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PARP inhibitors (PARPi) are under clinical trial for combination cancer chemotherapy. In the
presence of a PARPi, PARP-1 binds DNA strand breaks but cannot produce poly(ADP-ribose)
polymers or undergo auto-poly(ADP-ribosyl)ation. DNA binding is persistent, hindering DNA
repair. Methylated bases formed as a result of cellular exposure to DNA-methylating agents
are repaired by DNA polymerase β (pol β)-dependent base excision repair (BER) producing a
5′-deoxyribose phosphate (5′-dRP) repair intermediate. PARP-1 binds and is activated by the
5′-dRP, and PARPi-mediated sensitization to methylating agents is considerable, especially
in pol β-deficient cells. Cells deficient in the BER factor XRCC1 are less sensitized by PARPi
than are wild-type cells. PARPi sensitization is reduced in cells expressing forms of XRCC1
deficient in interaction with either pol β or PARP-1. In contrast, agents producing oxidative
DNA damage and 3′- rather than 5′-repair intermediates are modestly PARPi sensitized.
We summarize PARPi experiments in mouse fibroblasts and confirm the importance of the
5′-dRP repair intermediate and functional pol β and XRCC1 proteins. Understanding the
chemistry of repair is key to enhancing the clinical success of PARPi.

Keywords: DNA polymerase β, XRCC1, PARP-1, PARP inhibitors, base excision repair

BACKGROUND
Clinical trials suggest that PARP inhibitors (PARPi) may repre-
sent an opportunity to gain selective killing of cancer cells, since
the cytotoxic effects make use of deficiencies in cellular DNA
repair systems that are distinctive for individual tumor cells ver-
sus normal tissues (1, 2). But it has proved difficult to design
chemotherapy regimes because of toxic side effects such as myelo-
suppression. Information enabling prediction of PARPi effects is
not easy to gain from the literature and may not be well recognized
in the community. We suggest that understanding PARPi effects in
model systems, such as mouse embryonic fibroblast (MEF) cells
in culture, will be informative for considering strategies in cancer
chemotherapy. We have discussed this viewpoint in a recent arti-
cle (3). Here, we summarize current experiments with the aim of
understanding the roles of PARP in mammalian cell DNA repair
and how the presence of the inhibited PARP-1 protein during base
excision repair (BER) may promote cell killing. The level of cell
killing observed with DNA-damaging agents is modulated by co-
treatment with a PARPi and by expression of other BER proteins
such as XRCC1 and pol β, and we will outline a model to explain
these effects. Selection of specific chemotherapeutic agents com-
bined with specific repair deficiencies in patients may prove to be
extremely beneficial.

BER OF BASE DAMAGE AND BINDING OF PARP-1 TO
INTERMEDIATES OF BER
The mammalian BER pathway is important for the removal of
single base lesions in double-stranded genomic DNA. Base dam-
age can arise through spontaneous base loss from DNA or from
base alkylation and oxidation from both endogenous and exoge-
nous sources. Methyl methanesulfonate (MMS) is a directly acting

DNA-methylating agent causing alkylation of base nitrogens (e.g.,
7-methylguanine), whereas the oxidizing agent peroxynitrite pro-
duces reactive oxygen species (ROS) that oxidize DNA bases result-
ing in the promutagenic DNA lesion 8-oxoguanine and other base
lesions. During single-nucleotide BER of a methylated base, repair
is initiated by a lesion-specific monofunctional glycosylase (i.e.,
N -methylpurine DNA glycosylase; MPG), that removes the dam-
aged base leaving an abasic (AP) site in double-stranded DNA. The
DNA backbone is then incised 5′ of the AP site by AP endonucle-
ase 1 (APE1) resulting in a 1-nucleotide (nt) gap with margins of
3′-OH and 5′-deoxyribose phosphate (dRP) groups. DNA poly-
merase β (pol β) binds to this repair intermediate, removes the
5′-dRP group and performs single-nucleotide gap filling DNA
synthesis. Many of the glycosylases specific for oxidative DNA
damage (e.g., 8-oxoguanine DNA glycosylase; OGG1) are bifunc-
tional enzymes that have an associated AP lyase activity in addition
to their glycosylase activity. After base removal, this activity cleaves
the DNA backbone 3′ to the abasic site leaving 3′-dRP and 5′-PO4

margins in a single-nucleotide gap. APE1 is able to remove the 3′-
blocking group leaving a 3′-OH-containing substrate suitable for
DNA synthesis and ligation. In this BER sub-pathway there will
be no formation of a 5′-deoxyribose-containing blocking group
or requirement for pol β-dependent dRP lyase tailoring activity to
enable DNA ligation (4).

PARP-1 is an abundant nuclear protein involved in DNA dam-
age recognition. It can bind to AP sites and single-strand breaks
in DNA, including the 5′-dRP-containing intermediate of BER of
MMS-induced damage. Once bound to DNA, PARP-1 becomes
catalytically activated synthesizing poly(ADP-ribose) (PAR) poly-
mers from NAD+, and resulting in poly(ADP-ribosyl)ation of
itself, as well as other proteins involved in DNA repair and
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chromatin remodeling (5, 6). PARP-1, the first discovered member
of a family of proteins, is responsible for the majority of cellular
PARP activity after DNA damage. Following auto-modification,
PARP-1 can interact with other BER proteins such as XRCC1 and
pol β enabling their recruitment to the damage site (7, 8). A recent
publication has suggested that PARP-1 recruits XRCC1 to single-
strand break repair, but not to sites of oxidative damage BER (9).
This may be due the absence of 5′-dRP intermediate formation
during oxidative damage (8-oxoguanine) repair (4).

In the case of methylation damage, after removal of the aba-
sic site sugar by pol β lyase activity and completion of repair
by pol β gap filling and DNA ligation, PARP-1 dissociates from
DNA, and the PAR glycosidic bonds are rapidly cleaved, primar-
ily by poly(ADP-ribose) glycohydrolase (PARG) (10). In earlier
photoaffinity labeling studies, PARP-1 was identified as the pre-
dominant BER intermediate-binding factor in the MEF cell extract
(11). Use of other binding ligands revealed PARP-1 binding speci-
ficity for the 5′-dRP-containing BER intermediate with much less
binding when an alternate BER intermediate without the 5′-dRP
group was used (12). The results are consistent with a biological
role for an interaction between PARP-1 and the 5′-dRP-containing
BER intermediate. Additionally, as discussed below and elsewhere
(3), and in agreement with the in vitro studies, we find that the
cytotoxic effects of cellular PARP inhibition correlate very well
with the presence of the 5′-dRP group in the BER intermediate.

PARP INHIBITION AND HYPERSENSITIVITY TO DNA
DAMAGE
In the presence of a catalytic inhibitor, PARP-1 can still bind to
DNA damage sites, but auto-ribosylation is prevented (1). In its
inhibited and inactivated state, PARP-1 binding to DNA is sta-
bilized, hindering the BER process (13). We have proposed that
the DNA-bound and inhibited PARP-1 molecule results in cyto-
toxicity due to formation of replication-dependent double-strand
breaks (DSBs) (14).

Experiments in MMS-treated MEFs demonstrated that PAR
synthesis was completely inhibited by the PARPi 4-amino-1,8-
naphthalimide (4-AN) (15, 16). Wild-type (WT) MEFs are highly
(40-fold) sensitized to MMS and to the methylating chemothera-
peutic agent temozolomide (TMZ) by 4-AN co-treatment (17).
Positive TMZ/PARPi potentiation data have been reported in
a number of other systems, e.g., human tumor cell lines and
xenografts (18, 19), and this combination has been successful
in phase I clinical trials in patients with solid tumors (20) or
melanoma (21). Additionally, a recently reported phase II study of
an inhibitory dose of a PARPi with TMZ in metastatic melanoma
provided evidence for chemopotentiation and increased disease-
free survival (22). The authors suggest the need for a phase III trial
comparing TMZ with TMZ+PARPi, also for evaluation of DNA
repair capacity in patients to identify those most likely to benefit
from this combination.

In contrast to the results with TMZ and MMS, co-treatment
with 4-AN has minimal effect (1.1-fold sensitization) on cellular
sensitivity to the reactive oxidant peroxynitrite (17). This agent
results in oxidative DNA modifications including 8-oxoguanine,
8-nitroguanine and single-strand breaks (23). Repair of 8-
oxoguanine initiated by the bifunctional OGG1 is not expected to

produce the 5′-dRP blocked repair intermediate. Thus, a key differ-
ence in BER following treatment with these two agents (MMS and
peroxynitrite) is initiation by a monofunctional versus a bifunc-
tional glycosylase. Only in the former case (repair of MMS damage
by a monofunctional glycosylase) will there be formation of a
repair intermediate with a 5′-sugar phosphate blocking group. The
results emphasize that the presence of the 5′-dRP blocking group
is critical for binding PARP-1 and for observing PARPi-mediated
sensitization to DNA damage.

PARP INHIBITOR EFFECTS IN BER PROTEIN-DEFICIENT AND
DEFECTIVE CELLS
The most notable phenotype of pol β null MEFs is hypersensitiv-
ity to SN2 alkylating agents such as MMS, and to SN1 alkylating
agents such as the chemotherapeutic methylating agent TMZ (24,
25). Hypersensitivity to these agents in pol β-deficient mouse
fibroblasts can be reversed by expression of either the full-length
protein or the 8 kDa dRP lyase domain with 5′-dRP gap-tailoring
activity (26). XRCC1-deficient cells are extremely hypersensitive
to monofunctional methylating agents including MMS and TMZ
(4). XRCC1 interacts with a number of repair proteins and binding
to PARP-1 is critical for recruitment of XRCC1 to damaged sites
in DNA. Thus, in PARP-1-deficient cells, recruitment of XRCC1 is
hindered (7). The interaction between the amino-terminal domain
(NTD) of XRCC1 and the polymerase domain of pol β is essential
for recruitment of pol β to sites of damaged DNA (27). Hypersen-
sitivity to MMS can be reversed by transfection of full-length WT
XRCC1 protein into Xrcc1−/− cells (28), but as observed previ-
ously in CHO cells (29), only partial reversal is observed following
expression of a mutant protein (V88R) that does not interact with
pol β. Likewise, there is no rescue of hypersensitivity following
expression of the L360R mutant XRCC1 protein that has disrupted
folding of the BRCT I domain and interrupted interaction with
PARP-1 (30, 31). The results suggest that interactions between
PARP-1, XRCC1, and pol β are required for the protective effects
of XRCC1 and pol β against MMS and TMZ exposures.

A high level of sensitization to MMS and TMZ is observed in
both pol β+/+ and pol β−/− MEFs following combination treat-
ment with 4-AN. Interestingly, the level of sensitization of pol β−/−

cells is at least double that observed in pol β+/+ cells (Figure 1A).
Thus, when utilizing the TMZ+PARPi combination, pol β null
cells become considerably more TMZ-sensitive than WT cells.
Similar pol β-dependent results were obtained with other agents
(MMS, MNU) that result in DNA damage repaired by mono-
functional glycosylase-initiated BER. We propose that through
its role in removing the 5′-dRP intermediate, pol β is able to
regulate the PARPi-mediated sensitization in TMZ cytotoxicity.
There have been numerous reports of cancer related pol β single-
nucleotide polymorphisms (32, 33). Expression of a dRP lyase
inactivating mutation would be a critical biomarker for enhance-
ment of TMZ+PARPi cytotoxicity. Additionally, current assays
for dRP repair intermediates are used with cell culture models in
laboratory research, but have not yet been adapted for clinical use.
Such adaptation of these techniques represents an opportunity for
translational research. Ongoing studies will address this question.

In contrast Xrcc1+/+ WT cells are more highly sensitized
(two to threefold) to MMS and TMZ than are Xrcc1−/− cells
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FIGURE 1 | PARPi-mediated sensitization to MMS andTMZ and
ability of XRCC1 to interact with pol β. (A) Relative sensitization in
wild-type and repair protein-deficient MEFs (as indicated) by a 24 h
exposure to the PARPi 4-AN. Pol β-deficient cells are more highly
sensitized than the wild-type line (green), while XRCC1-deficient cells are
less sensitized (purple). (B) Level of PARPi-mediated sensitization to
MMS in Xrcc1+ /+ (WT) and Xrcc1−/− (null) MEFs, and in XRCC1 null cells
expressing mutated XRCC1 proteins (L360R, V88R and C12A) as
indicated. (C) The XRCC1 NTD has been crystallized in two forms:
oxidized and reduced (34). An overlay of the oxidized (colored, PDB ID
3LQC) and reduced (light gray, PDB ID 3K75) forms indicates that the

amino-termini are on opposite sides of this domain (Nox and Nred,
respectively). Accordingly, the interactions around the amino-termini are
very different for these two forms. The cysteine residues (C12 and C20,
respectively) that participate in disulfide bond formation in the oxidized
form are indicated. (D) ‘V88’ (green) of mouse NTD forms a hydrophobic
interaction with V306 (gray) of pol β. This portion of the pol β-binding
interface is similar for both the oxidized and reduced forms of the NTD,
and includes the hydrophobic interaction of XRCC1 ‘V88’ with V306 of pol
β. V88 corresponds to V86 of the structurally characterized human NTD of
XRCC1. Replacing this valine with arginine (V88R) significantly reduces
the interaction between these proteins (28).

(Figures 1A,B). Thus, the interaction between XRCC1 and
PARP-1 proteins appears to be required for the strongest PARP-
inhibitor-mediated sensitization. Expression of WT XRCC1 will
stabilize the protein complex through its accessory protein
functions, and this will allow for more efficient PARP bind-
ing to the 5′-dRP-containing BER intermediate. Another pos-
sibility, that XRCC1 may modulate the dRP lyase activity of
pol β, is being tested in the laboratory. Sensitization in cells
expressing the L360R mutated XRCC1 protein without inter-
action with PARP-1 (30, 31) was similar to that in Xrcc1−/−

cells (Figure 1B), consistent with the proposal that the inter-
action between XRCC1 and PARP-1 enables the sensitization.
In Xrcc1−/− cells expressing an XRCC1 mutant (V88R) that
is compromised in its ability to bind pol β, sensitization to
MMS was also about half of the level observed in WT cells
(Figure 1B).

Pol β and XRCC1 interact through a redox-sensitive binding
interface in the N-terminal domain (NTD) of XRCC1 (34), and
equal levels of both oxidized and reduced forms of the full-length
protein are found in untreated WT MEFs (28). Structural char-
acterization of both oxidized and reduced forms of the XRCC1
NTD reveal that they have distinct conformations (Figure 1C)
and a different pol β functional interaction, with the oxidized
form binding tighter to pol β (34). The disulfide bond between
C12 and C20 required for stabilizing the oxidized form is evi-
dent in the structure shown, whereas C12 and C20 are far apart
in the reduced form (Figure 1C). Nevertheless, some portions
of the pol β-binding interface are similar for both the oxidized
and reduced forms of the NTD, and this includes the hydropho-
bic interaction between V306 (Figure 1D) of pol β and V88 of
mouse XRCC1 NTD (“V88”). Cells expressing C12A XRCC1 pro-
tein locked in the reduced state are equally as MMS resistant as
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WT cells (28). However, cells expressing reduced C12A XRCC1
have a considerably lower level of PARPi-mediated sensitization
than WT cells (5- and 23-fold, respectively) (Figure 1B). These
results are consistent with the requirement for tight XRCC1-pol
β interaction for strong PARPi-mediated sensitization (V88R in
Figure 1B). However, the extremely low PARPi-mediated sensiti-
zation in the cells expressing the reduced XRCC1 protein suggests
there may be additional XRCC1 effects linked to its ability to take
the oxidized form.

Pol β null cells are minimally hypersensitive to DNA oxidants
such as peroxynitrite, IR, and bleomycin where repair of oxida-
tive DNA damage does not involve significant formation of an
intermediate with a 5′-sugar phosphate. The low PARPi sensiti-
zation observed in WT cells for peroxynitrite co-treatment was
also seen in pol β-deficient cells (17), and similar data (≤3-
fold sensitization) were obtained for clinically utilized IR and
the radiomimetic agent bleomycin. Bleomycin results in forma-
tion of ROS, oxidized sugars and abasic sites with 3′-blocking
groups such as 3′-phosphoglycolate (35), and repair may involve
pol β and BER, but the 5′-sugar phosphate blocking group is
not abundantly formed. Again the results suggest a requirement
for a 5′-sugar phosphate-containing repair intermediate for sig-
nificant cellular hypersensitivity in pol β-deficient cells. Simi-
larly, despite the hypersensitivity of Xrcc1−/− cells to methylating
agents, only low-level hypersensitivity is observed to oxidative
DNA damage (4).

Taken together, these results are consistent with a correlation
between formation of the 5′-dRP blocking group and the degree
of PARPi-mediated sensitization. In the absence of pol β, cells
will be deficient in the 5′-dRP gap-tailoring activity, allowing for
enhanced binding of PARP-1 to DNA damage and for more PARPi-
mediated sensitization. These cells therefore demonstrate the con-
cept of synthetic lethality occurring under conditions of PARP
inhibition in the presence of pol β-deficiency. The notion of syn-
thetic lethality explains the vulnerability of cells that are deficient
in one pathway in repair (here pol β-mediated BER) and then have

repair additionally blocked by a chemical agent (e.g., a PARPi). A
similar well-appreciated situation occurs when PARPi are used
in BRCA- and other homologous recombination-deficient cells
and tumors (36–38). The expression level of specific repair pro-
teins is expected to modulate the degree of PARPi-mediated
sensitization. The chemistry of DNA damage and repair also
regulates PARPi effects, since in the absence of the 5′-dRP group-
containing repair intermediate, there is minimal PARPi-mediated
sensitization.

MODEL FOR PARP INHIBITOR-MEDIATED CELL KILLING
PARP inhibitors have become valuable in chemotherapy as part of
a combination regime or as monotherapy. In MEF model systems,
the magnitude of the cell killing effect of a PARPi in combina-
tion with a genotoxic agent is dependent on the chemistry of the
DNA repair intermediate. Inhibition of PARP when it is bound to
a 5′-dRP group-containing intermediate results in a dramatic cell
sensitization. In contrast, if the repair intermediate does not have
the 5′-dRP group, both PARP-1 binding and inhibitor-mediated
sensitization are minimal.

A schematic model consistent with these results is shown in
Figure 2. It is important to note that the current results do not
prove this model, but instead the model is useful as a framework
for designing future experiments. The model illustrates a replica-
tion fork colliding with the BER repair protein complex bound at
the 5′-dRP-containing site in double-stranded genomic DNA. The
replication fork moves in the direction of the arrow and becomes
stalled at the protein complex, consisting of PARP-1, pol β, and
XRCC1, among other proteins not shown in the image. Replication
fork stalling is proposed to lead to fork collapse, DSB formation,
and eventually to cell death. Thus, fork stalling is proportional to
cell killing, at least in the context of this model. The model predicts
that in the absence of inhibited PARP-1 or the 5′-dRP group, the
protein complex will not form.

Pol β is able to remove the 5′-dRP group from repair inter-
mediates. In pol β null BER-deficient MEFs, excess 5′-dRP

FIGURE 2 | Schematic model illustrating PARPi-mediated cell killing.
Shown is a replication fork colliding with the BER repair complex bound at the
5′-dRP of the BER intermediate. The replication fork moves in the direction

indicated by the arrow and becomes stalled at the protein complex. We
propose that stalling leads to replication fork collapse, DSB formation, and cell
death.
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group-containing intermediates may accumulate, and PARP-1
binding and PARPi-mediated sensitization will be considerable.
The model illustrates that the dRP group is key for PARP-1 bind-
ing, such that in the absence of pol β dRP lyase activity, there is
more PARP-1 binding and more PARPi-induced cell killing. In the
absence of XRCC1, pol β binding at damaged DNA is decreased
and this is expected to lead to diminished dRP group removal
and more cell killing. Further, the model predicts that in the
absence of XRCC1 the stability of the complex will be reduced,
and consequently the replication fork may be able to bypass the
complex without stalling. The weaker affinity of the reduced form
of XRCC1 for pol β is consistent with a less stable overall com-
plex, more replication fork bypass, and less PARPi-mediated cell
killing as observed experimentally. The results are consistent with
this prediction in that the absence of XRCC1 expression, or less
binding of XRCC1 to PARP-1 or pol β, is associated with lower
PARPi-mediated sensitization.

In summary, PARPi are under study for use in can-
cer chemotherapy and here we report that the ability for
PARPi-induced sensitization in model mammalian cell lines
(mouse fibroblasts) correlates with the chemistry of DNA repair
intermediates. Surprisingly, we find that in the absence of the
5′-dRP group-containing repair intermediate, there is minimal
PARPi-mediated sensitization. Additionally, we show that the pres-
ence of functional BER factors pol β and XRCC1 regulate PARPi-
induced sensitization, but this is only under conditions where the
5′-dRP group is formed.
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