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Since the discovery of Promyelocytic 
 leukemia (PML), this protein has been 
associated with the pathogenesis of sev-
eral hematopoietic malignancies and solid 
tumors. PML was first identified as part 
of a fusion oncoprotein, PML-RARα, 
responsible for the development of acute 
promyelocytic leukemia (APL) (1–4). 
The PML-RARα fusion protein not only 
alters PML function but also represses 
transcriptional activity mediated by RAR-
RXR, thereby disrupting retinoid signal-
ing, inhibiting myeloid differentiation and 
enhancing the survival and proliferation of 
early myeloid progenitors (5). Loss of PML 
in cancers from multiple origins under-
lines its tumor-suppressive role beyond 
leukemia (6).

Since PML seemed to be a key regula-
tor underlying leukemia and other cancers, 
these initial findings motivated a series of 
studies aimed at ascertaining its regulatory 
cues and functions. It is now well established 
that PML is the building block of the PML-
nuclear bodies (PML-NBs). PML functions 
as a protein scaffold and interaction partner 
for a growing number of factors that shuttle 
in and out of these structures in a highly 
regulated process (7–9).

Expanding CEllular FunCtions  
oF pMl
Promyelocytic leukemia protein or PML 
exerts its anti-cancer role by modulating 
a number of pathways relevant to cancer 
biology. PML-NBs increase in number and 
size in response to DNA damage (10). The 
nuclear bodies co-localize with sites of sin-
gle-stranded DNA recruitment and DNA 
repair. In turn, a number of DNA repair 
(e.g., MRE11, ATR, BLM, RAD) proteins 
dynamically localize to PML-NBs (11, 12). 
Furthermore, PML is an important regula-
tor of both p53-dependent and p53-inde-
pendent apoptotic pathways (13–15), 
accomplished by the activation of p53 or 

Fas, by the  phosphorylation and  activation 
of the checkpoint kinase CHK2 (16), 
or regulating mitochondrial-associated 
membrane (MAM) function (15). One of 
the PML anti-cancer and anti-proliferative 
functions is mediated by activation of the 
tumor suppressor p21, via transcriptional 
regulation by p53. Yang et al. demonstrated 
that big MAP kinase 1 (BMK1) interacts 
with PML suppressing p21 activation (17). 
BMK1 associates with PML and disrupts 
the interaction between PML and MDM2 
(the major E3 ubiquitin ligase for p53), 
which leads to p53 stabilization. This effect 
induces an increase in tumor cell apopto-
sis in vitro and tumor regression in vivo 
(18). Additionally, PML suppresses neo- 
angiogenesis through the negative regula-
tion of mTORC1 complex (19, 20).

Beyond the nucleus and the nuclear bod-
ies, and perhaps the least studied aspect 
of PML, is the cytosolic localization and 
function of PML. Surprisingly, cytoplas-
mic PML mutants, with aberrant nuclear 
localization signal, function as a dominant 
negative, oncogenic forms of the tumor 
suppressor (21, 22). The Salomoni group 
(23, 24) reported that mutations in PML 
that re-localize the protein to the cytoplasm 
induced the recruitment and mis-locali-
zation of PML wildtype nuclear forms to 
this compartment, therefore reducing the 
number of PML-NBs. Cytoplasmic PML 
mutants inhibited p53 transcriptional, 
growth suppressive, and apoptotic func-
tions (25). These data suggest that cytoplas-
mic expression of PML affects cell survival 
through inhibition of nuclear PML.

In recent years, a growing body of work 
has revealed that PML may provide a selec-
tive advantage for tumor cells in certain set-
tings (Figure 1), thus presenting PML as a 
therapeutic target. Is it possible that PML, 
in specific contexts (e.g., origin of tumor 
cell, microenvironments, or metabolic 
states) can provide a selective pro-survival 

benefit? In contrast to its usual perception 
as a classical tumor suppressor, below we 
will review the latest reports unveiling a 
potentially more sinister role for PML in 
cancer. To fully appreciate this novel role, it 
is important to first mention how the PML 
gene and protein are regulated.

thE CoMplEx rEgulation oF pMl
Promyelocytic leukemia is subject to exten-
sive regulation at the transcriptional, post-
transcriptional, and post-translational level. 
At the transcriptional level PML is induced by 
type I and II interferons (IFN), which cause 
an increase in both the size and number of 
PML-NBs (26). This is mediated through 
binding of IFN-stimulated transcription 
factors, known as signal transducers and 
activators of transcription (STATs) (27) and 
IFN-regulatory factors, such as IRF3 (28) and 
IRF8 (29), important mediators of myeloid 
cell differentiation. PML can also be tran-
scriptionally and post-transcriptionally up-
regulated by oncogenic Ras (30–34). At the 
post-transcriptional level, the PML gene can 
undergo alternative splicing which results in 
the production of >10 processed mRNAs and 
many resultant PML protein isoforms (35, 
36). The different post-translational modi-
fications have been recently comprehensively 
reviewed (37), and include phosphorylation, 
SUMOylation, and ubiquitylation. A more 
recent example is PML acetylation, which 
may play a role in apoptotic pathways (38). 
These modifications regulate the ability of 
PML to interact with various partners and 
confer stress- and signal-dependent regula-
tion of PML or its binding proteins (37).

rolE oF pMl BEyond tuMor 
supprEssion
An important study by the Pandolfi group 
(6) examined PML expression in a wide array 
of human cancers and revealed a surprising 
discovery: while PML  protein expression 
was reduced or absent in  numerous cancers 
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From these studies, it seems clear that 
PML has two faces. PML can act as a classi-
cal tumor suppressor in many cancers, but in 
some cases can facilitate cancer cell survival. 
While studying PML expression in breast 
cancer biopsies, Carracedo et al. found that 
although PML protein expression was fre-
quently low or undetectable in the majority 
of samples, a subset of breast cancer biopsies 
exhibited PML levels in tumor cells that were 
significantly higher than those observed in 
the normal epithelium (40). There was a sig-
nificant correlation between PML protein 
and mRNA expression only in tumor (not 
stroma) cells. More importantly, high PML 
mRNA and protein expression was signifi-
cantly associated with triple-negative breast 
cancer tumor subtype, high tumor grade, 
early tumor recurrence, and poor prognosis. 
This study further demonstrated that PML 
provides a selective advantage in response 
to metabolic stress triggered by conditions 
of loss of attachment in breast cancer cells. 
This was through regulation by PML of the 
same PPAR-FAO pathway, which stemmed 
from the PML-induced deacetylation and 
activation of the transcriptional cofactor 
PGC1A. PML expression in breast tumors 
was associated with a signature of activated 
PPAR signaling that controls FAO. This reg-
ulation is relevant to sustain ATP levels and 
potentially reduced NADP (42), when breast 
epithelial cells lose contact with the extracel-
lular matrix. On the basis of these findings it 
is tempting to speculate that targeting both 
PML and FAO in triple-negative breast can-
cer tumors with combinations of ATO and 
other targeted therapies may present a novel 
approach to treating this tumor subtype.

Taken together, it makes sense that tumor 
cells would not select for the genomic loss 
of PML, as is seen with some classical tumor 
suppressor genes, since it would be irre-
versible and would prevent cells from uti-
lizing the PML-mediated pro-survival or 
 pro-self renewal pathways when challenged. 
Instead, transcriptional or post-translational 
 regulation of PML expression and localiza-
tion allows cancer cells to tune PML expres-
sion on the basis of the cellular context.

two-FaCEd tuMor rEgulators: a 
sElECtivE CluB
Promyelocytic leukemia is not the only 
protein that has been described to have 
a dual role as a tumor suppressor and a 
pro- survival protein. TGFβ also exhibits 

patients. The future development of addi-
tional, more selective PML-targeting drugs 
that promote its proteasomal degradation 
may be extremely helpful in the treatment 
of CML. These drugs may also find applica-
tions in other solid tumors where high levels 
of PML play a pathogenic role, as we will next 
discuss.

After this initial finding that PML may 
have a pro-survival role in CML, Ito et al. 
demonstrated that PML exerts its essen-
tial role in HSC maintenance through the 
regulation of fatty acid oxidation (FAO) 
(40, 41). HSCs remain in a quiescent state 
until environmental insults prompt them 
to enter the cell cycle, thus dividing and 
giving rise to multi-potent progenitors. 
Interestingly, FAO is essential to main-
tain this balance, under control of the 
peroxisome-proliferator activated receptor 
delta (PPARD). Moreover, PML exerts this 
essential role in HSC  maintenance by acting 
upstream of PPAR signaling and FAO (41). 
Mechanistically, the PML-FAO-PPARD 
pathway controls HSC asymmetric divi-
sion. Loss of PML or PPARD, as well as 
mitochondrial FAO inhibition, resulted in 
symmetric commitment of HSC daughter 
cells, and concomitant failure to produce 
progenitor cells. Conversely, the pharmaco-
logical activation of PPAR increased asym-
metric division and ensured the long-term 
self-renewal potential of HSCs.

(prostate, colon, breast, lung, lymphomas, 
CNS, germ cell tumors), PML mRNA was 
expressed in all tumors, rarely mutated and 
was not subject to loss of heterozygosity. 
Therefore, it was concluded that despite 
the presence of a functional gene, the PML 
protein is post-translationally degraded 
through proteasome-dependent mecha-
nisms and its loss was generally associated 
with both tumor grade and progression.

In further studies on the role of PML, Ito 
et al. described that PML was highly expressed 
in cells from chronic myeloid leukemia (CML) 
patients, and in contrary to what had been 
described in solid tumors, loss of PML was 
predictive of favorable outcomes. Thus, PML 
expression was selected for and not against 
in CML (39). This unexpected finding was 
explained by a novel role of the PML protein 
in CML. PML was shown to be indispensable 
for quiescent leukemia-initiating cell (LIC) 
function; loss of PML resulted in both LIC 
and hematopoietic stem cell (HSC) depletion. 
It was also confirmed that treatment with 
As2

O
3
 (arsenic trioxide or ATO), a drug that 

down-regulates PML through proteasomal-
dependent degradation and that is currently 
used for the treatment of APL, was able to 
mimic the genetic loss of PML in mice (39). 
This finding pointed to a promising thera-
peutic application for this drug, specifically 
that destabilization of PML could eradicate 
LICs and provide a strong benefit for CML 

Figure 1 | Summary of main tumor-suppressive and pro-survival functions of PML. A representative 
micrograph of PML immunofluorescence is shown in red, DAPI in blue.
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cured under ATO treatment combined with 
retinoic acid. ATO

 
targets PML through 

oxidation-triggered disulfide bond for-
mation and direct binding. This results in 
PML and PML-RARα SUMOylation, and 
its subsequent ubiquitylation and protea-
some-mediated degradation (56, 57). As 
we have mentioned, in CML, a related but 
distinct cancer type, the PML protein is 
indispensable for quiescent LIC mainte-
nance (39) through the regulation of FAO 
by PPAR signaling (41). Moreover, this is 
not the only case where PML plays a role as 
a pro-survival protein rather than a tumor 
suppressor. PML is highly expressed in a 
subset of breast cancers with worse prog-
nosis and shorter time to recurrence (40). 
Therefore, the use of PML-targeting drugs 
that activate proteasomal degradation could 
be of remarkable interest in the treatment 
of CML and breast cancer. On the other 
hand, enhancing levels or activity of RNF4, 
an E3 ubiquitin ligase which is essential for 
ATO-induced PML degradation (56, 58), 
could also enhance the down-regulation 
of PML. With our new knowledge into the 
underlying mechanism of PML function, 
the pharmacological targeting of FAO, or 
the use of PPAR inhibitors in combination 
with low doses of ATO might exert a syner-
gistic effect on triple-negative breast cancer 
tumors and possibly other solid tumors or 
leukemias.

In conclusion, PML has been revealed 
as friend and foe in cancer. More detailed 
studies are warranted in order to catego-
rize diverse tumor types for these opposing 
activities of PML, and ultimately to explore 
the therapeutic potential of PML-targeting 
compounds, alone or in combination with 
drugs that target PML-linked pathways.
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a well-documented dual activity in cancer. 
The TGFβ signaling pathway negatively 
regulates cell growth, death, and immortali-
zation (43). Thus, mutations or deletions 
in the TGFβ gene can lead to the onset of 
several tumors. TGFβ signaling also plays 
an important role as a positive regulator to 
modulate processes such as cell invasion, 
immune regulation, and microenviron-
ment remodeling that can promote cancer 
progression, invasion, and tumor metastasis 
(43–45).

Notch is another example of dual activity 
in cancer regulation. It is well described that 
Notch activates signaling pathways that regu-
late cell division, growth, migration, differ-
entiation, or death (46, 47). Similar to TGFβ, 
Notch activity is required for the physiologi-
cal development of organisms and for the 
maintenance of adult tissues. However, it has 
been demonstrated that the deregulation of 
Notch signaling pathway or its pathological 
activation can induce certain types of tumors 
such as leukemia, breast, colon, skin, lung, or 
renal carcinomas (48–50).

Other examples of genes with dual activ-
ity in tumor biology are Toll-like recep-
tors (TLRs) (51, 52), CD44 (53), sirtuins 
(54), or E-cadherin (55). In general, the 
activation of these proteins can promote 
pro-tumorigenic signaling and trigger the 
metastatic cascade, inducing proliferation, 
invasion, or apoptosis resistance. However, 
in different scenarios or signaling through 
specific networks, these proteins can have 
opposite effects on tumors, favoring tumor-
suppressive responses.

From these and other examples, it seems 
clear that critical genes and their down-
stream pathways can also be involved in 
the transformation of normal healthy cells 
into cancerous, potentially malignant forms 
in multiple ways depending on the cell sub-
population, and the microenvironmental 
milieu. This idea is under intensive research 
and may play a decisive role in the search 
for novel therapeutic treatments aimed at 
specific cancer types and subtypes, a key 
concept in personalized medicine.

FuturE thErapy: CoMBinatorial 
approaChEs
These insights into the dual role of PML 
in tumorigenesis could lead to new thera-
peutic interventions. Twenty-five years of 
basic and clinical research have allowed 
most patients with APL to be definitively 
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