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The notion that targeted drugs can unplug gain-of-function tumor pathways has revitalized
pharmaceutical research, but the survival benefits of this strategy have so far proven mod-
est. A weakness of oncogene-blocking approaches is that they do not address the problem
of cancer progression as selected by the recessive phenotypes of genetic instability and
apoptotic resistance which in turn arise from loss-of-function – i.e., undruggable – defects of
caretaker (e.g., BRCA, MLH1) or gatekeeper (e.g.,TP53, PTEN ) suppressor genes. Genetic
instability ensures that rapid cell kill is balanced by rapid selection for apoptotic resistance
and hence for metastasis, casting doubt on the assumption that cytotoxicity (“response”)
remains the best way to identify survival-enhancing drugs. In the absence of gene therapy,
it is proposed here that caretaker-defective (high-instability) tumors may be best treated
with low-lethality drugs inducing replicative (RAS-RAF-ERK) arrest or dormancy, causing
“stable disease” rather than tumorilytic remission. Gatekeeper-defective (death-resistant)
tumors, on the other hand, may be best managed by combining survival (PI3K-AKT-mTOR)
pathway blockade with metronomic or sequential pro-apoptotic drugs.
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INTRODUCTION
Tolstoy’s Anna Karenina begins, “All happy families are alike, but
all unhappy families are unhappy in their own special ways.” This
is a literary way of saying that there are more ways for complex sys-
tems to go wrong than to remain right, and helps to explain why
cancer remains the most challenging of human diseases. It also
hints at why current approaches to drug development continue to
yield frustratingly marginal benefits (1).

Common cancers arise from the progressive accumulation of
common genetic errors, most of which subvert the function of
normal cell-regulatory genes. If a germline defect in one of these
regulatory genes predisposes to familial or heritable cancers, the
nomenclature “tumor suppressor gene” has often been used. In
1997 Kinzler and Vogelstein noted that most tumor suppressor
genes fall into just two functional categories: “caretaker” genes
that repair DNA and maintain genetic stability, or “gatekeeper”
genes that regulate cell-cycle progression and apoptosis (2). This
semantic dichotomy is too simple (3), of course, given that genetic
instability is exacerbated by gatekeeper gene defects that permit
survival of cells which would otherwise self-destruct, whereas
apoptotic resistance is worsened by caretaker defects that impair
sensing of potentially lethal insults by the afferent limb of the DNA
damage response (4). Nonetheless, as argued below, the potential
utility of this model (5, 6) – contrasting as it does with more

Abbreviations: CIN, chromosomal instability; CT, chemotherapy; EGFR, epi-
dermal growth factor receptor; ER, estrogen receptor; HT, hormonal therapy;
MMR, mismatch repair; MSI, microsatellite instability; MSS, microsatellite stability;
PARP, poly(ADP-ribosyltransferase) polymerase; PR, progesterone receptor; VEGF,
vasoactive endothelial growth factor.

complex but less user-friendly models of cancer biology (7) – has
not yet been exploited in clinical practice or research.

The ability of a cell to engage in oncogenic oversignaling implies
selection for a pre-existing suppressor gene defect, given that nor-
mal cells with intact control pathways typically succumb to cell
death as a result of constitutive hyperstimulation (8). For this rea-
son alone, cancer treatment strategies focused solely on “driver”
pathway inhibition seem likely to fail – for no sooner is the prover-
bial plug extracted from the driver pathway than the underlying
apoptotic gene defect permits selection for heterologous pathway
upregulation and/or additional oncogenic events, manifesting as
a rapidly proliferative (high Ki67) tumor outgrowth reflecting the
suppressor gene mutation burden (9). This problem is made even
worse by coexisting caretaker defects that speed selection and cell
adaptation – a useful coping mechanism for germline (species)
evolution (10), but yet another therapeutic hurdle for restoring
phenotypic stability to growing neoplasms.

A further impediment to the vision of personalized cancer
medicine is that the heterogeneity of molecular defects within
tumors far exceeds the existing range of targeted drugs. Broader
characterizations of dominant tumorigenic pathway dysfunction,
reflecting the relative overactivity of major signaling cascades –
those mediated by RAS-ERK (replication) vs. PI3K-AKT (survival)
signaling – could usefully guide clinicians as to best treatment deci-
sions; with regard to the latter pathways, for example, whether to
prioritize replication arrest and thus slow progression of genetic
instability, or instead to focus on apoptotic sensitization by block-
ing mTOR upregulation originating from, say, PIK3CA mutations
or heregulin- and insulin-related oversignaling (11–13). An exam-
ple is detailed in our recent report of a patient with refractory

www.frontiersin.org December 2013 | Volume 3 | Article 304 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2013.00304/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2013.00304/abstract
http://www.frontiersin.org/people/u/116836
mailto:repstein@stvincents.com.au
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Epstein Suppressor gene defect treatment strategies

progressive colorectal cancer which was mismatch-repair (MMR)-
deficient, KRAS wild-type, and BRAFV600E-mutant, who appeared
to benefit from a small-molecule BRAF inhibitor (14) only when
an epidermal growth factor receptor (EGFR) inhibitor was co-
prescribed to block this interfering anti-apoptotic pathway (15).

THE CLINICAL CHALLENGE OF SUPPRESSOR GENE DEFECTS
The crisis of blockbuster drug development in today’s omics-
obsessed pharmaceutical industry (16) originates in part from
commercial strategies that rely on unplugging “addicted” onco-
gene targets as a seductively simple solution to the cancer problem
(1, 17). This approach may work for rare oncogene-expressing
tumor types with low genetic instability, such as chronic myeloid
leukemia or medullary thyroid cancer (18), but common cancers
are complicated by a shifting balance: for every oncogenic driver
pathway, there is a permissive spectrum of suppressor gene defects
lurking in the molecular background which begin to erode survival
gains as soon as signaling blockade is achieved. These suppres-
sor defects are loss-of-function in type, and hence undruggable
by standard pharmacologic approaches (19) which continue, for
sound technical reasons, to focus on enzyme and/or receptor inhi-
bition (20). As indicated in Table 1, clinical use of such drugs
selects rapidly for a cascade of downstream control defects that
accelerate both tumor resistance and disease progression (21).

The challenge of networking a drug-based solution to this
Humpty-Dumpty-like panoply of covert genetic errors (22) –
not least in mutation-rich tumors such as smoking-related lung
cancer, or inflammation-induced hepatocellular carcinoma – has
long been consigned to the “too-hard basket” by clinicians and
Big Pharma alike. The most immediate prospects for progress
may well lie in the field of lifestyle-related cancers (e.g., breast,
colon, prostate) where the burden of hard-wired gene defects
is an order of magnitude lower than in carcinogen-dependent
tumor types (23). This logic is illustrated by the observation
that papillomavirus-associated oropharyngeal cancers, which are
specifically initiated by viral E6/E7 oncoprotein blockade of p53
and pRb gatekeeper gene function, have a superior progno-
sis to smoking-induced cancers of the same anatomic site and
morphology (24).

So where should we go from here? The caretaker/gatekeeper
model of tumor progression provides a starting point. Con-
sider, for example, tumors caused by mutations of caretaker
gene function, such as MMR-defective colorectal cancer, whether
sporadic or familial (25). These tumors are associated with
numerous somatic mutations (23) consistent with their defining
microsatellite instability (MSI); despite this, they are associated
with better prognosis than stage-matched microsatellite-stable
(MSS) tumors (26), consistent with a lack of major gate-
keeper defects driving metastasis (27, 28). Adjuvant fluoropy-
rimidine chemotherapy appears of less benefit in MSI tumors
(29) – partly reflecting the more favorable natural history of
these cancers, to be sure, but plausibly also reflecting fail-
ure of misincorporated antimetabolites to trigger MMR and
hence activate programed cell death (4) – whereas retrospec-
tive analyses have suggested that microenvironment-modulating
drugs could selectively improve survival in this tumor sub-
type (30).

Table 1 | Sequence of steps in cancer drug development.

Research phase Therapeutic priority

Basic Identification of tumor-specific oncogenic “driver”

target

Translational Synthesis of target-specific driver-inhibitory drug

Clinical Empirical characterization of inhibitor-induced

secondary resistance problems, reflecting increased

apoptotic threshold (gatekeeper pathway defect), and/or

increased genetic instability (caretaker pathway defect)

The initial step (basic research) involves identification of a pro-mitotic “driver”

protein implicated in tumor growth.The next (translational) step involves isolation

of a lead compound or synthetic drug capable of inhibiting functional activity of

the driver protein – usually an enzyme or receptor. The final steps involve clinical

trials assessing not only the drug’s safety and dosimetry (phase 1) and the tumo-

rilytic efficacy (phase 2), but also the durability or otherwise of tumor-inhibiting

efficacy, and hence any survival gain compared to standard treatments (phase

3). Unfortunately, dynamic reductions in the durability of drug control – as dis-

tinct from de novo resistance – often arise from secondary selection for repair

defects (accelerating tumor progression) and/or apoptotic defects (reducing tumor

response).

Conversely, germline mutations of the gatekeeper gene TP53
give rise in vivo to breast cancers which are HER2-overexpressing
in ∼80% cases (31), supporting the view that apoptotic defects are
a prerequisite for clonal outgrowth of such tumors (8), while also
suggesting a clinical opportunity to reduce this defect and thus
enhance chemosensitivity. Since the HER2 protein heterodimer-
izes preferentially with HER3 (32) – which, by virtue of numer-
ous YXXM peptide motifs in its carboxyterminal tail (33), is a
potent driver of the anti-apoptotic PI3K-AKT-mTOR pathway
(34) – therapeutic inhibition of HER2-initiated signaling can
be predicted to augment tumor cell kill by chemotherapy. This
accords with experience in the clinic, where trastuzumab (Her-
ceptin™) greatly increases chemotherapy efficacy (35) yet con-
fers only minor clinical benefits when used as monotherapy (36,
37). Moreover, trastuzumab resistance is acquired during treat-
ment via new activating PIK3CA mutations and/or PTEN losses
(38–40), with drug sensitivity capable of being restored by down-
stream blockade of this pathway (41). This example illustrates
how “undruggable” apoptotic defects (such as those mediated
by mutant TP53) may be remedied by targeting more readily
druggable heterologous pathway upregulation (such as mTOR
signaling).

This approach could be extended to less well-defined clini-
cal contexts by elucidating broad patterns of oncogenic pathway
activation using phosphoproteomic fingerprinting (42). Genome
sequencing analyses of lifestyle cancers have confirmed that the
usual genetic stigmata of tumorigenic transformation comprise a
small group of aberrations (43–46), consistent with the model
of tumor suppressor gene loss proposed above: namely, anti-
apoptotic dysfunctions affecting either TP53 (including those
secondary to BRCA mutations (47) or PTEN ; gain-of-function
mutations affecting KRAS or PIK3CA; or MSI (flagged by low
MMR expression on histochemistry) with or without activating
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BRAF mutations (48). If tomorrow’s clinicians can interpret this
unambiguous molecular language, rational treatments may indeed
become customizable for patients.

Further support for the notion of suppressor-led therapeutics
comes from studies showing restoration of hormone-sensitivity
to breast (49) and prostate cancers (50) using mTOR pathway
inhibition. PTEN deletions are amongst the commonest of all
genetic lesions in hormone-dependent cancers (51), and activation
of PIK3CA-inducible biomarkers correlates with both preclinical
(52) and clinical response to the oral mTOR inhibitor everolimus
(53). The logic of using a downstream inhibitor to block the conse-
quences of an otherwise undruggable upstream gene defect is thus
supported, reinforcing lessons learned from constitutive KRAS-
mutant-activated colorectal cancer in which upstream RAS-ERK
blockade by EGFR antibodies is ineffective (54). Different lesions
upregulating the mTOR signaling pathway may have non-identical
therapeutic implications (55), however, emphasizing that predic-
tion of effective tumor targeting may come to involve more than
a one-off genetic predictive assay.

DISCOVERY OF A “BRCA ATTACKER”?
Recent advances in the field of BRCA mutant cancers have like-
wise kindled fresh interest in the nascent field of suppressor-based
therapeutics (56). Like MMR gene mutations, BRCA mutations
are relatively common caretaker defects in the population at large,
with this heterozygote frequency perhaps having been maintained
by lethal epidemics such as bubonic plague (57). This raises the
counterintuitive hypothesis that BRCA mutations may give rise
to a population survival advantage under extreme environmen-
tal selection pressures – a hypothesis supported by an analysis
of spontaneous abortions that showed an unexpected reduction
in lifetime miscarriage frequency among BRCA mutant carriers
(25.2%) compared to non-carriers (29.1%), correlating with a
higher number of full-term pregnancies (2.15 vs. 1.94) (58). This
is also consistent with our model of programed genetic instability,
which posits that an evolutionarily conserved sequence-dependent
(CpG-based) predisposition to germline caretaker gene mutation
permits genomic plasticity and species adaptivity – i.e., positive
selection facilitated by a mutator phenotype (59) – in response to
changes in environmental stress (10). The mutability of caretaker
genes such as BRCA1/2 may thus be a two-edged sword depending
on the genomic context, with survival gains for an adapting species
under apoptotic stress (47) ultimately overriding the minor mor-
tality costs of cancer in older individuals due to somatic genetic
instability.

Viewed from this evolutionary perspective, the discovery
that therapeutic inhibition of poly(ADP-ribosyltransferase) poly-
merase (PARP) enzymes selectively enhances cytotoxicity in BRCA
mutant tumor cells deficient in homologous recombination (60–
62) – the novel paradigm of synthetic lethality (63) – merits
cautious appraisal (64, 65). Like BRCA proteins (66), PARPs are
implicated in the maintenance of genome stability (67), either by
forming a “sugar plug” across DNA single-strand breaks when
enzymatically cleaved during a potentially cell-lethal damage
response, or else by blocking replication and thus enhancing repair
when remaining bound to DNA while still intact. The problem
of instability-induced resistance therefore remains pivotal to the

clinical promise (i.e., the survival benefit – as distinct from tumor
response) of PARP inhibitory therapy for BRCA mutant disease
(68). Since both BRCA1/2 and PARP1/2 proteins are required for
normal genetic stability, reduced (defective or inhibited) BRCA
(69) and/or PARP function could plausibly accelerate resistance
(70) and/or disease progression (68), thereby offsetting short term
benefits of PARP1/2 blockade in certain subsets of BRCA mutant
tumors (71).

Chromosomal instability (CIN) markers such as telomere
allelic imbalance or quadriradial chromosomes indicate the
“BRCAness” (i.e., genomic instability due to impaired error-free
homologous recombination/repair) of tumors – even tumors lack-
ing BRCA gene mutations, such as those with BRCA gene promoter
methylation (72). Of note, such BRCAness correlates positively
with tumor response rates to alkylating chemotherapy drugs like
cisplatin – as indeed does PARP1/2 gene knockout in mice – yet
negatively with responses to taxane-based chemotherapies (73).
Similarly, the clinical observation that BRCA-mutant patients do
not exhibit hypersensitivity to ionizing radiation (74) raises a more
nuanced interpretation of this genotype than that of a damage
sensitization predictor. Moreover, given that BRCAness implies
a default (salvage) increase in error-prone DNA repair, such as
must presumably be associated with greater genetic instability,
high chemotherapy response rates of such tumors (75) may not
necessarily yield overall survival benefit. Notwithstanding these
caveats, the potential contribution of combined PARP inhibitor
and alkylator chemotherapy will remain an important priority for
clarification in the palliative context.

PUTTING HUMPTY DUMPTY BACK TOGETHER
The insights outlined above point to the emergence of an excit-
ing new era in cancer management. For the foreseeable future,
however, progress against common solid tumors is likely to
remain incremental rather than transformational for the following
reasons.

First, there will remain serious difficulties in rectifying complex
loss-of-function molecular defects on a durable basis, especially in
high-grade poorly differentiated carcinomas with heavy mutation
loads affecting both caretakers and gatekeepers.

A second and related problem concerns the “moving goalposts”
of the cancer problem, reflecting therapeutic frustration over time
due to the target-evading double-hit of genetic instability and
apoptotic resistance. Modern genomic fingerprinting assays pro-
vide an impressive molecular snapshot of malignant processes at
any one time, but development of a more dynamic “molecular
film” technology is now needed to predict disease biology as it
affects treated patients in real time. An ideal management strat-
egy will be to minimize tumor genomic instability by slowing
cell replication to the point of dormancy – i.e., as distinct from
current ablative strategies of killing the most apoptosis-sensitive
tumor cells upfront, inadvertently driving Gompertzian growth
and metastasis of the remaining resistant cells in the longer term
(76). This strategy would seem most plausible in lifestyle-related
cancers, which appear driven in part by environmentally sensi-
tive epigenetic defects (77). Changing clinical trial strategies to
focus less on response and more on disease stabilization is a
key step in this direction, whereas false economies in pursuing
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commercially optimistic but biologically misguided designs need
conscious avoidance.

Third, it is vital to be aware that cancer growth is regulated
by numerous factors outside the tumor itself – e.g., metabolic,
endocrine, immune, stromal – which cannot be analyzed or pre-
dicted by even the most comprehensive tumor-centric analyses.
Cancer is not like an infection which can be cultured to determine
its drug sensitivity in vitro; rather, it is a disease of a multicellu-
lar biological system in which breakdown of regulatory crosstalk
between normal and transformed cells is the primary problem
(78). Immune modulation may provide one such extra-tumoral
approach to “immunogenic” malignancies such as renal cell car-
cinoma or melanoma (79), though this strategy could prove less
relevant to lifestyle-related or smoking-related neoplasms. Deep-
ening insights into the independent tumorilytic sequelae of dieting
(reduced insulin axis survival signaling), fat reduction (reduced

pro-inflammatory NFκB signaling), and exercise (increased pro-
apoptotic AMPK pathway activation) may help lead the way
toward this objective (80).

Similarly, the judicious adjuvant use of cytotoxic chemother-
apy to induce stromal toxicity and thus trigger micrometastatic
apoptosis due to paracrine loop disruption – for example, in
the relatively unexplored context of high-grade prostate cancer –
remains as rationally justified as more costly molecularly targeted
initiatives. Indeed, it is becoming understood that toxicity can
often be a reliable predictor of anticancer drug benefit (81, 82),
consistent with a role for normal cell interaction in tumor via-
bility and progression. Other drug classes that may not affect
tumor response or survival in the metastatic setting – e.g., pro-
tease inhibitors, or antagonists of G-protein-coupled receptors
(83) – could still provide first-in-class targets by which to block
metastasis in the adjuvant setting, thus improving survival.

Table 2 | Examples of tumor types differing in extent of caretaker/gatekeeper suppressor gene dysfunction, together with suggested

therapeutic strategies.

High-instability tumors Apoptosis-resistant tumors “Double-trouble” tumors

Examples Predicted treatment

strategy

Examples Predicted treatment

strategy

Examples Predicted treatment

strategy

Premenopausal

ER-positive,

PR-negative, BRCA

mutant, moderate Ki67,

invasive ductal breast

cancer (luminal B)

Adjuvant: bolus CT (to

disrupt

stromal-epithelial

micro-metastatic

niches), then

continuous HT

(≥5 years)

Postmenopausal ER/PR-

rich, BRCA wild-type,

low-Ki67, PTEN -deleted

or PIK3CA-mutant,

invasive ductal breast

cancer (luminal A)

Adjuvant: long-term

continuous HT

(≥10 years)

Triple-negative

(ER-absent) invasive

ductal breast cancer:

BRCA mutant, TP53

mutant, high Ki67

(basaloid)

Adjuvant: bolus CT (to

disrupt stromal-epithelial

micro-metastatic niches)

Palliative: sequential

HTs, plus mTORi on

progression

Palliative: sequential

HTs, then sequential

alkylator-based CTs,

plus PARPi on

progression

HER2-amplified, ER-poor,

TP53 mutant, moderate

Ki67, invasive ductal

breast cancer

Adjuvant:

HER2i-primed bolus

CT
Palliative: HER2i-

primed metronomic

CT, plus mTORi on

progression

Palliative: sequential CTs

using alkylator-based

regimens, plus PARPi, or

mTORi on progression

ER-rich, BRCA wild-type,

PIK3CA-mutant, low-Ki67,

CDH1-mutant, classic

lobular breast cancer

Adjuvant: continuous

HT (≥5 years)

Palliative: sequential

HTs, plus mTORi on

progression

Proximal colorectal

cancer, MSI, TP53

wild-type, BRAF

mutant, KRAS wild-type

Adjuvant: bolus

alkylator-based CT

Distal colorectal cancer,

MSS/CIN, TP53 mutant,

BRAF wild-type, KRAS

mutant

Adjuvant: bolus

fluoropyrimidine+

alkylator-based CT

MSI+CIN colorectal

cancer

Adjuvant: bolus fluoropy-

rimidine+ alkylator-based

CT

Palliative: sequential

CTs using antibodies to

VEGF or EGFR; then

dual BRAF-EGFR

blockade

Palliative: sequential

CTs using antibodies

to VEGF as needed

Palliative: sequential CTs

using sensitizing

antibodies to VEGF

continuously

CIN, chromosomal instability; CT, chemotherapy; EGFR, epidermal growth factor receptor; ER, estrogen receptor; HER2I, HER2 inhibitor; HT, hormonal therapy; MSI,

microsatellite instability; MSS, microsatellite stability; mTORi, mTOR inhibitor; PARPi, PARP inhibitor; PR, progesterone receptor; VEGF, vasoactive endothelial growth

factor.
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The implications of this paradigm shift for clinical practice
could prove to be profound. If a given tumor, such as glioblas-
toma, is characterized by high apoptotic resistance but low genetic
instability, treatment may be focused on lowering the apoptotic
threshold, e.g., by using PI3K-AKT-mTOR inhibitors (84). On
the other hand, if a tumor exhibits high genetic instability dri-
ving widespread metastasis – e.g., BRAF mutant melanoma – then
reducing tumor replication by damping down RAS-ERK signal-
ing could slow worsening instability (85). Additional examples
illustrating this clinical research strategy are shown in Table 2.

CONCLUSION
There are now growing justifications for incorporating assess-
ments of genetic instability and apoptotic resistance into therapeu-
tic anticancer strategies and clinical trial designs. It is important to
concede that not all tumors may lend themselves to this relatively
simple classification, and more sophisticated modeling paradigms
will undoubtedly be developed in the future. Even in the short
term, however, greater awareness of these important phenotypic
variables may improve the prospects for drug-induced disease
control and survival gain in a significant subset of cancer patients.
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