAPK path-
way, increased expression of cell-cycle inhibitory proteins p27
and p53, and the downstream effects of the mTOR pathway.
In B-cell chronic lymphocytic leukemia (B-CLL) cells, AMPK-
induced apoptosis in a p53-independent manner (56). In mantle
cell lymphoma (MCL), a clinically aggressive B-cell non-Hodgkin
lymphoma characterized by the t(11;14)(q13;q32) and overexpres-
sion of cyclin D1, stimulation of the AMPK kinase activity using
AICAR inhibited phosphorylation of critical downstream effec-
tors of mTOR signaling, such as 4E-BP1 and ribosomal protein
s6 (rps6) (57). In BCR-ABL-expressing chronic myeloid leukemia
(CML) precursors and ALL cells that are positive for the Philadel-
phia chromosome (Ph+), metformin, and AICAR suppressed the
mTOR pathway and cell growth (58). Lastly, induction of the
LKB1/AMPK tumor suppressor pathway demonstrates a strong
potential for the treatment of acute myeloid leukemia (AML).
Green et al. showed that the LKB1/AMPK/TSC tumor suppres-
sor axis could lead to a specific inhibition of the mammalian
target of rapamycin (mTOR) catalytic activity, inducing 4E-BP1
dephosphorylation, which inhibits the initiation step of mRNA
translation. Metformin consequently reduced the recruitment of
mRNA molecules encoding oncogenic proteins to the polysomes,
resulting in a strong anti-leukemic activity against primary AML
cells while sparing normal hematopoiesis ex vivo and significantly
reducing the growth of AML cells in nude mice (59).

SKIN CANCER
The role of AMPK in UVB-induced skin cancer is still only
beginning to be understood and depends on the type of skin

cancer. AMPK activators phenformin and AICAR were shown to
inhibit the cell growth of both BRAF-mutant or NRAS-mutant
melanoma cell, due to cell-cycle arrest in either the G0/G1 or the
S phase, associated with an increased expression of the p21 cell-
cycle inhibitor (60). However, another study revealed that BRAF-
mutant melanoma cells are resistant to metformin in vitro, while
metformin accelerates their growth in vivo. Surprisingly, met-
formin inhibited tumor growth when vascular endothelial growth
factor (VEGF) signaling was inhibited. Thus, VEGF inhibitors and
metformin synergized to suppress the growth of BRAF-mutant
tumors (61). The role of AMPK in basal cell carcinoma remains
unclear. In a study by Byekova et al. (62) LKB1 and pAMPK expres-
sion was shown to be upregulated in UVB-induced murine BCC
and in human skin tumor keratinocytes. Paradoxically, persistent
mTOR activation was also observed. Metformin was effective in
activating the LKB1/AMPK pathway only in HaCaT keratinocytes
but not in human carcinoma A431 cells, suggesting a complex reg-
ulatory mechanism for the persistent mTOR activation in murine
BCCs. In contrast, Zhang and Bowden reported that UVB irradia-
tion, a strong carcinogen for non-melanoma skin cancer, reduced
activation of AMPK and LKB1, leading to increased Cox-2 mRNA
stability, which may contribute to cancer development (63). Fur-
thermore, our recent studies showed that the AMPK pathway
is down-regulated in human and mouse squamous cell carci-
nomas and that its activators AICAR and metformin increased
the expression of the DNA repair protein xeroderma pigmento-
sum C (XPC) and UVB-induced DNA repair in mouse skin and
in normal human epidermal keratinocytes (43). Furthermore, in
UVB-damaged tumor-bearing mice, both topical and systemic
metformin prevented the formation of new tumors and sup-
pressed growth of established tumors, demonstrating that AMPK
acts as a tumor suppressor in the skin by promoting DNA repair
and controlling cell proliferation (43).

ACTIVATION OF AMPK BY PHYTOCHEMICALS
It was not until about 5 years ago that AMPK began to be rec-
ognized as a target for various phytochemicals. In this section, we
review the studies that have demonstrated the role of AMPK in the
chemopreventive effects of phytochemicals (Table 1), the majority
of which have been reported in the last few years.

CURCUMIN
Curcumin (diferuloylmethane), a yellow pigment present in the
rhizome of turmeric (Curcuma longa L.), is one of most extensively
investigated phytochemicals in the field of chemoprevention and is
used in early clinical trials as a novel anti-cancer agent. Curcumin
has been shown to suppress tumor progression in various animal
models of cancer (64–67). Recently, AMPK was found to be a new
molecular target of curcumin (Figure 2). Pan et al. (67) showed
that activation of AMPK by curcumin has shown to be respon-
sible for the cytotoxic effects of curcumin ovarian cancer cells.
In another study, stimulation of AMPK by curcumin resulted in
the downregulation of PPAR (peroxisome proliferator-activated
receptor)-g in 3T3-L1 adipocytes and a decrease in COX-2 in
MCF-7 cells (65). Application of a synthetic AMPK activator also
supported the evidence that AMPK acts as an upstream signal of
PPARγ in 3T3-L1 adipocytes. In cancer cells, AMPK was found
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Table 1 | Chemopreventive/chemotherapeutic phytochemicals that activate AMPK.

Phytochemical Effect Reference

CURCUMIN

Curcumin (diferuloylmethane), from

turmeric (Curcuma longa L.)

Activates AMPK to induce cell death in CaOV3 ovarian cancer cells in a p38 MAPK-dependent

manner

(67)

Stimulates AMPK, resulting in downregulation of PPARγ in 3T3-L1 adipocytes and in COX-2 in

MCF-7 breast cancer cells, inhibiting differentiation and growth

(65)

Inhibits mTOR, independent of AMPK (64)

Downregulates COX-2 and pAKT in an AMPK-dependent manner, leading to apoptosis of H29

colon cancer cells

(66)

GRAPE POLYPHENOLS

Resveratrol Induces apoptosis in chemoresistant HT-29 colon cancer cells via modulation of AMPK signaling

pathway

(74)

Activates AMPK and suppresses LPS-induced NF-κB-dependent COX-2 activation in RAW 264.7

macrophage cells

(75)

Promotes autophagy-mediated cell death in chronic myelogenous leukemia cells in an

AMPK-dependent manner

(76)

3,4-DMS, a methylated resveratrol derivative, induced autophagy in endothelial cells through

activation of AMPK and the downstream inhibition of mTOR signaling pathway

(80)

Activates AMPK via SIRT1 in both ER-positive and ER-negative breast cancer cells, leading to

inhibition of 4E-BP1 signaling and mRNA translation via mTOR

(105)

Enhances prostate cancer cell response to ionizing radiation by modulation of AMPK (78)

Inhibits AKT/mTOR signaling via AMPK and potentiates the effects of gefitinib in breast cancer (77)

Enhances anti-tumor effects of temozolomide in glioblastoma via ROS-dependent

AMPK-TSC-mTOR signaling pathway

(79)

FLAVONOIDS

Apigenin Induces AMPK and autophagy, inhibiting mTOR, and further inducing autophagy in both HaCaT

cell line and primary normal human epidermal keratinocytes. This effect was independent of AKT

and LKB1 but dependent on CaMMKβ

(90)

Anthocyanin Activates AMPK, leading to a reduction in mTOR phosphorylation and inhibition of HT-29 colon

cancer cell growth

(106)

Fisetin Activates AMPK to induce apoptosis in multiple myeloma cells (85)

Inhibits PI3K/Akt and mTOR and activates AMPK in non-small cell lung cancer (86)

Induces autophagy-mediated cell death by suppressing mTOR in prostate cancer cells (87)

Quercetin Induces apoptosis via AMPK activation and p53 in HT-29 colon cancer cells (88)

Suppresses cell viability via AMPK-induced Hsp70 and EGFR downregulation (89)

Baicalein Induces apoptosis and AMPK in human tumor cells (107)

Luteolin Induces cell death in HepG2 cells and reduces tumor volume in a tumor xenograft model (91)

Hispidulin Activates AMPK and inhibits downstream mTOR, which induces apoptosis in glioblastoma

multiforme cells by p53 and p21 induction

(108)

Genistein Decreases reactive oxygen species levels and induces antioxidant enzymes manganese

superoxide dismutase and catalase in a AMPK and PTEN-dependent manner in prostate cancer

cells

(82)

Potentiates arsenic trioxide-induced apoptosis in human leukemia cells by activation of AMPK (83)

(Continued)
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Table 1 | Continued

Phytochemical Effect Reference

Deguelin Activates AMPK and inhibits UVB-induced tumorigenesis in the SKh-1 hairless mouse model (92)

Tephrosin (plant rotenoid) Enhances cytotoxicity of anti-cancer agent via ATP depletion and reducing autophagy by

activation of AMPK and inactivation of mTOR expression

(109)

Chrysin Leads to cell growth inhibition and apoptosis in lung cancer cells via activation of AMPK and

inhibition of AKT/mTOR

(94)

Celastrol Suppresses breast cancer MCF-7 cell viability via the AMP-activated protein kinase

(AMPK)-induced p53-polo like kinase 2 (PLK-2) pathway

(93)

GREENTEA POLYPHENOLS

Epigallocatechin gallate (EGCG) EGCG analogs activate AMPK, leading in inhibition of cell proliferation, up-regulation of the

cyclin-dependent kinase inhibitor p21, downregulation of the mTOR pathway, and suppression of

stem cell population in human breast cancer cells

(96)

Enhances 5-fluorouracil-induced cell growth inhibition of hepatocellular carcinoma cells,

associated with AMPK hyperactivation and COX-2 inhibition

(98)

Activates AMPK in the liver and prevents diethylnitrosamine-induced liver tumorigenesis in

obese and diabetic mice

(97)

Induces apoptosis in HT-29 colon cancer cells via the AMPK/COX-2 pathway (95)

Catechin Induces apoptosis in colon cancer cells by attenuation of H2O2-stimulated COX-2 expression via

AMPK

(110)

OTHER CATEGORY

p-HPEA-EDA, phenolic compound of

virgin olive oil

Activates AMPK to suppress COX-2 and inhibit cell survival in HT-29 colon cancer cells (102)

24-Hydroxyursolic acid from

persimmon

Activates AMPK and induces apoptosis in HT-29 colon cancer cells; Also block EGF-induced ERKs

phosphorylation and inhibits AP-1 activity and cell transformation

(101)

Capsaicin Induces apoptosis in HT-29 colon cancer cells, which correlated with AMPK activation in

capsaicin-treated colon cancer cells

(103)

Berberine Inhibits colon cancer migration via AMPK activation-mediated downregulation of integrin b1

signaling

(100)

Berberine-induced AMPK activation inhibits the metastatic potential of tumor cells through a

reduction in the activity of the ERK signaling pathway and COX-2 protein levels

(99)

to act as a regulator of ERK1/2, p38, and COX-2. Thus, acti-
vation of AMPK by curcumin and its downstream targets such
as PPAR-g, MAP kinases, and COX-2 is important in regulat-
ing adipocytes and cancer cells (66). Consistent with this study,
curcumin activated AMPK to induce apoptosis and limit prolifer-
ation of colon cancer cells via the inhibition of AKT and COX-2
(66). Thus, curcumin is a potent stimulator of AMPK leading to
chemoprevention.

RESVERATROL
Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a type of natural
phenol that is present in grapes and a key antioxidant ingredient
in red wine. The consumption of red wine has been correlated
with the reduction of mortality rates from cardiovascular diseases
and certain cancers. Moreover, anti-cancer, anti-inflammatory,
blood sugar-lowering, and other beneficial cardiovascular effects
of resveratrol have been reported in animal models and human

clinical trials (68–71). One of the earliest findings of its anti-
cancer effects was in 1997, in which topical resveratrol applications
prevented skin cancer development in mice treated with a carcino-
gen (72). There have since been many studies demonstrating the
anti-cancer activity of resveratrol in animal models (73). AMPK
is now a recognized target of resveratrol that mediates its anti-
cancer effects (Figure 3). In 2007, Hwang et al. (74) showed that
resveratrol activates AMPK and induces apoptosis of chemoresis-
tant HT-29 colon cancer cells and identified that reactive oxygen
species (ROS) acted as an upstream regulator of AMPK. Resver-
atrol was also found to activate AMPK, leading to the suppres-
sion of NF-κB-dependent COX-2, a pathway implicated in can-
cer development (75). Moreover, resveratrol-induced autophagy-
mediated cell death in imatinib-sensitive and – resistant CML
cells. AMPK knockdown or mTOR overexpression impaired
resveratrol-induced autophagy, suggesting that AMPK activa-
tion and mTOR inhibition is important for autophagy-mediated
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FIGURE 2 | Schematic representation of AMPK-dependent anti-cancer
effects of curcumin. Curcumin activates AMPK and increases cell death of
ovarian cancer cells, in a p38 MAPK-dependent manner. Activation of AMPK
by curcumin also leads to downregulation of PPAR g and COX-2, leading to
decreased differentiation of adipocytes and delayed growth of breast
cancer cells, respectively. Downregulation of COX-2 also leads to apoptosis
of colon cancer cells. In addition, curcumin downregulates mTOR,
independent of AMPK.

FIGURE 3 | Schematic representation of AMPK-dependent anti-cancer
effects of resveratrol. Activation of AMPK by resveratrol leads to apoptosis
of colon cancer cells, enhancement of cancer cell response to ionizing
radiation, and mTOR-dependent and – independent autophagy, leading to
cell death in chronic myelogenous leukemia (CML) cells. Resveratrol also
activates SIRT1, which leads to AMPK activation, leading to downregulation
of mTOR and inhibition of 4E-BP1 and decreased proliferation of estrogen
receptor-positive (ER+) and ER-negative breast cancer cells. Furthermore,
activation of AMPK and subsequent downregulation of mTOR increases
sensitivity of glioblastoma multiforme (GBM) cells to temozolomide.

cancer cell death (76). Resveratrol also increased sensitivity to
standard chemotherapies, thus reducing the required dosage of
potentially toxic substances in prostate cancer, glioblastoma, and
breast cancer cells (77–79). A series of screening resveratrol methy-
lated derivatives was performed, and trans-3,4-dimethoxystilbene
(3,4-DMS) was found to effectively inhibit endothelial cell pro-
liferation, migration, tube formation, and endogenous neovascu-
larization. Moreover, 3,4-DMS induced autophagy in endothelial
cells through AMPK activation and downstream inhibition of the
mTOR signaling pathway (80). As outlined in this section, evi-
dence for the chemopreventive potential of resveratrol is growing,

FIGURE 4 | Schematic representation of AMPK-dependent anti-cancer
effects of flavonoids and related compounds. This figure shows the
major flavonoids and their AMPK-dependent effects on inhibition of cancer
growth. Apigenin and anthocyanin activates AMPK, which inhibits mTOR
signaling, leading to apoptosis of GBM, multiple myeloma (MM), and
non-small cell lung cancer (NSCLC) cells. Activation of AMPK by fisetin and
hispidulin also inhibits mTOR, resulting in autophagy-dependent cancer cell
death and decreased growth of colon cancer cells, respectively. Quercetin
inhibits survival of colon cancer cells by downregulation of epidermal
growth factor receptor (EGFR) signaling and heat shock protein (hsp)70
expression. Activation of AMPK deguelin leads to UVB-induced
tumorigenesis in a non-melanoma skin cancer mouse model. See text for
effects of other flavonoids and related compounds.

as the various molecular mechanisms of its action via AMPK is
being elucidated.

FLAVONOIDS AND RELATED COMPOUNDS
Flavonoids can be found in many different sources, including
soy, berries, tea, wine, beer, chocolate, many vegetables, and
most fruits. While there are several 1000 types, they can be cat-
egorized as flavones (quercetin, fisetin, luteolin), isoflavonoids
(genistein, deguelin), and neoflavonoids (81). Epidemiological
evidence reveals a lower incidence of prostate cancer in Asian
countries, where soy products are more frequently consumed
than in Western countries. The chemopreventive effects of a soy
isoflavonoid genistein can be attributed to its ability to activate
AMPK (Figure 4) and PTEN, leading to the induction of the
antioxidant enzymes manganese superoxide dismutase and cata-
lase (82). In another study, genistein was demonstrated to poten-
tiate arsenic trioxide-induced apoptosis in human leukemia cells
by activation of AMPK (83). Moreover, anthocyanin – belonging
to the family of flavones that occurs in all tissues of higher plants,
including leaves, stems, roots, flowers, and fruits – is shown to
be a powerful activator of AMPK. Lee and Park (84) demon-
strated that anthocyanin activates AMPK, leading to a reduc-
tion in mTOR phosphorylation and ultimately inhibiting can-
cer cell growth. Fisetin, a flavonoid, activates AMPK to induce
apoptosis in multiple myeloma cells (85), inhibits PI3K/AKT
and mTOR and activates AMPK in non-small cell lung cancer
(86), and induces autophagy-mediated cell death by activating
AMPK and suppressing mTOR in prostate cancer cells (87).
Quercetin induces apoptosis via AMPK activation and p53 in
HT-29 colon cancer cells (88) and suppresses cell viability via
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AMPK-induced Hsp70 and EGFR downregulation (89). Apigenin
induces AMPK, inhibiting mTOR and further inducing autophagy
in both HaCaT cell line and primary normal human epidermal
keratinocytes. This effect was independent of AKT and LKB1 but
dependent on CaMMKβ (90). Luteolin showed its anti-tumor
effects in an in vivo tumor model, in which its activation of
AMPK reduced tumor volume in a tumor xenograft model (91).
Deguelin, a plant-derived rotenoid with cancer chemopreven-
tive activity, was shown to inhibit UVB-induced skin carcino-
genesis with the SKh-1 hairless mouse model. Topically applied
deguelin significantly inhibited the multiplicity of UVB-induced
skin tumors by activating AMPK (92). Celastrol, another antiox-
idant flavonoid, suppressed the viability of breast cancer MCF-7
cells in an AMPK-dependent fashion. Celastrol also induced an
increase in ROS levels, leading to AMPK phosphorylation and
increased the pro-apoptotic p53 in an AMPK-dependent manner
(93). Chrysin, a naturally occurring flavone chemically extracted
from the passion flowers Passiflora caerulea and Passiflora incar-
nata, leads to growth inhibition and apoptosis of lung cancer
cells via AMPK activation and inhibition of AKT/mTOR (94).
Thus, flavonoids and related compounds act as direct activators of
AMPK and demonstrate their promising potential to be used as
chemotherapeutic agents.

EPIGALLOCATECHIN GALLATE
Epigallocatechin-3-gallate, EGCG, a green tea-derived polyphe-
nol, has been shown to suppress cancer cell proliferation and
interfere with the several signaling pathways and induce apop-
tosis. EGCG treatment of HT-29 colon cancer cells resulted in a
strong activation of AMPK and an inhibition of COX-2 expres-
sion (Figure 5). Treatment with an AMPK inhibitor completely
abolished the inhibition of COX-2 by EGCG. Also, AMPK acti-
vation was accompanied by a reduction of VEGF and glucose
transporter, Glut-1 in EGCG-treated cancer cells. These find-
ings support the regulatory role of AMPK in COX-2 expression
in EGCG-treated cancer cells (95). Moreover, analogs of EGCG

FIGURE 5 | Schematic representation of AMPK-dependent anti-cancer
effects of EGCG. Epigallocatechin-3-gallate, EGCG, stimulates AMPK,
leading to suppression of breast cancer cell growth by inhibition of mTOR
and activation of p21. Inhibition of COX-2 by EGCG-induced AMPK
activation leads to apoptosis in colon cancer cells.

have been synthesized and found to be more potent AMPK
activators than metformin and EGCG. Activation of AMPK by
these EGCG analogs resulted in the inhibition of cell prolifera-
tion, up-regulation of the cyclin-dependent kinase inhibitor p21,
downregulation of the mTOR pathway, and suppression of stem
cell population in human breast cancer cells. This study suggests
that specific and more potent AMPK activators can be derived
from natural and synthetic sources and be used for chemotherapy
(96). In a model of diethylnitrosamine-induced liver tumorige-
nesis in obese and diabetic mice, EGCG improved liver steatosis
and activated AMPK in the liver, suggesting that EGCG may pre-
vent obesity-related liver tumorigenesis (97). EGCG, therefore,
may be useful in the chemoprevention of liver tumorigenesis in
obese individuals by the activation of AMPK, consistent with the
reported effects of metformin. EGCG is known to play a critical
role in growth inhibition and apoptosis in hepatocellular carci-
noma cell lines. Furthermore, EGCG was shown to enhance the
anti-tumor activity of 5-fluorouracil (5-FU), one of the most com-
monly used chemotherapeutic drugs, suggesting that EGCG may
be used as an adjunct therapy for the treatment of advanced-stage
liver cancer (98).

PHYTOCHEMICALS BELONGING TO OTHER CATEGORY
Berberine, a traditional plant alkaloid used in Ayurvedic and Chi-
nese medicine for its antimicrobial and antiprotozoal properties,
strongly increased AMPK phosphorylation via ROS production,
leading to inhibition of tumor cell adhesion, tumor invasion, and
the expression of epithelial to mesenchymal transition (EMT)-
related genes. Furthermore, berberine inhibited the metastatic
potential of melanoma cells through a decrease in ERK activity
and protein levels of cyclooxygenase-2 (COX-2) by a berberine-
induced AMPK activation (99). In another study, berberine was
shown to inhibit migration of colon cancer cells in an AMPK-
dependent manner (100). Furthermore, 24-hydroxyursolic acid
from persimmon, capsaicin, and p-HPEA-EDA, a phenolic com-
pound of virgin olive oil, activate AMPK and inhibit cell survival
in HT-29 colon cancer cells (100–103).

CONCLUSION AND FUTURE CONSIDERATIONS
In summary, the use of phytochemicals derived from dietary
agents holds promise in the prevention and treatment of can-
cer, and AMPK is one of the major pathways activated by many
phytochemicals. Not only do phytochemicals activate AMPK to
increase cancer cell apoptosis and inhibit cell proliferation, but
they have also been shown to be effective in reducing the toxicity
associated with standard chemotherapy by increasing the sensitiv-
ity of cancer cells to drugs. While the majority of the studies on
AMPK that we reported in this review demonstrate that it is an
antineoplastic agent, some evidence suggests the role of AMPK in
promoting cancer. This warrants further investigation. As AMPK
exists as different heterotrimeric compound consisting of various
isoforms, it is conceivable that different contexts of stimulation
may lead to disparate consequences. There are other phytochemi-
cals that have been reported to activate AMPK, such as Honokiol
(104), that have been shown to have consequences other than can-
cer prevention. Thus, it seems that AMPK can be used not only as
a chemotherapeutic agent but also to protect from injury, diabetes,
or inflammatory diseases.
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