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The prevalence of obesity, an established risk and progression factor for many cancers,
has increased dramatically in many countries over the past three decades. Worldwide,
an estimated 600 million adults are currently obese. Thus, a better understanding of the
mechanistic links between obesity and cancer is urgently needed to identify intervention
targets and strategies to offset the procancer effects of obesity. This review synthesizes
the evidence on key biological mechanisms underlying the obesity-cancer association, with
particular emphasis on obesity-associated enhancements in growth factor signaling, inflam-
mation, and perturbations in the tumor microenvironment.These interrelated pathways and
processes that are aberrantly regulated in obese individuals represent mechanism-based
targets for disrupting the obesity-cancer link using phytochemicals.
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INTRODUCTION
An estimated 600 million adults throughout the world are obese,
and the majority of these obese individuals meet the criteria
for the metabolic syndrome, a state of metabolic dysregulation
characterized by increased waist circumference, elevated fast-
ing glucose levels, hypertension, and hypertriglyceridemia (1, 2).
Increased circulating levels of insulin, bioavailable insulin-like
growth factor (IGF)-1, leptin, inflammatory factors, and vascular
integrity-related factors such as vascular endothelial growth factor
(VEGF) and plasminogen activator inhibitor (PAI)-1, are typically
observed in obese individuals (3–6). Through these, and likely
other, mediators and their interacting pathways and processes,
obesity increases the risk and/or worsens the outcome of several
chronic diseases (3, 5) including cardiovascular disease, type II
diabetes, and the focus of this review, cancer.

Obesity prevention or reversal is a major part of several
evidence-based cancer prevention guidelines (7). Approximately
25% of cancer deaths in the US and United Kingdom are attributed
to being overweight and obese (8), with the strongest evidence
for endometrial, postmenopausal breast, colon, renal cell carci-
noma, liver, gallbladder, esophageal adenocarcinoma, and pancre-
atic cancer, and mounting evidence for cervical, ovarian, prostate
(prognosis, but not overall risk), and stomach cancer (7). This
review focuses on possible mechanisms underlying the associ-
ations between obesity and cancer, with emphasis on obesity-
associated enhancements in growth factor signaling, inflammatory
processes, vascular perturbations, and microenvironmental dis-
ruptions, all linked with increased cancer susceptibility and poor
prognosis. We will also discuss the potential for using phytochem-
icals known to modulate one or more of these energy balance-
responsive pathways to contribute toward prevention or control
of obesity-related cancers.

GROWTH SIGNAL DYSREGULATION
INSULIN AND IGF-1, AND THEIR DOWNSTREAM SIGNALS
Hyperinsulinemia and/or hyperglycemia are hallmarks of the
obese state and are associated with insulin resistance, aberrant
glucose metabolism, chronic inflammation, and the production of
other metabolic hormones such as IGF-1, leptin, and adiponectin
(9). Insulin is a peptide hormone produced by the beta cells of
the pancreas and released in response to increased blood glu-
cose. IGF-1 is a peptide growth factor that shares ∼50% sequence
homology with insulin and is produced primarily by the liver
following stimulation by growth hormone, although hyperinsu-
linemia and hyperglycemia can lead to increased hepatic IGF-1
production independent of growth hormone signaling. Circulat-
ing IGF-1 is typically bound to IGF binding proteins (IGFBPs)
that regulate IGF-1 bioavailability and modulate growth and sur-
vival signals either directly or by repressing the IGF-1R (10). With
obesity, the amount of bioavailable IGF-1 increases, possibly via
hyperglycemia-induced suppression of IGFBP synthesis and/or
hyperinsulinemia-induced promotion of hepatic growth hormone
receptor expression and IGF-1 synthesis (10, 11). Elevated circulat-
ing IGF-1 is an established risk factor for many obesity-associated
cancer types (11).

In contrast, the enhanced insulin sensitivity and normalized
glucose levels in response to a calorie restriction (CR) regimen, rel-
ative to a control or diet-induced obesity (DIO) regimen, results
in lowered serum insulin and IGF-1, and increased IGFBP pro-
duction, particularly IGFBP1 and 3 (and hence low levels of
bioavailable IGF-1) (11). The CR-induced reduction in glucose
may also have direct anticancer effects. In cancer cells, mito-
chondrial metabolism of glucose is reprogrammed to meet the
demands of macromolecular synthesis required for cellular pro-
liferation. This metabolic switch of glucose metabolism from
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oxidative phosphorylation to oxidative glycolysis (called the War-
burg effect) is now understood to be necessary to supply sufficient
nucleotides, lipids, and proteins for daughter cell production (10).
Cancer cells do this, however, at the expense of substrate inflex-
ibility relative to normal cells, as the increased proliferation rate
associated with most cancer cells can only be sustained by a con-
stant supply of the necessary building blocks derived from the flux
of glucose carbons through glycolysis. Thus, it is possible that pre-
cancerous or cancer cells undergoing this metabolic reprogram,
and hence developing a glucose addiction, may have heightened
sensitivity to alterations in glucose levels, as occurs with obesity
and CR.

The phospatidylinositol-3-kinase (PI3K)/Akt pathway, down-
stream of the insulin receptor and IGF-1R, comprises a signaling
network that regulates and integrates cellular growth, survival,
and metabolism. Cantley and colleagues (12) established that this
signaling cascade is one of the most commonly altered pathways
in human epithelial tumors. Engagement of the PI3K/Akt path-
way results in production of both intracellular and extracellular
cues concerning substrate availability, growth factor supply, and
levels of other factors that impact cell survival, growth, prolifer-
ation, and metabolism. Activation of receptor tyrosine kinases,
such as the insulin receptor or IGF-1R, stimulates PI3K to pro-
duce lipid messengers that facilitate activation of the Akt cascade.
Akt regulates the mammalian target of rapamycin (mTOR) (13),
thus regulating cell growth, proliferation, and survival through
downstream mediators. mTOR activation is inhibited by increased
AMP-activated kinase (AMPK) under low nutrient conditions (14,
15). Increased activation of mTOR is common in tumors and
many normal tissues from obese and/or diabetic mice, and specific
mTOR inhibitors block the tumor-enhancing effects of obesity in
mouse models (15–17).

LEPTIN, ADIPONECTIN, AND THEIR RATIO
Leptin, a peptide hormone produced predominantly by
adipocytes, functions as an energy sensor to signal to the hypothal-
amus to reduce appetite. Insulin, glucocorticoids, tumor necrosis
factor-alpha (TNF-α), and estrogens all stimulate leptin release
(18). In the obese state, adipose tissue overproduces leptin, and
the brain eventually becomes resistant to this satiety signal. In
addition to its role in regulating appetite, leptin has direct pro-
tumorigenic effects on peripheral tissues, as well as a role in
modulating immune function, cytokine production, angiogene-
sis, carcinogenesis, and other biological processes (18). The leptin
receptor has similar homology to class I cytokines that signal
through the janus kinase and signal transducer activator of tran-
scription (JAK/STAT) pathway that is often dysregulated in cancer
(19).

Although adiponectin is a hormone mainly secreted from vis-
ceral adipose tissue, its serum levels, in contrast with serum
leptin, negatively correlate with adiposity. Adiponectin functions
to counter the metabolic program associated with obesity and
hyperleptinemia by modulating glucose metabolism, increasing
fatty acid oxidation and insulin sensitivity, and decreasing pro-
duction of inflammatory cytokines (20). The possible mecha-
nisms through which adiponectin exerts anticancer effects may
include increasing insulin sensitivity, and decreasing insulin/IGF-1

and mTOR signaling via activation of AMPK. Adiponectin also
reduces pro-inflammatory cytokine expression via inhibition of
the nuclear factor kappa-light-chain-enhancer of activated B-cells
(NF-κB) (20–22).

In vitro, animal and epidemiologic evidence linking leptin (21,
23–26) or adiponectin (21, 27–31) individually to cancer risk is
mixed. Associations between the adiponectin-to-leptin ratio and
the metabolic syndrome and several cancers (32–34) have also
been reported, but there is insufficient data thus far to assess the
strength of this relationship.

CHRONIC INFLAMMATION
CYTOKINES AND CROSSTALK BETWEEN EPITHELIAL CELLS,
ADIPOCYTES, AND MACROPHAGES
Obesity and metabolic syndrome are associated with a low-grade,
chronic state of inflammation characterized by increased circulat-
ing free fatty acids and chemoattraction of immune cells (such as
macrophages that also produce inflammatory mediators) into the
local milieu of expanded adipose tissue (35–37). These effects are
further amplified by the release of inflammatory cytokines such
as interleukin (IL)-1β, IL-6, TNF-α, and monocyte chemoattrac-
tant protein (MCP)-1. Hypertrophic adipocytes can enlarge past
the point of effective oxygen diffusion, which results in hypoxia
and eventually necrosis leading to further infiltration of scaveng-
ing macrophages and formation of crown-like structures. Free
fatty acids escape the engorged/necrotic adipocytes and deposit
in other tissues, which in turn promotes insulin resistance and
diabetes (through downregulation of insulin receptors and glu-
cose transporters), hypertension, and fatty liver disease and also
activates signaling molecules involved in epithelial carcinogenesis,
such as NF-κB (35–37).

NF-κB is a transcription factor that is activated in response
to bacterial and viral stimuli, growth factors, and inflammatory
molecules (e.g., TNF-α, IL-6, and IL-1β), and is responsible for
inducing gene expression associated with cell proliferation, apop-
tosis, inflammation, metastasis, and angiogenesis (35–37). Activa-
tion of NF-κB is a common characteristic of many tumors and is
associated with insulin resistance and elevated circulating levels of
leptin, insulin, and/or IGF-1 (37–40).

INFLAMMATION AND CANCER
The link between chronic inflammation and cancer development
was first reported more than 100 years ago by Rudolph Virchow,
who observed an abundance of leukocytes in neoplastic tissue (41).
Now, several tissue-specific inflammatory lesions are established
neoplastic precursors for invasive cancer, including gastritis for
gastric cancer, inflammatory bowel disease for colon cancer, and
pancreatitis for pancreatic cancer (42, 43).

Tumor microenvironments are composed of multiple cell types
including epithelial cells, fibroblasts, mast cells, and cells of the
innate and adaptive immune system (43, 44). As discussed previ-
ously, macrophages, which are classically activated in the obese
state, infiltrate tumors and amplify the inflammatory tumor
microenvironment through production of pro-inflammatory
cytokines,prostaglandins,and angiogenic factors (37, 44). Another
important cancer-related inflammatory mediator is cyclooxyge-
nase (COX)-2, an enzyme that is upregulated in most tumors and
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catalyzes the synthesis of the potent inflammatory lipid metabo-
lite, prostaglandin E2. COX-2 overexpression is an indicator of
poor prognosis in multiple cancer types (45).

VASCULAR INTEGRITY-RELATED FACTORS
PLASMINOGEN ACTIVATOR INHIBITOR-1
Plasminogen activator inhibitor-1 is a serine protease inhibitor
produced by endothelial cells, stromal cells, and adipocytes in vis-
ceral white adipose tissue (46). Increased circulating PAI-1 levels,
frequently found in obese subjects, are associated with increased
risk of atherogenesis and cardiovascular disease, diabetes, and sev-
eral cancers (4, 46). PAI-1, through its inhibition of urokinase-type
and tissue-type plasminogen activators, regulates fibrinolysis and
integrity of the extracellular matrix (ECM). Furthermore, PAI-1
can modulate cell adhesion through decreasing cell binding to the
ECM protein, vitronectin, thus promoting tumor cell detachment
from the ECM (46). PAI-1 is also involved in angiogenesis and thus
may contribute to obesity-driven tumor cell growth, invasion, and
metastasis (4).

VASCULAR ENDOTHELIAL GROWTH FACTOR
Vascular endothelial growth factor, a heparin-binding glycoprotein
produced by adipocytes and tumor cells, has angiogenic, mito-
genic, and vascular permeability-enhancing activities specific for
endothelial cells (47). Circulating levels of VEGF are increased in
obese, relative to lean humans and animals, and increased tumoral
expression of VEGF is associated with poor prognosis in several
obesity-related cancers (48). The need for nutrients and oxygen
triggers tumor cells to produce VEGF, which leads to the forma-
tion of new blood vessels to nourish the rapidly growing tumor
and facilitate the metastatic spread of tumor cells (49).

Adipocytes communicate with endothelial cells by producing
a variety of proangiogenic and vascular permeability-enhancing
factors. These include VEGF, IGF-1, PAI-1, leptin, hepatocyte
growth factor, and fibroblast growth factor-2 (49). In the obese,
non-tumor setting, these factors stimulate neovascularization in
support of the expanding fat mass. These adipose-derived fac-
tors may also contribute to obesity-associated enhancement of
tumor angiogenesis. However, the relative contributions of tumor-
derived, versus adipocyte-derived, proangiogenic factors in tumor
development, progression, and metastasis remain unclear.

PHYTOCHEMICAL MODULATION OF OBESITY-CANCER LINKS
Since the biological effects of a broad spectrum of phytochemi-
cals have been reviewed in other articles in this special issue, we
will focus here on some specific examples of phytochemicals that
target the key pathways underlying obesity-cancer associations.

RESVERATROL
Resveratrol, chemically known as 3,5,4′-trihydroxystilbene, is a
naturally occurring polyphenolic compound present in grapes,
berries, peanuts, and red wine. It is believed to be responsible
for the so called “French paradox,” in which the consumption
of red wine has been shown to reduce the mortality rates from
cardiovascular disease and certain cancers. Resveratrol is an estab-
lished anti-inflammatory agent that inhibits initiation and growth
of numerous cancer types including breast, prostate, colon, and

liver (50). Recent clinical studies demonstrate resveratrol improves
glycemic control in diabetic patients (51) and reduces inflam-
matory signaling through TNF-α, IL-6, C-reactive protein, and
NFκB pathways (52). Furthermore, at physiologic concentrations
resveratrol (possibly by activating the sirtuin pathway) coun-
teracts activation of tumoral COX-2 and NFκB (53). Recently
published reports suggest that resveratrol mimics some of the
effects of CR on lifespan in worms and other model organ-
isms, apparently by inhibiting inflammation and the Akt/mTOR
pathway (54, 55).

URSOLIC ACID
Ursolic acid is a triterpenoid found in fairly high levels in rose-
mary and in smaller amounts in apples and other fruits and
vegetables. Ursolic acid has been shown to inhibit carcinogen
and tumor promoter-induced inflammation, hyperplasia, and
tumor formation in multiple models (56–59). Ursolic acid is
a very potent anti-inflammatory and insulin sensitizing agent
with reported activities against the effects of obesity, such as
the ability to counteract NF-κB, COX-2, and Akt activity (53,
59). Furthermore, we reported that a diet containing 0.1% (w/w)
ursolic acid suppressed MMTV-Wnt-1 murine mammary tumor
growth, decreased insulin and IGF-1, and decreased activation of
the mTOR pathway (59). Thus, like resveratrol, ursolic acid is
thought to mimic some of the effects of CR. Ursolic acid was
also shown to inhibit tumor-associated capillary formation in
mice through inhibition of VEGF and other inflammatory growth
factors (60).

CURCUMIN
Curcumin, also known as diferuloylmethane, is an anti-
inflammatory agent that gives yellow color to turmeric used
in curry powder. Curcumin has been shown to have chemo-
preventative properties across several cancer types (61). These

FIGURE 1 | Obesity and cancer: mechanistic targets for phytochemical
interventions. An arrow preceding text denotes a directional effect (e.g.,
activity or concentration). Abbreviations: IGF-1, insulin-like growth factor-1;
ApN, adiponectin; PAI-1, plasminogen activator inhibitor-1; tPA, tissue-type
plasminogen activator; uPA, urokinase-type plasminogen activator; VEGF,
vascular endothelial growth factor; PI3K, phosphoinositide-3-kinase;
NF-κB, nuclear factor κB; COX-2, cyclooxygenase-2; EMT, epithelial-to-
mesenchymal transition.
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anticancer effects are modulated through suppression of several
inflammatory and growth signaling pathways including NFκB,
Stat3, COX-2, Akt, and mTOR (53, 62). Furthermore, inhibition of
COX-2 by curcumin also results in suppression of VEGF-mediated
angiogenesis (63). By targeting these pathways, curcumin has
been shown to reverse hyperglycemia, hyperlipidemia, and other
symptoms related to obesity and therefore reduce the growth and
development of obesity-associated cancers (64, 65).

QUERCETIN
Quercetin is found commonly in citrus fruits, onions, tea, and
red wine and possesses significant antioxidant activity, like other
polyphenols (curcumin and resveratrol). Quercetin targets many
of the key pathways involved in tumor initiation, develop-
ment, growth, and metastases. Specifically, it can modulate the
Akt/mTOR pathway, COX-2 expression, NFκB signaling, TNFα

expression, and VEGF expression (53, 66–68). A phase I clin-
ical study in cancer patients showed that quercetin effectively
inhibits tyrosine kinases involved in growth, inflammation, and
cell signaling (69).

CONCLUSION
As summarized in Figure 1, multiple hormones, growth fac-
tors, cytokines, and other mediators associated with the meta-
bolic perturbations of the obese state enable crosstalk between
macrophages, adipocytes, endothelial cells, and epithelial cells.
These obesity-associated factors contribute to cancer-related
processes (including growth signaling, inflammation, and vas-
cular alterations). Components of these interrelated processes
and pathways represent promising mechanism-based targets
for phytochemical interventions, with the goal of breaking
the links between obesity (and its metabolic dysregulation)
and cancer.
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