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There is increasing evidence that polyunsaturated fatty acids (PUFAs) play a role in cancer
risk and progression.The n-3 family of PUFAs includes alpha-linolenic acid (ALA), eicosapen-
taenoic acid (EPA), and docosahexaenoic acid (DHA) while the n-6 family includes linolenic
acid (LA) and arachidonic acid (AA). EPA and DHA are precursors for anti-inflammatory
lipid mediators while AA is a precursor for pro-inflammatory lipid mediators. Collectively,
PUFAs play crucial roles in maintaining cellular homeostasis, and perturbations in dietary
intake or PUFA metabolism could result in cellular dysfunction and contribute to cancer risk
and progression. Epidemiologic studies provide an inconsistent picture of the associations
between dietary PUFAs and cancer. This discrepancy may reflect the difficulties in collect-
ing accurate dietary data; however, it also may reflect genetic variation in PUFA metabolism
which has been shown to modify physiological levels of PUFAs and cancer risk. Also, host-
specific mutations as a result of cellular transformation could modify metabolism of PUFAs
in the target-tissue. Clinical trials have shown that supplementation with PUFAs or foods
high in PUFAs can affect markers of inflammation, immune function, tumor biology, and
prognosis. Pre-clinical investigations have begun to elucidate how PUFAs may mediate cell
proliferation, apoptosis and angiogenesis, and the signaling pathways involved in these
processes.The purpose of this review is to summarize the current evidence linking PUFAs
and their metabolites with cancer and the molecular mechanisms that underlie this associ-
ation. Identifying the molecular mechanism(s) through which PUFAs affect cancer risk and
progression will provide an opportunity to pursue focused dietary interventions that could
translate into the development of personalized diets for cancer control.
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INTRODUCTION
Despite major advances in prevention, screening, and treatment,
cancer remains a major public health burden. In the US, it is esti-
mated that over 800,000 cases of cancer will be diagnosed and
more than 270,000 people will die from cancer this year (1). Diet
is recognized as an important environmental factor contributing
to risk and mortality for several types of cancers (2). Specifi-
cally, a Western diet which is characterized by high intakes of n-6
polyunsaturated fatty acids (PUFAs), and lower intakes of n-3
PUFAs, has been suggested to play a role in carcinogenesis and
cancer outcomes (3, 4). PUFAs are substantial components of the
diet, comprising approximately 7–10% of daily energy intake in
US adults (5, 6). Adequate intake of PUFAs is essential as they
are biologically active molecules that serve as structural compo-
nents of cellular membranes and play key roles in metabolism,
inflammation, cell signaling, and regulation of gene expression (7).

Given that PUFAs are prominent dietary constituents and indis-
pensable cellular components, a large body of research has been
conducted in humans, animals, and in in vitro experiments in
order to elucidate the link between PUFAs and cancer. Pre-clinical
mechanistic studies using animal models and cancer cell lines

have begun to elucidate molecular targets of PUFAs, yet these
findings have not necessarily translated in human studies. Pre-
clinical models use well-characterized cell lines for in vitro studies
and in vivo studies in animal models also show little variation
given the use of inbred strains exposed to well-characterized car-
cinogens or the use of well-characterized xenografts. However,
neoplasia in humans is much different. In humans, cancer results
from the interaction between diverse genetic backgrounds and
a multitude of diverse exposures. Unsurprisingly, the tumors in
humans tend to exhibit high genetic/genomic heterogeneity, and
recent studies assessing PUFA intake and cancer risk and pro-
gression in prospective cohort studies have produced inconsistent
results (8). Studies in cardiovascular disease have observed that
genetic variation in the form of single nucleotide polymorphisms
(SNPs) greatly influences metabolism of PUFAs (9). Findings from
these studies could potentially explain some of the inconsistencies
observed between dietary intake of PUFAs and cancer in epidemi-
ological studies. Next-generation sequencing (NGS) and better
understanding of the cancer genome may inform whether hetero-
geneity in the host or in the tumor influences PUFA metabolism
within individuals, the microenvironment, or the target tissue. If
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aberrant PUFA metabolism as a result of genetic variation plays
a role in cancer risk or genomic changes alter PUFA metabolism
in the target tissue and promote cancer progression, it is plausible
that personalized-diets could be a therapeutic approach to pro-
vide specified intakes of PUFAs based on an individual’s metabolic
capability and physiological needs.

OVERVIEW
As reported by Blasbalg et al., radical changes occurred in the
American diet during the twentieth century (10). From 1909 to
1999, there was a steady decline in the consumption of animal fat,
a major source of saturated fat, as the intakes of butter and lard
decreased. This paralleled the significant rise in intake of PUFAs
as the consumption of soybean and other vegetable oils increased.
It is estimated that from 1986 to 1999, the intake of linolenic
acid (LA) and alpha-linolenic acid (ALA) increased >1000- and
>100-fold, respectively,as a result of vegetable cooking oils becom-
ing commercially available (10). Although significant changes in
intake of essential PUFAs is well documented, it should be noted
that intakes of arachidonic acid (AA), found in animal products,
and eicosapentaenoic acid (EPA), docosopentaenoic acid (DPA),
and docosahexaenoic acid (DHA), found in fatty fish, remained
steady (10).

Dietary intake and changes in sources of fatty acids can
affect the complex metabolism of PUFAs. In addition, desat-
urase enzymes encoded by FADS2 and FADS1, as well as elon-
gase enzymes encoded by ELOV5 and ELOV2 genes also affect

metabolism (Figure 1). The FADS genes localize to chromosome
11 at 11q12–q13.1 a region of the genome that is highly poly-
morphic. The most recent data indicate that there are 330 and
942 identified SNPs in FADS1 and FADS2, respectively (http:
//www.ncbi.nlm.nih.gov/snp/). Ethnic differences in FADS SNPs
have been reported as evidenced by recent studies in Caucasian,
Asian, and African-American populations (11, 12) It is estimated
that the prevalence of variant genotypes is lower in Hispanics
(3.6%) and non-white Hispanics (3.1%) compared to Asians or
Pacific Islanders (19.4%), blacks (24.0%), and other racial or
ethnic groups (18.2%) (13). Based on the findings from several
studies, SNPs in FADS 1 and 2 are associated with physiological
levels of PUFAs suggesting that genetic variation plays a strong
role in PUFA metabolism and possibly risk for disease.

Because humans cannot synthesize 18-carbon PUFAs, LA, and
ALA are considered essential n-6 and n-3 PUFAs, respectively. LA
is the predominant PUFA in the Western diet, and it is converted
to the 20-carbon AA. This occurs through removal of two hydro-
gen atoms and the addition of a double bond between two carbon
atoms at the sixth position by the delta-6 desaturase (D6D) enzyme
and the addition of a carbon atom at the carboxyl end of the mol-
ecule by the elongase enzyme. The metabolism of ALA requires
the same enzymes as LA; thus, there is competition between these
PUFAs for desaturation and elongation. D6D has a higher affinity
for ALA, yet the greater intake of LA seen in the Western diet tends
to pull the pathway in favor of n-6 PUFA metabolism. However,
some dietary ALA is converted via D6D and elongase to yield the

FIGURE 1 | Dietary sources and metabolic pathway of PUFAs.
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20-carbon EPA, which can be further elongated to the intermedi-
ate 22-carbon DPA and ultimately to 22-carbon DHA. As noted
earlier, EPA, DPA, and DHA also can be obtained through dietary
intake of marine-derived fish, particularly salmon, herring, mack-
erel, and sardines. Intake of these types of fish is typically low in a
Western diet, therefore resulting in a lower intake of longer chain
PUFAs and increasing the need for ALA to be converted to EPA
and DHA.

In this report, we examine the current results from pre-clinical
studies that aimed to elucidate the underlying mechanisms linking
PUFAs to cancer. We review the observations from recent prospec-
tive cohort studies that investigated associations between dietary
intake of PUFAs and cancer risk and progression, and we summa-
rize the recent findings from clinical trials that tested the effects of
PUFA supplementation on cancer patients.

REVIEW OF THE LITERATURE
PRE-CLINICAL STUDIES THAT CONTRIBUTE TO OUR UNDERSTANDING
POTENTIAL MECHANISMS
Inflammation has been identified as a hallmark of tumorige-
nesis (14). Studies using in vitro techniques and animal mod-
els have elucidated the anti- and pro-inflammatory mechanisms
through which PUFAs can mediate cancer promotion and pro-
gression. Below, we summarize the evidence from studies that
have expanded on molecular mechanisms underpinning the
relationship between PUFAs and cancer.

Alpha-linolenic acid primarily functions as a precursor mol-
ecule for the metabolism of longer chain n-3 PUFAs, EPA, and
DHA, but it also has been proposed to possess some independent
biological functions. The findings from these studies have been
inconsistent and the role ALA plays in cancer remains unclear. One
study in hepatocellular carcinoma cells showed that ALA induced
gene expression of MEK1 and MEKK1, both drivers of cellular
proliferation (15, 16). In contrast, other studies have shown that
ALA induces apoptosis in estrogen-receptor positive (MCF-7) and
negative breast cancer cells (MDA-MV 231) as well as cervical
cancer cells, via reduced nitric oxide and increased lipid perox-
idation (17). A similar study in breast cancer cells showed that
ALA upregulates pro-apoptotic protein Bax, reduces expression of
anti-apoptotic Bcl-2, and increases the activation of caspase-3 and
proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), all
indicators of apoptosis (18).

Similarly, a high ALA diet has been shown to increase apop-
tosis of hepatoma cells implanted in rats which also correlates
with reduced tumor composition of AA and decreased expres-
sion of cyclooxygenase-2 (COX-2) (19). Because large amounts
of ALA are found in walnuts and flaxseed, these food sources
have been examined in several mouse models. To ascertain poten-
tial effects on breast cancer, Hardman and Ion employed a nude
mouse model implanted with MDA-MB 231 cells and found sig-
nificantly reduced tumor size in animals fed walnuts compared
to controls (20). The same investigators recapitulated the exper-
iment in a transgenic mouse model of breast cancer and found
similar results (21). Significant reductions in tumor size were also
seen in animals fed walnuts compared to controls in studies using
either transgenic animal models of prostate cancer (i.e., the trans-
genic adenocarcinoma of the mouse prostate (TRAMP) model

(22), or xenografts of colon cancer (i.e., HT-29 cells) (23). None
of the studies using walnuts found increased apoptosis, but one
did observe significant reductions in serum vascular endothelial
growth factor (VEGF) and tumor angiogenesis (CD34) (23). It
should be noted that walnuts and flaxseed are whole foods that
contain other dietary components such as lignan, which also could
be associated with reduced tumor proliferation (24) and affect
findings.

While n-6 PUFAs are collectively thought to be pro-
inflammatory, recent studies show that the LA-derived metabolite,
13-S hydroxyoctadecadienoic acid (13-S HODE), produced via 15-
lipoxygenase (LOX), is a signaling molecule that has been associ-
ated with anti-carcinogenic properties (25). 15-LOX is a proposed
tumor suppressor gene and loss of expression is frequently seen in
cancer cells (26). Loss of 15-LOX results in reduced levels of intra-
cellular 13-S HODE and higher levels of LA being metabolized
to AA which is pro-carcinogenic as detailed below. 13-S HODE
mediates anti-carcinogenic activities in lung and colon cancer
cells through the activation of peroxisome proliferator-activated
receptor (PPAR)-gamma, a nuclear receptor that regulates tran-
scription of several genes (27, 28). Importantly, PPAR-gamma is
anti-inflammatory through inhibition of its downstream target
NFκB which results in reduced production of pro-inflammatory
cytokines, interleukin (IL)-6, and tumor necrosis factor (TNF)-
alpha as well as pro-angiogenic VEGF (29). Based on the evidence,
LA metabolized by 15-LOX to produce 13-S HODE appears to be
anti-inflammatory and may be cancer-protective.

20-Carbon PUFAs metabolized by the LOX and COX path-
ways produce leukotrienes, thromboxanes, prostacyclins, and
prostaglandins. Collectively, these metabolites have been impli-
cated in several chronic diseases including arthritis, asthma,
eczema, and atherosclerosis (30). The metabolites most predom-
inantly linked with cancer are leukotrienes and prostaglandins as
they have been shown to play important roles in the progres-
sion of cancer through angiogenesis, cell proliferation, metastasis,
and apoptosis (31) (Figure 2). The enzyme 5-LOX converts AA
to leukotriene B4 (LTB4). Under normal physiological conditions
5-LOX is not typically expressed but it is upregulated during
inflammation and tumorigenesis. As such, LTB4 levels have been
shown to be higher in human colon and prostate cancer tissues
(28). Further, LTB4 can act as a growth factor by interacting
with the G protein-coupled receptors BLT1 and BLT2. Overex-
pression of BLT2 has been reported in pancreatic cancer cells
where activation of BLT2 by LTB4 stimulated pancreatic cellular
proliferation through the MEK/ERK and PI-3 kinase/Akt path-
ways (32). Additionally, LTB4 influences the microenvironment by
activating NFκB resulting in IL-1, IL-6, and TNF-alpha produc-
tion and expression of VEGF and angiogenesis (33, 34). Studies
in ovarian cancer cells have shown that activation of BLT2 by
LTB4 stimulates invasion and metastasis through activation of
STAT-3 and transcription and synthesis of matrix metallopro-
teinases (35). Similar findings were observed in prostate cancer
cell lines where LTB4 activation of BLT2 resulted in NFκB acti-
vation and increased expression of the androgen receptor (36).
In colon cells, the blockade of BLT1 inhibited cellular prolif-
eration and induced apoptosis though inhibition of the ERK
pathway (37).
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FIGURE 2 | Arachidonic acid and eicosapentaenoic acid metabolism contribute to cancer risk and progression through pro-and anti-inflammatory
lipid metabolites that stimulate cell proliferation, angiogenesis, and migration.

The predominant AA metabolite produced in the COX pathway
is prostaglandin E2 (PGE2) which has been shown to be cancer
promoting in various tissues (38). In normal tissues, COX-1 is
constitutively expressed at low levels and COX-2 is undetectable
but is inducible during inflammatory response. In cancer cells,
COX-2 is frequently overexpressed resulting in the production of
high levels of PGE2 (31). The non-steroidal anti-inflammatory
drugs (NSAIDS) and selective COX-2 inhibitors exert chemo-
protective benefit by targeting the COX pathway and reducing
the synthesis of PGE2 (39). Modulation of dietary PUFAs also
have been shown to alter PGE2 production in animal models
(30, 40). A key mechanism underlying PGE2’s capacity to mod-
ulate cancer progression is through epigenomic modification. In
colorectal cancer cells, PGE2 was found to increase the expres-
sion of DNA methyl transferase (DNMT)-1 and DNMT3 which
resulted in hypermethylation of the promoter regions and reduced
RNA and protein expression of tumor suppressor genes (41). This
same study reported similar findings in ApcMin/+ mice in which
PGE2 increased DNMT expression, hypermethylation of tumor
suppressor genes and accelerated tumor growth (41). PGE2 has
been linked with breast cancer through its capacity to increase
mRNA expression and protein levels of aromatase enzyme which
converts androgens to estrogen in breast cancer cells (42). This
effect appears to occur through PGE2’s stimulation of the receptors
E2 and E4 and downstream activation of the cAMP/PKA/CREB
pathway. Ultimately, the result is an increase in transcription of the
aromatase gene resulting in increased localized estrogen biosyn-
thesis, a key driver of estrogen-receptor positive breast cancer (43).
In mouse models, PGE2 has been shown to promote angiogenesis
and metastatic disease to the lung, whereas blockage of COX-2
results in reduced biosynthesis of PGE2 and reduced spread of
disease (44, 45). In the prostate cancer cell line, PC3, treatment
with TGF-β induced COX-2 expression and PGE2 biosynthesis
which activated E4 and stimulated the PI3k/Akt/mTOR path-
way (46). This resulted in increased migration and invasion of
PC3 cells. In addition, PGE2 has been shown to induce VEGF-
mediated angiogenesis in PC3 cells through activation of E2 and
E4 receptors (47).

Eicosapentaenoic acid, which can be derived from metabo-
lism of ALA or through the diet, is anti-inflammatory on two
levels. First, EPA competes with its n-6 isomer, AA, for metab-
olism by COX and LOX enzymes thus reducing the amount
of pro-inflammatory PGE2 and LTB4 synthesized. Second, EPA
metabolism by the COX pathway yields PGE3, while the LOX path-
way yields LTB5. In contrast to the actions of PGE2, PGE3 does
not induce cancer cell proliferation and instead down-regulates
expression of COX-2 (40). In a mouse model of metastatic colon
cancer, animals consuming EPA in comparison to controls had
tumors which had lower levels of PGE2 and higher levels of PGE3,

as well as reduced phosphorylated ERK 1/2 expression; more-
over, EPA-fed animals also had lower cell proliferation and tumor
burden compared to animals on a normal diet (48). PGE3 has
also been shown to hinder angiogenesis by inhibiting induction
of angiopoietin-2 (Ang2), matrix metalloprotease-9 (MMP-9),
and endothelial invasion (49). Finally, while fewer studies have
focused on LTB5 derived from the metabolism of EPA by 5-LOX,
it is proposed to counteract the actions of AA-derived LTB4 and
has been shown to be anti-proliferative in a mouse model for
melanoma (50, 51).

Dietary DHA has been shown to significantly reduce tumor
size in a dose-response manner in a mouse model of breast
cancer (52). This same study also showed that mice consum-
ing DHA and treated with cisplatin had reduced tumor size and
enhanced immune response compared to animals receiving cis-
platin alone. This was attributed to reduced levels of oxidative
stress seen in animals receiving DHA (52). Similar findings have
been reported in other studies using DHA and anthracycline and
radiotherapy (53, 54).

EPIDEMIOLOGIC STUDIES THAT CONTRIBUTE TO OUR
UNDERSTANDING OF PUFAs AND CANCER RISK (PROSPECTIVE
COHORT STUDIES)
We identified seven prospective cohort studies that have been
published within the past 5 years that investigated the associa-
tion between PUFAs (either specific fatty acids or mixtures) and
risk for cancer or advanced disease. Details of these investigations
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and major findings are presented in Table 1. Four studies were
in US populations including the National Institute of Health–
American Association of Retired Persons (NIH-AARP) Diet and
Health Study (55, 56), the Multiethnic Cohort Study (57), Can-
cer Prevention Study-II (CPS-II) (58), and the VITamins And
Lifestyle (VITAL) Cohort study (59). One investigation was in
a cohort of French women from the E3n study (60) and two stud-
ies were in Asian populations including the Shanghai Women’s
Health Study (61, 62) and the Japan Public Health Center (JPHC)–
Based Prospective Study (63). In all investigations, dietary intake of
PUFAs was determined by diet history questionnaire (60) or food
frequency questionnaire and was characterized by study-specific
PUFA intake according to tertiles (61), quartiles (58), or quintiles
(55, 57, 59, 60, 62, 63). Multivariate-adjusted models were used to
calculate hazard ratios (HR) or relative risk (RR) and 95% confi-
dence intervals (CIs) to estimate cancer risk associated with PUFA
intake. Studies included associations between PUFAs and risk for
breast (57, 59–61), colorectal (58, 62, 63), prostate (55), and pan-
creatic cancer (56). Below, the findings from these investigations
are summarized.

The four studies on breast cancer produced inconsistent find-
ings. In the Multiethnic Cohort Study, no association between
PUFAs and risk for breast cancer was observed (57). However,
the E3N and the Shanghai Women’s Health Study cohorts, both
observed statistically significant interactions between n-6 PUFAs,
total marine-derived n-3 PUFAs, and risk for breast cancer (60,
61). Findings from these studies suggest that women with the
lowest intake of total marine-derived n-3 PUFAs and the highest
intake of n-6 PUFAs had increased risk for breast cancer com-
pared to women with the highest intakes of total marine-derived
n-3 PUFAs and the lowest intake of n-6 PUFAs (60, 61). The only
investigation in breast cancer to consider both dietary PUFAs and
fish oil supplementation, a commonly consumed supplement in
the US (64), was conducted by Sczaniecka et al. in the VITAL study
(59). Initial analyses based on dietary intake showed a trend toward
a protective association for both EPA and DHA and breast cancer
risk. Additional analyses, that included intake of EPA and DHA
from diet and supplementation with fish oil, showed that both
EPA and DHA were significantly associated with reduced risk for
breast cancer (59).

Results from the cohort studies on colorectal cancer also are
conflicting. Since gender and cancer site (colon or rectum) have
influenced findings of previous studies, we also have taken these
factors into account in our review of the literature (65). In the
Shanghai Women’s Health Study, a significant positive trend was
observed for AA and risk for colorectal cancer across quintiles (62).
When stratified by cancer site (colon or rectal), a non-significant
positive trend was observed for the ratio of n-6:n-3 and risk for
colon cancer (62). In the JPHC study, a population character-
ized by high fish intake, there was no association between PUFAs
and overall risk for colorectal cancer in men. However, signifi-
cantly protective associations were found between EPA, DPA, total
marine-derived long chain PUFAs, and total n-3 and invasive can-
cer specific to the proximal colon (63). Surprisingly, a significant
protective effect was observed for higher total n-6 and invasive
cancer of the proximal colon, whereas as increased risk for rectal
cancer was observed for a higher n-3:n-6 ratio. In women, EPA,

DHA, DPA, and total long chain PUFAs were associated with a sig-
nificant reduction in risk for colorectal cancer. In further analysis
stratified by cancer site, there was a non-significant trend for EPA
to be protective and a significant protective effect seen for DPA,
respectively, for invasive cancer of the proximal colon. Study find-
ings from the CPS-II showed no overall significant associations
between PUFAs and risk for colorectal cancer in men or women.
However, a non-significant trend was observed for increased risk
with higher total n-3 PUFAs in men and non-significant protec-
tive associations were seen for women with higher intakes of ALA
and total n-3. Surprisingly, total-n6 was also associated with a
non-significant protective effect (58).

Single studies in pancreatic and prostatic cancer were con-
ducted using data from the NIH-AARP cohort. For pancreatic
cancer, higher intakes of AA, DHA, and total n-3, driven by ALA
intake, were significantly associated with risk for pancreatic cancer
in men and women combined (56). For prostate cancer, there was
no association between PUFAs and risk for disease; however, a sig-
nificant positive association was found between ALA and risk for
aggressive prostate cancer. Higher intakes of EPA were significantly
associated with lower prostate cancer mortality (55).

CLINICAL TRIALS WHICH CONTRIBUTE TO OUR UNDERSTANDING OF
THE POTENTIAL USE OF PUFAs IN CANCER PREVENTION AND CONTROL
As noted previously, because PUFAs have pleotropic effects at the
cellular and molecular level, their efficacy has been tested in clinical
studies. Supplementation with n-3 PUFAs has been investigated in
clinical trials to assess whether PUFAs can directly benefit patients
with cancer. We identified nine clinical trials that were published
from 2008 to present that investigated effects of n-3 PUFAs on
cancer patient populations. The details of these studies and their
findings are described in Table 2. Briefly, three investigations were
conducted in the US (66–68), three in Europe (69–71), and a sin-
gle study in Canada (72) as well as Brazil (73). All studies involved
an intervention group who received either n-3 supplements (pills,
capsules, or supplemented oral feedings) containing fish oil (66,
68–73) or food sources high in n-3 PUFAs (67). The amount
and type of n-3 PUFAs varied between studies and all studies
included a control arm. All studies determined physiological lev-
els of PUFAs in blood or relevant tissues to assess adherence with
the study regimen and bioavailability of the n-3 PUFAs. Various
outcome variables were studied including biomarkers of inflam-
mation (69–71, 73), tumor proliferation (66, 67), gene expression
(68), and cancer prognosis (72).

Indeed, studies of PUFA supplementation show that physio-
logic levels of PUFA are highly responsive to changes in diet, and
dosing studies have been performed in healthy subjects, as well
as in patients with lung cancer undergoing chemotherapy (69, 70,
72). Supplementation also is accompanied by changes in inflam-
matory markers. Van der Meji et al. reported decreased production
of IL-6 from white blood cells and significantly lower plasma IL-
6 and C-reactive protein (CRP) levels in patients supplemented
with EPA compared to baseline (70). This same investigation also
reported significant improvements in physical and cognitive func-
tioning in the intervention arm as compared to controls (74).
Similarly, in a patient population with reduced life expectancy,
Murphy and colleagues observed increased plasma levels of EPA
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Table 1 | Prospective cohort studies assessing dietary PUFAs and associations with cancer.

Cohort Cancer

site

Sample

size

Incidence

cases

Approximate

length

follow-up

Findings Model adjustment

NIH-AARP

Pelser et al.

(55) and

Thiébaut et

al. (56)]

Pancreas 308,736

men and

216,737

women

865 men

and 472

women

6.3 AA, DHA, and total n-3 significantly

positively associated with risk for

pancreatic cancer (HR 1.33 95%

CI=1.12–1.58, p=0.002; HR 1.25 95% CI

1.05–1.49, p=0.009; HR 1.21 95% CI 1.21

95% CI 1.02–1.44, p=0.01 respectively)

Age, energy, smoking, BMI, and

diabetes

Prostate 288,268 23,281 9 ALA significantly positively associated

with risk for advanced prostate cancer

(HR 1.17 95% CI 1.04–1.31, p=0.01). EPA

significantly inversely associated with

fatal prostate cancer (HR 0.82 95% CI

0.64–1.04, p=0.02)

Age, race, family history of prostate

cancer, education, marital status,

PSA testing in the past 3 years,

physical activity, smoking, diabetes,

BMI, energy, alcohol, and intake of

tomatoes

Shanghai

Women’s

Health

Study

[Murff et al.

(61) and

Murff et al.

(62)]

Breast 71,859 712 8 Significant interaction between n-6 PUFA

and marine-derived n-3 (p=0.01). Women

with lower intake of long chain n-3 PUFAs

and higher intake of n-6 PUFA had

increased risk for breast cancer vs.

women with higher intake long chain n-3

PUFAs and lower intake of n-6 PUFAs (RR

2.06; 95% CI=1.27–3.34)

Age, age at menopause, alcohol,

BMI, smoking, family history of

breast cancer, diabetes, total red

meat consumption, total fish

consumption, total vitamin E, age at

first pregnancy, parity, physical

activity, education, and HRT

Colorectal 73,243 396 NA AA significantly positively associated with

risk (RR 1.39 95% CI 0.97–1.99, p=0.03).

Non-significant positive association

between higher n-6:n-3 ratio and risk (RR

1.95 95% CI 0.97–1.99, p=0.19)

Age, BMI, energy-adjusted n-3

(g/day), energy-adjusted n-6:n-3

ratio, smoking, alcohol, physical

activity, energy-adjusted red meat

intake (g/day), menopausal status,

HRT, multivitamin use, energy, and

aspirin use

Multiethnic

Cohort

Study [Park

et al. (57)]

Breast 85,089 3,885 12.4 No significant association and no

ethnic-specific association associations

observed

Age, ethnicity, alcohol, BMI,

smoking, family history of breast

cancer, age at menarche, age at first

child birth, number of children, age

at and type of menopause, HRT,

energy, and education

E3N

[Thiébaut et

al. (56)]

Breast 56,007 1,650 8 Significant interaction between n-6 and

marine-derived n-3 PUFA (p=0.042).

Women with higher n-6 had reduced risk

if they had marine-derived n-3 PUFAs (HR

0.62 95% CI 0.44–0.86, p=0.021)

Age, menopausal status, alcohol,

BMI, smoking, family history of

breast cancer, personal history of

benign breast disease, age at

menarche, parity, age at first

full-term delivery, and HRT

CPS-II

[Daniel et

al. (58)]

Colorectal 43,108 men

and 55,972

women

348 men

and 337

women

NA In women, non-significant positive

association between total n-3 (driven by

ALA intake) and risk of colorectal cancer

(RR 1.38 95% CI (1.02–1.85, p=0.09). In

men, non-significant inverse associations

with total n-6, total n-3, and ALA for and

risk (RR 0.81 95% CI 0.61–1.07, p=0.07;

RR 0.86 95% CI 0.66–1.13, p=0.09; RR

0.87 95% CI 0.87, 0.66–1.114, p=0.09,

respectively)

Age, HRT (in women only)

recreational physical activity, NSAID

use, colorectal screening, BMI,

energy, red and processed meat,

low-fat dairy, fruit, and vegetable

intake

(Continued)
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Table 1 | Continued

Cohort Cancer

site

Sample

size

Incidence

cases

Approximate

length

follow-up

Findings Model adjustment

VITAL

Sczaniecka

et al. (59)

Breast 30,252 772 6 EPA and DHA were significantly inversely

associated with risk for breast cancer (HR

0.70 95% CI 0.54–0.90, p=0.04; HR 0.67

95% CI 0.52–0.87)

Age, race, age at menopause,

alcohol, height, BMI, family history

of breast cancer, age at menarche,

hysterectomy, HRT, history of

mammogram screening, history of

benign breast biopsy, NSAIDS,

physical activity, energy intake, fruit

and vegetable intake and education

Japan

Public

Health

Center

(JPHC)–

Based

Prospec-

tive Study

[Sasazuki et

al. (63)]

Colorectal 41,382 men

and 47,192

women

521 men

and 350

women

9.3 In men, EPA, DPA, marine-derived n-3

PUFA, total n-3, and total n-6 significantly

inversely associated with invasive

proximal colon cancer risk (RR 0.27 95%

CI 0.11–0.66, p=0.01; RR 0.35 95% CI

0.14–0.88; RR 0.42 95% CI 0.18–0.98; HR

0.42 95% CI 0.18–0.98; RR 0.46 95% CI

0.21–0.99, p=0.04, respectively). Higher

n-3:n-6 ratio significantly positively

associated with rectal cancer (RR 1.62

95% CI 0.89–2.93). In women, an overall

significant inverse association between

EPA, DHA, DPA, marine-derived n-3

PUFA, and risk for colorectal cancer (RR

0.49 95% CI 0.27–0.89, p=0.01; RR 0.50

95% CI 0.28–0.90, p=0.01; RR 0.53 95%

CI 0.29–1.00, p=0.04; RR 0.60 95% CI

0.31–1.14, p=0.04) EPA non-significant

inverse association with proximal colon

cancer (RR 0.45 95% CI 0.20–1.05,

p=0.07). DPA significantly inversely

associated with proximal colon cancer

(RR 0.37 95% CI 0.16–0.85, p=0.02)

Age, BMI, smoking, alcohol intake,

current or past use of medication

for diabetes, physical activity,

colorectal screening, energy,

energy-adjusted intake of calcium,

vitamin D, fiber, and red meat

and DHA in patients who were supplemented compared to con-
trols and these levels were associated with completion of more
cycles of chemotherapy and better response to treatment and
improved 1-year survival (72). The investigators also observed
that patients in the intervention group maintained their body
weight and patients with the greatest increases in plasma EPA
gained muscle mass, in contrast to the control group which had
significant weight loss and muscle loss (75). Finocchiaro et al. also
observed significant increases in plasma EPA and DHA with sup-
plementation, but erythrocyte membrane composition showed
increases only in EPA. Over the course of the study, CRP, IL-
6, and TNF-alpha concentrations increased in the controls and
PGE2 did not change, whereas there were significant decreases
in these biomarkers in the intervention arm with the exception
of TNF-alpha which did not change (69). Similarly, in a group
of patients undergoing chemotherapy for gastrointestinal cancer,
Bonatto and colleagues reported that following fish oil supple-
mentation there was increased EPA and DHA and decreased AA

in peripheral mononuclear cells (PMNC) which correlated with an
increased number of PMNCs, improvements in immune function,
and significant increases in body weight (73). Conversely, patients
undergoing subtotal esophagectomy or gastrectomy who received
pre- and post-operative supplementation with EPA and DHA
had similar immunological response and clinical course com-
pared to controls, despite having increased plasma and lymphocyte
composition of EPA and DHA (71).

As noted earlier, PUFAs can mediate cell proliferation and
apoptosis in cancer cells. Three recent randomized clinical trials
(RCT) tested the effects of PUFAs on men with localized prostate
cancer. In a group of 84 men on active surveillance, Magbanua et
al. showed that fish oil supplementation for 3 months did not have
an effect on global gene expression in normal prostate tissue (68).
Yet, exploratory pathway analyses suggested that fish oil modulated
Nrf2-mediated oxidative stress and metabolism of AA. Additional
analysis showed that fish oil supplementation did not affect COX-
2 gene expression suggesting that perhaps the alteration in AA
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Table 2 | Clinical trials reporting the effects of PUFAs on cancer patients.

Organ Population Sample

size

Approximate

length of

study

Intervention Relevant findings

Lung Patients with

NSCLC undergoing

chemotherapy

[Murphy et al. (72)

and Murphy et al.

(75)]

46 1 year Intervention: fish oil

supplement, choice of

liquid or capsules, 2.20 g

EPA, 0.24–0.50 g DHA;

control: SOC

Plasma EPA and DHA higher in intervention (p < 0.001 and

p=0.04); intervention had higher response rate to

chemotherapy (p=0.01), greater clinical benefits (p=0.02),

and greater 1 year survival than SOC group (p=0.15)

Patients with IIIa

N2-IIIb NSCLC

undergoing

chemotherapy [van

der Meij et al. (74)

and van der Meij et

al. (70)]

40 5 weeks Intervention: protein and

energy dense oral

nutritional supplement,

∼1.01 g EPA, ∼0.46 g

DHA; control – isocaloric

oral nutritional

supplement, 400 mL

ensure

Plasma EPA and DHA higher in intervention (p=0.06); no

differences between groups in [AA] (p=0.65); intervention

had lower IL-6 production in ex vivo stimulation vs. control

(p=0.08); no difference between groups for serum IL-6,

CRP, sTNF-p55, albumin, and HLA-DR expression on

monocytes; EPA and DHA in intervention inversely

correlated with IL-6 and CRP (Pearson r =−0.80,

p=< 0.05); intervention vs. control higher scores on: global

health status (p=0.04), physical function (p < 0.01),

cognitive function (p < 0.01), and social function (p=0.04)

Patients with

advanced

inoperable NSCLC

undergoing

chemotherapy

[Finocchiaro et al.

(69))

33 10 weeks Intervention: n-3

supplement, capsules,

0.51 g EPA, 0.34 g DHA;

control: placebo, 0.85 g

olive oil

EPA higher in plasma and erythrocytes, DHA higher in

plasma only for intervention (p < 0.05 for all); IL-6 and CRP

levels lower in intervention (p < 0.05); IL-6, CRP, and PGE2

decreased from baseline in intervention (p < 0.05);

hydroxynonenal and ROS lower for intervention (p < 0.05)

Prostate Patients localized

prostate cancer

awaiting

prostatectomy

[Aronson et al. (66)]

48 4–6 weeks Intervention: 15% total

energy from fat+fish oil

supplement, 1.00 g EPA,

1.80 g DHA, n-6: n-3 ratio

2:1; control: 40% total

energy from fat, n-6: n-3

ratio 15:1

Lower n-6:n-3 ratio in intervention for benign and malignant

prostate tissue and RBCs (p=0.042, p < 0.001, and

p < 0.001, respectively); reduced tumor proliferation rate

(Ki67) in intervention (p=0.026); no difference between

groups for serum IGF-1, IGFBP-1, IGFBP-3, PSA, urine

PGEM, or prostatic prostaglandin E2, COX-2, angiogenesis

(CD31), or apoptosis (TUNEL)

Patients localized

prostate cancer

awaiting

prostatectomy

[Demark-

Wahnefried et al.

(67)]

161 31 days Intervention: flaxseed,

30 g; low-fat diet, <20%

total energy from fat;

flaxseed+ low-fat diet;

control: usual diet

Interventions with flaxseed had higher EPA in erythrocytes

and prostate tissue and decreased n-6:n-3 ratio in prostate

tissue (p < 0.05); reduced tumor proliferation rate (Ki67) in

interventions with flaxseed (p < 0.05); no difference

between groups for apoptosis (TUNEL), serum SHBG, free

androgen index, IGF-1, IGFBP-3, and CRP

Patients with low

burden prostate

cancer following

active surveillance

treatment protocol

[Magbanua et al.

(68) and Chan et al.

(76)]

84 12 weeks Interventions: lycopene

supplement,

30.0 mg+fish oil placebo

(olive oil); fish oil

supplement, 1.10 g EPA,

0.54 g DHA+ lycopene

(soy oil); control: soy or

olive oil) *standard

multivitamins consumed

by all

No difference in change in IGF-1 or IGF-1R gene expression

between placebo and lycopene intervention; no change in

COX-2 gene expression for placebo and fish oil intervention;

greater increase in IGF-1 for those with initially high tomato

intake (p=0.01); Androgen and estrogen metabolism

modulated for men with initially high tomato and fish intake

(p < 0.05); modulation of DHA and insulin receptor signaling

for men with initially high fish intake (p < 0.05); modulated

AA metabolism in fish oil intervention compared to control

(p=0.01); modulation of Nrf2-mediated oxidative stress

response pathway for fish oil and lycopene interventions

(p < 0.01)

(Continued)
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Table 2 | Continued

Organ Population Sample

size

Approximate

length of

study

Intervention Relevant findings

G.I. Patients

undergoing

surgery [Sultan et

al. (71)]

195 2 weeks

(7 days pre-

and post-

surgery)

Intervention: liquid feeding

enriched with n-3 PUFAs,

3.00–6.00 g EPA, 1.30–2.60 g

of DHA; controls: standard

enteral nutrition, pre and

postsurgery; isotonic liquid

feed, post-surgery only

Plasma and lymphocyte EPA and DHA higher in intervention

(p < 0.01); plasma n-6:n-3 ratio, LA, and AA lower in

intervention (p < 0.001, p=0.019, and p=0.018); increase

in HLA-DR expression on monocytes for intervention group

pre surgery (p < 0.001); no significant differences between

groups for HLA-DR expression on monocytes or

T-lymphocytes or in CRP

Patients receiving

chemotherapy

after surgery

[Bonatto et al.

(73)]

38 8 weeks Intervention: fish oil

supplement, 0.30 g EPA,

0.40 g DHA; control: no

supplement

EPA and DHA increased in blood polymorphonuclear cells

(PMNC) in intervention vs. control (p < 0.05); ratio of AA:

EPA decreased in intervention and lower than control

(p < 0.05); increased number of PMNCs in intervention

(p < 0.05); increased PMNC function (p < 0.05)

metabolism may have been modulated through the 5-LOX path-
way although this was not investigated (76). In a phase II RCT
among men awaiting prostatectomy, supplementation with fish oil
for∼28 days resulted in higher levels of EPA and DHA and reduced
levels of n-6 PUFAs in erythrocytes and surgically excised prostatic
tissue (66). While no differences in PGE2, COX-2, angiogene-
sis, or apoptosis were observed; tumor cell proliferation (Ki67)
was significantly lower in the intervention arm compared to con-
trols (66). Using a similar study design, Demark-Wahnefried et al.
found that following supplementation with 30 g/day of flaxseed
(a rich source of ALA) for ∼30 days prior to prostatectomy; there
were significantly higher levels of EPA in erythrocytes and prosta-
tic tissue in the intervention arm. No difference in apoptosis was
observed between the flaxseed arm and controls; however, tumor
proliferation rates were significantly lower in the intervention arm.
Additional analyses investigated the associations between prostatic
PUFAs, and genetic variation in FADS genes with tumor prolifera-
tion and serum prostate specific antigen (PSA) in order to elucidate
the anti-proliferative effects of flaxseed (77). Surprisingly, a posi-
tive correlation between ALA and tumor proliferation and serum
PSA and no association between other PUFAs and these markers
was observed. These associations appeared to be independent of
the amount of ALA consumed, suggesting that the metabolism of
ALA was altered in the target tissue. This was confirmed in addi-
tional analyses which also showed significant interactions between
SNPs in the FADS2 gene, ALA and tumor proliferation, and serum
PSA (77). Based on these findings, future studies are needed to
better understand whether altered PUFA metabolism is a driver
or passenger for prostate cancer. If altered PUFA metabolism is
found to drive cancer progression, this could provide opportuni-
ties to investigate the efficacy of personalized-diets with modified
dietary PUFAs as a complementary therapeutic option.

CONCLUSION AND FUTURE DIRECTIONS
In summary, the results from pre-clinical studies provide com-
pelling evidence that PUFAs can mediate cancer progression
in vitro and in vivo in models of several different types of can-
cer. Mediation may occur through several mechanisms including

regulation of gene expression, angiogenesis, cell migration, and
apoptosis. Additionally, DHA may have chemo-sensitizing effects
in humans, but this needs to be confirmed in larger studies.
Based on the current literature, the pro-inflammatory and anti-
inflammatory characteristics of PUFAs are the key underlying
mechanisms mediating their biological effects. While these find-
ings have expanded our knowledge of the molecular targets of
PUFAs, the extent to which they are generalizable to humans
remains unclear. Studies that employ well-characterized cell lines
and animal models provide insight into how PUFAs affect cells
with specific and known mutations; however, cancer is a heteroge-
neous disease and thus human tumors may be very different from
one person to another. Genetic/genomic differences in tumors can
produce differences in tumor phenotype resulting in differences
in PUFA metabolism. For example, mutations in FADS2 has been
reported in tumors from breast cancer patients and the loss of
expression of FADS2 was significantly associated with aggressive
tumor phenotype and reduced survival (78). The FADS cluster
localizes to a genomic region that has been associated with breast,
colon, and prostate cancer (79). Understanding these genetic and
genomic differences and how they affect nutrient metabolism
could allow us to begin to experiment with altering dietary intakes
of PUFAs to test the effects on cancer progression.

Taken as a whole, the findings from cohort studies suggest that
dietary PUFAs play a role in cancer risk and progression; however,
no clear pattern has emerged. This may be due to the well doc-
umented difficulties in assessing dietary intake that include poor
participant recall and elevated measurement error (80) but may
also involve other factors. As noted in Table 1, only one study con-
sidered additional intake of PUFAs from fish oil supplements and
this study found that EPA and DHA were significantly associated
with reduced risk for breast cancer (59). This highlights the impor-
tance of considering supplementation and also the hypothesis that
large amounts of n-3 PUFAs, typically not seen in US populations,
are needed to affect cancer risk. In support of this hypothesis, the
study conducted in a Japanese population with high fish intake
also found significant protective effects for marine-derived PUFAs.
Another factor associated with discordance between dietary intake
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of PUFAs and cancer is genetic variation. As noted previously,
SNPs in the genes involved in PUFA metabolism play a critical
role in determining PUFA metabolism explaining up to 28 and
12% of the variance in plasma levels of AA and LA, respectively
(9). Thus, genetic variation could be a major factor potentially
explaining the discordance between dietary intake and cancer in
population studies.

Collectively, the reports from recent clinical trials support many
of the findings from pre-clinical studies. Overall, cancer patients
with different types of malignancies and undergoing different
treatments appeared to benefit from PUFA supplementation. Of
note is the relative short time frame that patients consumed PUFAs
yet achieved benefits in immunological or inflammatory mark-
ers and physical and psychological measures as well as prognosis.
However, it should be noted that clinical trials provided large
amounts of n-3 PUFAs, far greater than what is typically con-
sumed in the diet. Thus, larger intakes of n-3 PUFAs may be
required in order to receive the full anti-carcinogenic benefits of
these compounds. Particularly noteworthy are the results from
studies in prostate cancer which indicate that fish oil supplemen-
tation modulates AA metabolism in prostatic tissue and inhibits
tumor proliferation in men with localized disease. Although no
direct correlation between PUFA levels in the target tissue and
outcomes were made in these studies, fish oil appears to pro-
vide some direct protective effects on prostatic tumors. Further,

findings that ALA and SNPs in the genes involved in PUFA metab-
olism were positively associated with markers for aggressive disease
showed that genetic variation should be considered further as it
plays an important role in determining PUFA metabolism (9, 81,
82). It is possible that gene-nutrient interactions in the PUFA path-
way likely portend risk for cancer and aggressive disease; however,
further studies are needed in this area (83).

In conclusion, PUFAs are biologically active food components
that are consumed daily from a variety of food sources. Individual
PUFAs produce prostaglandins and leukotrienes with distinct bio-
logical functions that elicit pro- and anti-inflammatory responses
through several signaling pathways that regulate cell proliferation,
apoptosis, and angiogenesis. The metabolism of PUFAs is complex
and controlled by enzymes that are highly polymorphic and map to
a genomic region frequently associated with cancer. Thus, to better
delineate the associations between PUFAs and cancer in humans,
future studies should consider dietary intake of PUFAs, and varia-
tion in genes encoding the enzymes in PUFA metabolism and the
potential for gene-nutrient associations between SNPs and PUFAs.
In addition, because the expression of genes encoding the enzymes
in the PUFA pathway is frequently lost in the target-tissue, metab-
olism of PUFAs in tumor tissues may be altered and this needs to
be considered. The findings from such studies could allow for the
identification of individuals with altered PUFA metabolism that
may benefit from personalized diets.
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