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This article presents a general discussion on what has been achieved so far and on the
possible future developments of targeted alpha (α)-particle therapy (TAT). Clinical appli-
cations and potential benefits of TAT are addressed as well as the drawbacks, such as
the limited availability of relevant radionuclides. Alpha-particles have a particular advan-
tage in targeted therapy because of their high potency and specificity. These features are
due to their densely ionizing track structure and short path length. The most important
consequence, and the major difference compared with the more widely used β−-particle
emitters, is that single targeted cancer cells can be killed by self-irradiation with α-particles.
Several clinical trials on TAT have been reported, completed, or are on-going: four using
213Bi, two with 211At, two with 225Ac, and one with 212Pb/212Bi. Important and concep-
tual proof-of-principle of the therapeutic advantages of α-particle therapy has come from
clinical studies with 223Ra-dichloride therapy, showing clear benefits in castration-resistant
prostate cancer.

Keywords: targeted alpha therapy, alpha emitters, radionuclide therapy, dosimetry, ovarian cancer, cancer

INTRODUCTION
In radioimmunotherapy (RIT), monoclonal antibodies (mAb) are
conjugated to radionuclides, which provide a specific internal
radiotherapy. The clinical success so far has been achieved with the
beta (β−)-emitting (electrons) nuclides 90Y and 131I, conjugated
to anti-CD20 mAb in follicular B-cell non-Hodgkin lymphoma.
The lack of success in the adjuvant setting in solid cancer (i.e., with
microscopic tumor burden) may be due to the fact that emitted
electrons do not deposit their main energy to the micro-metastatic
tumor cells where the antibody has bound; rather, the energy (and
its effects) will be released along a several millimeter long electron
track, i.e., in the surrounding healthy tissue, see Figure 1.

This review concerns targeted alpha (α)-particle therapy (TAT),
where α-emitting nuclides are conjugated to a carrier, normally
an antibody. Alpha-particle decay is the release of a heavy and
energetic particle, which deposits its energy in a 70–100 µm
long track, i.e., within microscopic tumor cell clusters. Impor-
tantly, this high linear energy transfer (high-LET) radiation is
not dependent on active cell proliferation or oxygenation, and
the resulting DNA damage caused by α-particles is much more
difficult to repair than that of β−. Thus, highly cytotoxic radi-
ation directed to the relevant tumor cell deposits holds the
promise of adding substantially to hitherto failing curative adju-
vant chemotherapy both when administered intraperitoneally
(i.p.) for ovarian cancer, and as a systemic curative adjuvant
treatment for breast, colon, prostate, and other malignancies,
constituting a “systemic conformal radiotherapy at the cellular
level.”

Monoclonal antibodies are so far the most commonly used
vector (1, 2). Other targeting agents include substrate analogs,
normally in the form of peptides (3, 4), or ligands like folic acid
(5). The mAb can be the whole immunoglobulin molecule or frag-
ments like F(ab′)2 or single chain, diabodies, etc. Clearance and
tumor uptake vary with size and pharmacokinetic properties, and
mAb can now even be tailor-made (6).

A brief introduction to the relatively small number of early
stage clinical studies using TAT in a variety of situations will
follow, i.e., in recurrent brain tumor (7–9), recurrent ovarian
cancer (10), human epidermal growth factor receptor-2 (HER-2)
positive i.p. cancers (11), myelogenous leukemia (12–16), non-
Hodgkin lymphoma (17), and metastatic melanoma (18, 19).
There is also one randomized placebo-controlled trial using 223Ra-
dichloride (having a high affinity for bone tissue) for sympto-
matic skeletal metastases in prostate cancer, the use of which
is now approved by the US Food and Drug Administration
(FDA) (20).

HOW COULD TAT BE INTEGRATED IN THE CLINIC?
Today, the multimodal therapeutic approach often includes local
gross-tumor eradication by surgery or external radiotherapy,
together with or followed by regional adjuvant radiotherapy, and
eventually systemic adjuvant chemotherapy. The order of these
interventions may differ. As outlined, TAT is mainly aimed at
microscopic residual disease and is therefore perhaps best used
after adjuvant chemotherapy, but the timing and situation can
vary. A number of thematic situations where TAT has, or may,
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FIGURE 1 |The favorable geometric situation for α-particles in
small-scale metastases (e.g., in the adjuvant setting) is depicted in a
scanning electron microscopy micrograph of micro-metastatic
clusters from ovarian cancer on the peritoneal lining (mouse). The
range of the α-particles in red (here ~50–70 µm), can hardly reach the
surrounding normal healthy cells other than possibly the mesothelium

and its sub-layer. They cannot reach the epithelial cells of the intestinal
lining. The situation for β− particles on the other hand, shows that a great
deal of its energy will be deposited far away from the binding site and
possibly into healthy tissue as demonstrated by the white dashed line
(here ~700 µm). Consequently, it may add to side effects. Bar equals
100 µm.

be used are shortly discussed, relating both to the route of
administration and/or a specific intention.

Intra-cavity administration is a natural starting point for the
introduction of TAT in humans. By this approach, the risk of
general side effects of critical organs, e.g., bone marrow, is min-
imized. Similarly, it reduces the risk of unknown toxicity due
to unforeseen microscopic accumulation of the radioimmuno-
complex elsewhere in the body. This relates to the use of α-particle
emitters with relatively short half-life, such as 213Bi (~45 min)
and 211At (~7.2 h), because most of the radioactive decay will
occur within the specific cavity before the substance is distrib-
uted throughout the body via the systemic and lymphatic systems.
Indeed, this has been proved in recurrent malignant gliomas and
for i.p. treatment of ovarian cancer (9–11). In tumor resection
cavities, the anti-tenascin mAb 211At-81C6 was administered to
18 patients with recurrent brain tumors with no grade 3 or higher
toxicity, and it was concluded to be a safe treatment with some
positive effects (9). With equally low toxicity, the small 11-amino
acid peptide substance P (targeting the neurokinin type-1 recep-
tor) conjugated to 213Bi has been either injected in residual tumor
or in the resection cavity of glioblastoma multiforme (7, 8).

The i.p. route of administration was used in nine patients
with recurrent ovarian carcinoma using 211At-MX35, an anti-
body against sodium-dependent phosphate transport protein 2b
(NaPi2b) (10). The toxicity was mild, grade I–II, and specifically,
there was no bone marrow toxicity. This was likely related to the
fact that only 6% of injected initial activity concentration of the
infused solution could be measured in serum, which peaked at
45 h. Additionally, 212Pb conjugated to trastuzumab, an anti-HER-
2/neu receptor, for patients with HER-2 positive i.p. cancer has
corroborated a low systemic distribution (11).

Adjuvant treatment for large tumor groups, e.g., breast, col-
orectal, and lung cancer, today includes systemically delivered

chemotherapy. Although there is a clear effect on survival, in
the case of colon cancer, at most, about 30% of patients har-
boring micrometastases are cured (21). Similarly low, or lower,
figures for the total efficacy of adjuvant chemotherapy apply
for breast and other adjuvant therapies. It is thought that TAT
could be suitable for a boost, or consolidating, therapy after
primary surgery and adjuvant chemotherapy. Besides the more
common epithelial cancer where adjuvant chemotherapy is used,
it has been suggested that malignant melanoma might bene-
fit from adjuvant TAT. 213Bi-9.2.27, an antibody against human
neural/glial antigen 2 (NG2), has been administered both intra-
lesionally and i.v. in patients with metastatic melanoma with
promising results (18, 19). The adjuvant situation is also the goal
in ovarian cancer, with the benefit of using local i.p. admin-
istration (10). In future clinical trials, however, patients who
would remain disease-free even without such an adjuvant ther-
apy might be included. It will therefore be important to include
stochastic and long-term risk assessments, such as secondary
cancers and/or specific organ dysfunctions, in the therapy jus-
tification. In these cases, the equivalent absorbed doses in all
relevant organs should be calculated, including a conservative esti-
mate of the relative biological effectiveness (RBE) for the emitted
α-particles (22).

If tumor dissemination is confined to the peritoneum today,
extensive cytoreductive surgery with i.p. chemotherapy is sug-
gested for selected patients, and i.p. TAT may be used as an
additional boost therapy. An analogous local adjuvant treatment
situation would be after surgery for peritoneal or pleural mesothe-
lioma. Other multiple special-case scenarios include, e.g., opti-
mized treatment of neuroendocrine tumors expressing somato-
statin receptors, using the synthetic ligand octreotate (23), which
today are treated with β−-particles such as 177Lu, if kidney toxi-
city could be shown to be less. In the diffuse-type gastric cancer
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subset, TAT using, e.g., a mutated E-cadherin mAb may represent
an option for treatment (24).

Palliative treatment can be envisaged for relief of specific
symptoms from localized disease using the intra-cavity route of
administration like meningeal, pleural, or peritoneal carcinomato-
sis; the latter is currently being explored (11). Prolongation of
life was found with i.v. injected 223Ra-dicloride (Xofigo®, for-
merly named Alpharadin) in a placebo-controlled phase III trial
for castration-resistant prostate cancer metastases (20). Although
223Ra-dicloride is not conjugated to a targeting molecule, it can
be considered as targeted on the basis of its affinity for bone tis-
sue, due to similarities to calcium. The other study objectives, to
give symptom relief of bone metastasis and reduce skeletal events,
were also fulfilled. Hematological toxicity was surprisingly low
and a good tolerability is truly important in palliative treatment.
This drug is now also investigated for retreatment (25) and use in
combination treatment with docetaxel (26) and also in osteosar-
coma (27). A true targeted therapy (i.e., a radionuclide bound to
a tumor-specific agent) in early stage prostate cancer, with only
minimal metastatic disease, could be used before the appearance
of bone metastasis-related symptoms. At the time when only the
prostate specific antigen (PSA) level has started to increase, after
optimal local and endocrine treatment, as a possible adjunct PSA
salvage treatment.

Systemically dispersed myelo-lymphoproliferative malignancies
are more rapidly accessible for radioconjugate binding compared
with solid tumors, when considered as floating cell suspensions.
However, they do form extensive aggregates in the bone marrow

and in peripheral lymphoid tissues. RIT with the longer range, low
energyβ−-particle-emitting conjugates (Zevalin®/Bexxar®) is use-
ful for the more bulky lymphomas and are approved for follicular
B-cell non-Hodgkin lymphoma, but comes with long-lasting bone
marrow toxicity (28). The safety and feasibility of TAT with 213Bi-
lintuzumab (HuM195), a humanized anti-CD33 mAb that targets
myeloid leukemia cells, has been established (12, 14). Importantly,
anti-leukemic effects were also demonstrated, providing the first
proof-of-concept in human (12). It is suggested that when intro-
ducing TAT directly after chemotherapy, the cytoreductive effect
of the chemotherapy can enhance the possibility of a saturation
of CD33 sites by the targeted drug, which will increase the num-
ber of radionuclides delivered to leukemia cells without the need
for activity escalation (13). To even further enhance the effects, the
same mAb is now being conjugated to the in vivo α-particle genera-
tor 225Ac, which decays in a serie emitting four α-particles (15), see
Figure 2. Additionally, an on-going investigation is using the com-
bination of 225Ac-lintuzumab and the cytotoxic drug cytarabine
in older patients with acute myeloid leukemia (AML) (16). The
surface targets used today are mostly present to a certain degree
on normal hematological cells. Therefore, bone marrow toxicity is
of concern and more malignant cell-specific targets are warranted.

Regarding manifest macroscopic disease, as has been argued, this
situation might not be theoretically optimal for TAT. However,
there are some clinical indications that TAT may actually be of
use also for treating macroscopic tumors. Firstly, there is an inter-
esting phase I trial for manifest stage IV malignant melanoma
with promising results, including an objective partial response

FIGURE 2 | Decay chains. Alpha-particle emitters are in red boxes and
stable isotopes are in green boxes. The box in light green to the far
right (251Cf) indicates that although the isotope is considered stable in
medical applications (T 1/2 =898 years), it can still decay via 227Ac to
207Pb (stable). The T 1/2 is shown inside each box, and between boxes
the type of decay [α, β(−/+), or EC (electron capture)], with the probability
of each decay route occurring (expressed as %). In the figure are also

shown three alpha-particle emitters that are not mentioned in the text:
230U, 226Th, and 255Fm. Studies on the feasibility of producing 230U and its
daughter 226Th via proton irradiation of 231Pa according to the 231Pa
(p, 2n) 230U reaction have been performed (29). So far, there are no
published data on the use of these three nuclides for TAT, although
255Fm has been occasionally mentioned as a potential candidate for
targeted radionuclide therapy.
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rate of 10 and 40% of patients having stable disease at 8 weeks
(19). A total of 38 patients were treated with the 9.2.27 mAb
(against human melanoma chondroitin sulfate proteoglycan) con-
jugated to 213Bi. Secondly, preliminary reports of a phase I dose
escalation trial with 213Bi-labeled anti-CD20 against relapsed or
refractory non-Hodgkin lymphoma preliminary showed no acute
or extramedullary toxicity in two responders out of nine treated
patients (17). These results are even more promising consider-
ing the short half-life of 213Bi (~45 min), since a more long-lived
nuclide would likely have been able to penetrate the tumor masses
better, with possibly even better therapeutic effects. Thus, it is
argued that if penetration is optimized and high enough activity is
delivered to yield homogenous curative doses, also tumors in the
size range of 5–10 mm can be eradicated, as has been shown exper-
imentally (30). This potential could even be further enhanced with
the use of pre-targeting strategies (see separate section).

THE OVARIAN CANCER EXAMPLE
The ovarian cancer example aims to use RIT as a locally injected
adjuvant therapy. Unfortunately, epithelial ovarian cancer (EOC)
mortality has not decreased during the last decades, despite a
decline in incidence and treatment intensification. Diagnosis is
commonly made at an advanced stage with widespread peritoneal
dissemination; 70–75% of the patients are diagnosed at more
advanced stages i.e., >stage I. Standard therapy for stage II and
higher constitutes surgery with cytoreductive intent (i.e., removal
of as much as possible of the macroscopic tumors from the peri-
toneal surface including bilateral salpingo-oophorectomy), sup-
plemented by i.v. chemotherapy, and sometimes i.p. chemotherapy
(31). To enhance survival, trials have assessed the use of whole
abdominal or moving-strip external-beam radiotherapy (EBRT)
(32), or non-specific i.p. radiotherapy with colloid preparations
of 198Au or 32P as adjuvant therapies (33, 34). However, the
results of these studies have not justified their routine use and
long-term toxicity in normal tissues is a major concern. How-
ever, even when cytoreductive surgery and chemotherapy result
in complete remission at second-look laparotomy and normal-
ization of the serum marker cancer antigen 125 (CA-125), about
70% of patients with stage III ovarian cancer will relapse. Recur-
rence is often characterized by gradual development of ascites and
chemotherapy-resistant tumor cells, growing as peritoneal micro-
scopic cell deposits, eventually leading to intestinal adhesions and
bowel obstruction.

Chemotherapy injected i.p. in the abdominal cavity can result
in both a reduction in recurrences and a decrease in mortal-
ity, although at the cost of increased normal tissue toxicity (35,
36). The advantage of i.p. administration compared with i.v.
injection for localizing radiolabeled mAb to microscopic peri-
toneal tumor disease was shown in earlier studies, both in ani-
mal models and in patients (37, 38). Therefore, local treat-
ment with the β−-particle-emitting radioconjugate 90Y-HFMG
(human milk fat globule-1, a mAb toward MUC-1) was inves-
tigated in a large randomized controlled phase III trial, but over-
all survival did not improve, although a slight decrease in local
intraperitoneal recurrence was observed (39, 40). This negative
result might be in part explained by the delivery of a too low
absorbed dose from the emitted β−-particles to single tumor cells

or micrometastases. Consequently, i.p. TAT using specific mAb
labeled with α-particle-emitting radionuclides, with the higher
LET and shorter path length than β−-particles, could be more
effective. A phase I study has used the mAb MX35 F(ab′)2 frag-
ments labeled with 211At, that was administered as i.p. infusion to
patients with relapsed ovarian cancer but after having achieved
a complete macroscopic response on second-line chemother-
apy (10). The tolerability was very good and it was concluded
that this treatment could achieve therapeutic absorbed doses in
microscopic tumor nodules without causing any radiation-related
toxicity (10).

RADIONUCLIDES
Some important physical characteristics of relevant α-particle
emitters are presented below, with reference to studies on their
therapeutic applications. See Figure 2 for a schematic of the dif-
ferent decay pathways. Importantly, as it is not possible to directly
measure the α decay in vivo, even a small amount of accompanying
γ-radiation will enable scintigraphic evaluation for pharmaco-
kinetic and dosimetric studies to be performed. All α-particle
emitters with a serial decay that includes α-particle daughters can
present problems, as the daughters will detach from the targeting
vector due to the elevated recoil energy (up to 200 keV). Such free
nuclides can then diffuse away, leading to untargeted irradiation
of normal tissues. Using microdosimetry, the energy deposited in
the target could be reduced by 50%, as has been calculated for the
211At α-particle-emitting daughter 210Po, with a T 1/2 of 0.5 s (41).

Actinium-225 (225Ac) has a T 1/2 of 10 days, causing the emis-
sion of four α-particles in a serial decay. The decay is accompanied
by γ-radiation. This nuclide can have great therapeutic potential
when radiochemistry can produce stable binding to 225Ac and its
daughters. This nuclide is available as a consequence of producing
233U via the nuclear reaction 232Th (n, γ) 233Th (β−) 233Pa (β−)
233U for nuclear energy and nuclear weapons purposes decades ago
(Figure 2). The possibility of producing 225Ac by use of a cyclotron
via the 226Ra (p, 2n) 225Ac is now also investigated (42). 225Ac is
currently tested in two clinical studies where it is conjugated to the
anti-CD33 mAb HuM195 (15, 16).

Radium-223 (223Ra) has a T 1/2 of 11.4 days and emits four
α- and two β−-particles in the decay chain as well as γ-rays,
until the stable isotope 207Pb is obtained. This nuclide can be
produced by neutron activation of 226Ra by the nuclear reaction
226Ra (n, γ) 227Ra (β−) 227Ac (Figure 2). 223Ra is an alkaline
earth metal ion and similarly to calcium ions, it accumulates in
the bone. To this aim, 223Ra-dichloride was developed and is now
FDA-approved for bone metastases in castration-resistant prostate
cancer (20).

Bismuth-213 (213Bi) decays with a T 1/2 of 45.6 min to 209Bi
(stable), during which it emits one α-particle and an accompanied
440 keV γ-radiation. This nuclide can be obtained by elution of
the 225Ac/213Bi generator, thereby making availability and disper-
sion to clinical centers possible. The generator is produced by the
Oak Ridge National Laboratory in the USA and by the Institute
for Transuranium Elements in Karlsruhe, Europe. Although the
drawback of its short half-time puts high demand on the logistics
for radiochemistry and treatment, 213Bi has still been the most
used TAT nuclide in clinical trials so far (12–14, 17–19).

Frontiers in Oncology | Radiation Oncology January 2014 | Volume 3 | Article 324 | 4

http://www.frontiersin.org/Radiation_Oncology
http://www.frontiersin.org/Radiation_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elgqvist et al. Targeted alpha therapy

Bismuth-212 (212Bi) has a T 1/2 of 60.6 min and emits one α-
and one β−-particle. High energy (2.6 MeV) γ-rays are emitted
in the decay; therefore, patients must be treated using special
radiation protection routines. This nuclide is available as a con-
sequence of producing 233U via the nuclear reaction 232Th (n,γ)
233Th (β−) 233Pa (β−) 233U (n,2n) 232U for nuclear energy and
nuclear weapon purposes decades ago (Figure 2). The last step in
which 232U was produced via the (n, 2n) reaction was an unwanted
side reaction during the production of 233U (Figure 2). However,
the parent nuclide of 212Bi is the β−-emitter 212Pb, having a T 1/2

of 10.6 h. The chelator TCMC is used with 212Pb and functions
as an in vivo nanogenerator for the α-particle emitter 212Bi. The
University of Alabama (USA) has started a clinical trial to eval-
uate 212Pb-TCMC-trastuzumab toxicity levels and anti-tumor
efficacy in patients with HER-2 positive cancers in the abdominal
cavity (11).

Astatine-211 (211At ) decays with a T 1/2 of 7.2 h and emits an
α-particle in both of the two possible decay routs to the stable
nuclide 207Bi. Scintigraphy and standard dosimetry are possible
due to the accompanying γ-radiation. The limited availability is
currently a main obstacle for a wider use of this nuclide, as it can
only be cyclotron produced (43). It has been used in clinical tri-
als, locally administered in surgical resection cavities and i.p. as
previously discussed (9, 10).

DOSIMETRY
Dosimetry was originally developed for radiation protection (44)
and diagnostic imaging (45), but is now also needed for optimiza-
tion of the therapeutic situation using radiopharmaceuticals. The
basic concepts of dosimetry are presented in two Medical Internal
Radiation Dose (MIRD) publications (46, 47).

α-Particle dosimetry takes into account a number of differ-
ent parameters, particularly the short path length of α-particles
in tissue (~100 µm) and the inhomogeneous distribution of α-
radiopharmaceuticals in tumors and tissues. Thus, predicting the
biological effect based on mean absorbed dose in a tumor or
organ might be misleading in some circumstances. The high-LET
(~100 keV/µm) and varying LET (with a maximum at the Bragg
peak) along the α-particle track are also parameters that have to
be taken into account when performing α-particle dosimetry.

The RBE of α-particles ranges from 3 to 7, i.e., α-particle irradi-
ation is 3–7 times more therapeutically effective, or toxic, per unit
of absorbed dose than photons or electrons (47). In TAT clinical
studies, an RBE of five has been applied to estimate the equivalent
absorbed doses (10, 14, 48). The weighting factor applied when
estimating the effective (or equivalent) absorbed dose (expressed
in Sv, Sievert) is related to the stochastic effects of radiation, e.g.,
cancer induction. A factor of 20 is commonly recommended for
the stochastic effects of α-particles that should however not be used
when predicting the therapeutic efficacy or toxicity in patients who
receive TAT treatment. Indeed, this weighting factor was conserv-
atively derived for radiation protection and was never meant for
estimating the deterministic effects relevant to therapy (47). Also,
the clinical experience with α-particles is sparse, and therefore the
tolerance to absorbed doses in humans has yet to be determined.

α-Particle dosimetry in the clinic require pharmacokinetic data
similar to those that are required for conventional β–-particle

therapies (22), e.g., urine, blood, and peritoneal fluids in the
case of i.p. treatment (10). All α-particle emitters used so far
in clinical studies (211At, 213Bi, 223Ra, 212Bi, and 225Ac) emit γ-
photons, characteristic X-ray, or bremsstrahlung radiation. Using
the γ-camera makes quantification of biodistribution possible.
The spatial resolution of such images is, however, fairly low.
Also, the injected activity is much lower than in a diagnostic
setting, generally resulting in a poor signal-to-noise ratio. For
similar reasons, 3-Dimensional single-photon emission comput-
erized tomography (SPECT) imaging of the activity distribution
in patients is time-consuming. The accuracy could be increased
using co-registration techniques with computed tomography (CT)
images (49).

Obviously, the absorbed dose in tumors and normal tissues
need to be estimated from preclinical studies before initiating
treatment studies. However, clinical quantification with the γ-
camera can only give an estimate of the uptake of the radiophar-
maceutical in whole organs and in macroscopic tumors, while
quantification of the absorbed dose in smaller compartments in
organs or microscopic tumors is hardly achievable. In TAT, the
targeted tumors are often too small to be detected and, at best,
indirect methods can be used for estimating the absorbed dose.

With regard to normal tissue protection, in certain cases, block-
ing agents can be used. For example, both astatine and iodine
belong to the halogen elements and pre-treatment with potas-
sium perchlorate can effectively prevent uptake of free 211At in
cells expressing the sodium-iodine symporter (NIS), e.g., in the
thyroid (10).

In the case of i.p. TAT for ovarian cancer, a control γ-camera
image of the abdominal region with a radioactive-tracer analog to
assure free distribution of the fluids is important. The radioac-
tive flow out of the abdominal cavity can also be determined
using a radioactive-tracer analog, by monitoring the activity con-
centration in blood over time (10). Pharmacokinetic data show
that the variation in the absorbed dose in bone marrow can be
around 20% (10). If the bone marrow is the dose-limiting organ,
its absorbed dose then determines the maximal tolerated activ-
ity (MTA), and a radioactive-tracer analog study will be crucial
for estimating the patient-specific MTA. However, for i.p. TAT,
no effect on the hematopoiesis was recorded (10). Instead, other
organs might determine the MTA, possibly the peritoneum; there-
fore, the activity concentration in the peritoneal fluid is crucial to
calculate.

α-Particle dosimetry on the cell level should be used when
macrodosimetry cannot explain the results of an experiment or
when it adds value to the macrodosimetric method (50). For α-
particles, the biological effect of just a single ionization event could
be so large that the calculation of the mean absorbed dose in a
tumor as a whole can be very misleading.

Hence, there is a need for microdosimetry when the statistical
variation of the deposited radiation is not minimal in the target
such as a cancer cell nucleus. The conceptual framework of micro-
dosimetry that takes into account the stochastic nature of energy
deposits in small microscopic targets was proposed almost 60 years
ago (51), and the International Commission on Radiation Units
and Measurements (ICRU) report No. 36 from 1983 defined all
the microdosimetric concepts. Calculations and experiments have
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shown that as few as five high-LET α-particle traversals through
the cell nucleus are enough to kill a cell, whereas 10,000–20,000
low-LET β–-particles are needed to achieve the same biological
effect (52–54).

Importantly, microdosimetry should be considered for non-
targeted but critical tissues, even if it receives a very low mean
absorbed dose (47).

THE BIOLOGY IN TARGETED α THERAPY
The way high-LET radiation like α-particles interact with biolog-
ical matter has been described earlier (53, 55–60). They produce
dense ionizations along a linear track and generate locally multiple
damage sites in sensitive targets like DNA. These lesions, produced
in close proximity to each other, are poorly repairable, thus making
α-particles highly deleterious (61, 62). While conventional EBRT is
characterized by high absorbed doses delivered in a very short time
in a homogenous way, TAT and radionuclide therapy in general
are characterized by a low absorbed dose rate, protracted exposure,
and heterogeneous energy deposit (63).

In EBRT, physical events predominate in the final outcome
of the therapy, and most of the effects can be correlated to
the absorbed dose according to a linear, linear-quadratic, or sig-
moid relationship. Conversely, physical characteristics of targeted
radionuclide therapy can offer the cells the opportunity to repair
some of their sublethal lesions (64–67). Nuclear DNA plays a cen-
tral role in response to targeted radionuclide therapy, but other
cellular sub-compartments including the mitochondria and cell
membrane might also be strongly involved in situations of het-
erogeneous energy deposits (68–74). Therefore, the biology of the
irradiated tissue and its interaction with its environment might
play an even more pronounced role in targeted radionuclide
therapy than EBRT, and bystander and abscopal effects involv-
ing activation of signaling pathways and the immune system
should probably be investigated more accurately (75–77). The
consequences are that the absorbed dose-effect might be more dif-
ficult to establish and radiation-induced biological effects might
be observed in tissues far beyond the physical path length of the
α-particles.

PRE-TARGETED α THERAPY
All targeted therapies rely on the ability of the vector to find its
target and to allow the associated cytotoxic agent to deliver the cell-
killing effect. Advances in genetic engineering have led to the devel-
opment of many molecules that can be radiolabeled and used for
RIT. However, despite the growing number of designed antibody
fragments and fusion proteins, treatments are often hampered by
less than optimal pharmacokinetics. The key lies in finding a bal-
ance between tumor radiation uptake and removal of circulating
radioactivity. Rapid clearance of unbound radioimmunoconju-
gates is essential for limiting the absorbed dose to normal organs,
but a too short a retention time in blood will result in a too short
targeting time, and thus in the delivery of a too low absorbed dose
to malignant cells.

This pharmacokinetic challenge can be handled by separating
physically and temporally the targeting phase from the delivery
of the ionizing radiation, an approach generally referred to as
pre-targeted radioimmunotherapy (PRIT) (78, 79). A number of

PRIT regimens, all based on the same essential principle, have
been proposed since the pre-targeting concept was proposed
by Goodwin et al. in 1988 (80). In the first step, a targeting
immunoconjugate (pre-targeting molecule) is administered and
sufficient time is allowed for its localization at tumor-associated
antigen sites. As the pre-targeting molecule does not carry any
cytotoxic substance, normal tissues are not affected by lengthy
circulation times during the distribution phase. Then, unbound
immunoconjugate molecules can be removed from the circulation
using a clearing agent, before injecting the radiolabeled vector
(effector molecule). The effector molecule is a small molecule
designed to rapidly diffuse into tumors and cancer cell clus-
ters, where it will specifically bind to the antigen-associated pre-
targeting molecules. The fast clearance of unbound effector mol-
ecules improves the tumor-to-normal tissue ratios of absorbed
dose compared with directly labeled immunoconjugates. With
pre-targeting, no trade-off needs to be made between efficient
targeting/penetration/tumor residence time and protection of
dose-limiting normal tissues.

Efficient interaction between the pre-targeting molecule and
the effector molecule has been achieved using a handful of tech-
niques, particularly those based on streptavidin-biotin (81) or
bispecific antibodies (82). Of the radionuclides with potential use
in TAT, some appear more suitable than others when factors such
as availability and daughter nuclides are taken into account, in
addition to chelation and conjugation chemistry. In particular,
two promising candidates for efficient therapy emerge: 211At and
213Bi. However, they both have short T 1/2 (7.2 h and 45.6 min,
respectively), which put high demands on the distribution of
radiolabeled vectors to ensure favorable absorbed dose ratios. This
issue could be overcome by using a pre-targeting strategy, thereby
increasing the therapeutic potential of these short-lived α-particle
emitters.

Several preclinical studies have shown the benefits of pre-
targeted α therapy (PTAT), mainly in hematological cancers, such
as AML (83), non-Hodgkin lymphoma (84), anaplastic large cell
lymphoma (85), and adult T-cell leukemia (85). PTAT for dis-
seminated ovarian carcinoma was evaluated in one study in which
211At-PRIT (1.5 MBq) and 211At-RIT (0.9 MBq) were compared in
a mouse model of i.p. TAT (86). The administered activities were
based on the previously estimated MTAs for the two regimens
and resulted in equal tumor-free fractions (TFF; 0.45) 8 weeks
after irradiation; however, the mice treated with 211At-PRIT had
smaller tumors and lower ascites incidence. This indicates that
pre-targeting can improve the outcome also of i.p. TAT, although
the greatest gain of PTAT is generally considered to be in systemic
treatments.

SUMMARY AND FUTURE PERSPECTIVES
Radioimmunotherapy with short-ranged, high-efficiency α-
particles is a very attractive and promising treatment strategy.
α-Particles have an advantage in targeted therapy because of their
exceptionally high cell-killing ability. Therefore, different from
RIT with β–-particles, α-particle emitters labeled to a targeting
vector can directly kill single cancer cells (by self-irradiation). Sev-
eral completed or on-going clinical trials using TAT have shown
its feasibility for treating disseminated and/or micro-metastatic
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malignancies without significant or insurmountable problems of
toxicity. Although the definition of micrometastases is vague, in
clinical oncology occult metastases (i.e., not detected by routinely
used imaging procedures) might involve single tumor cells up to
clusters of billions of cells. Therefore, a cocktail of both α- and β–-
emitting radioconjugates might be more effective in some cases.

The possibility of TAT as a potential curative treatment includes
its use as a local boost after initial treatment (e.g., i.p. in EOC),
or perhaps as i.v. systemic adjuvant treatment, both targeting
micro-metastatic disease. A systemic approach may indeed be of
particular interest in patients with EOC that includes retroperi-
toneal vascularized metastases, e.g., in the lymph nodes. Fraction-
ated RIT is another potentially interesting regimen to improve the
therapeutic index, thus resulting in reduced normal organ toxicity
while maintaining the therapeutic efficacy (87). Radionuclides that
emit Auger electrons could offer an alternative approach compared
with the nuclides described in this article, reviewed elsewhere (88).
Auger electrons are energetically very weak (<<1 keV) and have
a path length in tissue that is far shorter than that of α-particles.
However, to effectively damage DNA molecules, the Auger emitter
has to bind to the DNA.

The therapeutic outcome of TAT is influenced by a number
of crucial issues that all need to be handled, e.g., the specificity
of the antibody/targeting construct; the level of antigenic expres-
sion on the tumor cells; the potential loss of immunoreactivity of
the antibody/targeting construct; the amount of unlabeled anti-
body/targeting construct after injection; the existence of diffusion
barriers that hinder the penetration of the antibody/targeting
construct into the tumors; the choice of radionuclide (half-life
and path length); too low specific radioactivity; and for the i.p.
situation, any extra peritoneal location of tumor cells.

A major issue that may hamper wide implementation in the
clinic and that needs to be simultaneously addressed is the avail-
ability of suitable α-particle emitters at a reasonable cost (43, 89).
Otherwise, TAT will remain just a potentially effective treatment,
or a very rarely implemented option. Finally, after safety issues and
pharmacokinetics have been established, for all types of malig-
nancies that might benefit from TAT/PTAT, we need to conduct
randomized, controlled, clinical studies. These need to include a
high enough number of patients to allow meaningful comparison
and evaluation of different treatment strategies.
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