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Multidrug resistance (MDR) is a complex phenomenon principally due to the overex-
pression of some transmembrane proteins belonging to the ATP binding cassette (ABC)
transporter family. Among these transporters, P-glycoprotein (P-gp) is mostly involved in
MDR and its overexpression is the major cause of cancer therapy failure. The classical
approach used to overcome MDR is the co-administration of a P-gp inhibitor and the clas-
sic antineoplastic drugs, although the results were often unsatisfactory. Different classes of
P-gp ligands have been developed and, among them,Tariquidar has been extensively stud-
ied both in vitro and in vivo. AlthoughTariquidar has been considered for several years as the
lead compound for the development of P-gp inhibitors, recent studies demonstrated it to
be a substrate and inhibitor, in a dose-dependent manner. Moreover, Tariquidar structure–
activity relationship studies were difficult to carry out because of the complexity of the
structure that does not allow establishing the role of each moiety for P-gp activity. For this
purpose, SMALL molecules bearing different scaffolds such as tetralin, biphenyl, arylthia-
zole, furoxane, furazan have been developed. Many of these ligands have been tested both
in in vitro assays and in in vivo PET studies. These preliminary evaluations lead to obtain
a library of P-gp interacting agents useful to conjugate chemotherapeutic agents display-
ing reduced pharmacological activity and appropriate small molecules. These molecules
could get over the limits due to the antineoplastic-P-gp inhibitor co-administration since
pharmacokinetic and pharmacodynamic profiles are related to a dual innovative drug.

Keywords: MDR, P-gp, dual effect, multitarget drugs, MDR reverting activity

INTRODUCTION
Human ATP binding cassette (ABC) transporters belong to a
family of 49 genes classified in seven subfamilies (A–G) (1, 2).

Some of these transporters are involved in multidrug resistance
(MDR) such as ABC-B1 (P-glycoprotein, P-gp), ABC-G2 (breast
cancer resistance protein, BCRP), and ABC-C1-6 (MDR associated
proteins, MRP1-6) (3).

Multidrug resistance is a complex phenomenon that limits the
efficacy of chemotherapeutic treatment. Some tumors are intrin-
sically resistant to pharmacological therapy, while others, initially
sensitive to chemotherapy, become resistant during the treatment.
Resistance to anticancer drugs is due to several factors such as
pharmacokinetic, tumor micro-environmental changes, or cancer
cell-specific factors that occur at different levels:

– increased drug efflux or decreased drug influx;
– drug inactivation;
– drug target modification;
– apoptosis evasion.

The first of these mechanisms is mediated by plasma membrane
transporters such as P-gp.

Several strategies were suggested for reversing MDR and,
among them, the co-administration of anticancer drugs with an

ABC transporter inhibitor has been proposed to improve the
bioavailability of chemotherapeutic agents (4, 5).

Among MDR pumps, P-gp is one of the most studied because
of the broadest substrate specificity and the widest tissues and
organs distribution such as liver, intestine, brain, and kidneys (6).
This transporter actively effluxes several compounds from cells
and, being overexpressed in tumor cells exerting a significant effect
on the bioavailability, distribution, and activity of many drugs,
especially those used in the cancer treatment (7).

P-glycoprotein is a 170-kDa phosphorylated glycoprotein
encoded by MDR1 gene. Structurally, P-gp contains 12 trans-
membrane helices organized in 2 membrane spanning domains
(MSDs), each containing 6 transmembrane helices and 2
nucleotide-binding domains (NBDs) responsible for ATP binding
(3, 8) (Figure 1).

This protein uses ATP hydrolysis as the energy source for the
translocation of several structurally unrelated molecules (9). This
suggests the presence of different binding sites (10, 11). Indeed,
four distinct interacting binding sites have been identified in P-
gp structure (Figure 2). Sites I–II are assigned for the binding
of substrates, site III is for the modulators, and site IV binds
the inhibitors. It has been hypothesized that the binding site of
inhibitors is folded to inhibit the ATP binding and so the pump,
although binds the substrate, cannot extrude it. The four binding
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FIGURE 1 | P-gp structure: MSDs and NBDs. Picture reported in Ref. (6).

FIGURE 2 | P-gp binding sites (S: substrate, M: modulator, I: inhibitor).

sites are able to allosterically communicate in a negative het-
erotropic manner and the binding to one of these sites switches
the other sites to a low-affinity conformation (9).

Several models have been proposed for P-gp efflux: (1) pore,
(2) flippase, (3) hydrophobic vacuum cleaner, and (4) two-cylinder
engine (12, 13).

In the pore model, drugs binding P-gp to the cytosol are
transported out of cells through a channel created by protein.

In the flippase model, P-gp links the drugs that are transported
from the inner to the outer compartment of the plasma membrane
against a concentration gradient.

In the hydrophobic vacuum cleaner model, molecules, recog-
nized by P-gp in the lipid bilayer, enter into the protein from the
membranous site and exit through the central cavity.

In the two-cylinder engine model, it has been hypothe-
sized that P-gp contains two drug-binding sites, in which each
half-transporter has its own drug carrier (14).

The translocation mechanism of P-gp was blocked by inhibitors
activity (12).

Indeed, the initial step of the translocation process is the bind-
ing of drugs to an high-affinity site and simultaneously the binding
of ATP to the NBDs. Drug and ATP binding are coupled to the ATP
hydrolysis and two ATP molecules are needed for the turnover; the
first molecule is responsible for drug translocation and the second
is needed to set the transporter in the basal state (Figure 3).

Compounds interacting with P-gp have been classified into
three categories: substrates, inhibitors, and modulators (Figure 4).

Substrates are molecules that are actively transported by the
protein and therefore have a higher concentration outside the cell
with respect to the cytosol (10).

High substrate concentration causes a block of the pump by sat-
urating the substrate-binding sites and in literature, this finding led
to a mistake in terms of intrinsic P-gp-interacting mechanism (10).

Modulators modify substrate-binding site through a negative
allosteric mechanism. Imaging studies with radiotracers demon-
strated that modulators are able to alter the substrate-binding
site in a non-competitive manner, modifying the maximal recep-
tor density (Bmax) but not the dissociation equilibrium constant
(K d). Therefore, it suggests that allosteric communication between
substrate- and modulator-binding sites exists (10).

Inhibitors block the translocation activity of P-gp by interfering
with the ATP binding to NBD. However, although different mecha-
nisms, substrates, modulators, and inhibitors could exert the same
final biological effect restoring cell sensitivity to chemotherapeutic
agents.

BIOLOGICAL ASSAYS
The characterization of P-gp-interacting mechanism of drugs is
an important task in the development of P-gp ligands and it is
performed by specific biological in vitro assays (15) (Figure 5).

Frontiers in Oncology | Pharmacology of Anti-Cancer Drugs January 2014 | Volume 4 | Article 2 | 2

http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zinzi et al. New strategy to revert MDR

FIGURE 3 | P-gp translocation mechanism.

A wide range of methodologies has been used to characterize
the P-gp interaction. These methods employ intact cells or puri-
fied protein and a combination of different approaches is often
required to identify the mechanism of interaction.

The identification of the P-gp-interacting mechanism is per-
formed by the combination of three biological assays:

– determination of the apparent permeability (Papp);
– ATP cell depletion;
– inhibition of the P-gp-mediated transport of a fluorescent probe

(Calcein or Rhodamine);
– everted gut sac model.

APPARENT PERMEABILITY DETERMINATION
Apparent permeability (Papp) is a pharmacokinetic parameter
that is determined in Caco-2 cells system, a cell monolayer
model suitable for the study of the passive and active transport
through the biological membranes. Indeed, in this system the
Basolateral–Apical flux (B→A), representative of passive diffu-
sion, and Apical–Basolateral flux (A→B), representative of active
P-gp-modulated transport, are determined.

The BA/AB ratio is useful to identify P-gp inhibitors (BA/AB
<2), P-gp substrates (BA/AB from 18 to 20), or P-gp modulators
(BA/AB ranging from 2 to 18).

ATP CELL DEPLETION
This assay, performed in Caco-2 cell monolayer and in Madin–
Darby Canine Kidney cells (MDCK) overexpressing P-gp, permits

to establish if the compound is able to deplete ATP. Substrates acti-
vate ATPase whereas inhibitors are not transported unchanging the
ATP cell level.

INHIBITION OF CALCEIN-AM TRANSPORT
This assay is useful to determine the potency (EC50) of P-gp
ligands and is performed in MDCK cells, stably transfected for
P-gp overexpression (MDCK-MDR1). The assay is carried out
using a non-fluorescent prodrug, the acetoxymethyl ester of cal-
cein (calcein-AM), which is a P-gp substrate. In the presence of
a P-gp modulator, calcein-AM diffuses into the cytosol where
it is hydrolyzed to the fluorescent dye calcein, that is not a P-
gp substrate and since hydrophilic, it cannot diffuse through the
membrane (17). In this assay also Rhodamine may be employed
as a probe although calcein-AM is more useful because Rho-
damine displays good cell permeability and therefore, its fluo-
rescence determination at stationary state is more complex than
calcein-AM.

THE EVERTED GUT SAC MODEL
This assay is an ex vivo method to study the P-gp-mediated
intestinal absorption of drugs and their interactions with CYP450
enzymes (18, 19). This double information (the effect of P-
gp-mediated transport and CYP450-metabolizing activity) is
obtained since the everted gut sac assay is performed on isolated
rat ileum where CYP450 enzymes and P-gp are present.

This combined study is needed because inhibitors and sub-
strates may display overlapping activities toward CYP450 enzymes
and the P-gp pump (20).
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FIGURE 4 | P-gp interacting mechanism of: (A) substrate; (B) inhibitor;
(C) modulator. Picture reported in Journal of Medicinal Chemistry (2010)
53:1883–97.

In this method, the transport of a known P-gp radiolabeled
or fluorescent substrate, in the absence and presence of a P-gp-
interacting agent, is evaluated. The flux of a P-gp substrate such
as Rhodamine 125, from serosal to mucosal compartment and
vice versa, is represented by the efflux (k ′2) and influx rate con-
stants (k ′1), respectively. These determinations are carried out in
the presence of a P-gp-interacting agent to determine k ′′2 and k ′′1,
the efflux and influx constants of the tested substrate after P-gp
interaction.

P-gp SUBSTRATES, MODULATORS, INHIBITORS
The most important studied P-gp ligands are classified in three
different categories.

P-gp SUBSTRATES
This class is the most extensively studied and Verapamil and N -
desmethyl-loperamide (Chart 1) are to date the gold standard of
this class of compounds.

Verapamil, a calcium channel blocker, was found to reverse
MDR (21) and it has become the reference compound for devel-
oping other P-gp substrates. It saturates the pump at high doses
and therefore, it is a potential ligand for reversing MDR in co-
administration with antineoplastic agent for different types of
cancer (21, 22). However, verapamil cannot be employed because
of toxic cardiovascular side effects. Despite this, the radiolabeled
compound, 11C-verapamil, has been developed to visualize P-gp
function and to date, it is considered to be the reference sub-
strate for imaging P-gp activity (23). However, verapamil is quickly
metabolized by CYP450 enzymes giving radiometabolites, some of
which are themselves P-gp substrates (24).

FIGURE 5 | Characterization of P-gp ligands (k1: influx constant; k2: efflux constant). Picture reported in Ref. (16).
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CHART 1 | P-gp ligands.

N -desmethyl-loperamide (dLop) is the major metabolite of
Loperamide and at low concentrations it acts as substrate while at
high concentrations, as reported for verapamil, dLop saturates the
pump (25). Also, dLop has been radiolabeled and used for imaging
P-gp in vivo by PET analysis (26).

P-gp MODULATORS
Cyclosporin A (CsA, Chart 1), an immunosuppressant agent, is
a P-gp modulator, widely used in vitro as a tool to study MDR
because it restores the cell concentration of chemotherapeutic
agents. In imaging studies, the co-administration of CsA with a
radiolabeled P-gp substrate (27) has been performed to visual-
ize the P-gp activity because it increases radiotracer cell uptake
by modulating the P-gp-binding sites. However, CsA treatment

enhances the uptake of the radioligand in all regions where P-gp is
present including targeted and non-targeted tissues (2–15, 17–30).

P-gp INHIBITORS
Elacridar (Chart 1) is a dual P-gp/BCRP ligand and can be
orally administered. It was tested in combination with doxoru-
bicin in patients with advanced solid tumors (31). At the rec-
ommended dose of doxorubicin, a pharmacologic hematologic
toxicity was observed, mainly consisting of leukocytopenia and
granulocytopenia.

Moreover, Elacridar was co-administrated with topotecan (32),
a P-gp and BCRP substrate (Phase I) with unsatisfactory results
(33). 11C-Elacridar is tested in vivo to evaluate the overexpression
of P-gp and BCRP in human colon adenocarcinoma (33, 34).
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Tariquidar (Chart 1), an anthranilic derivative, is the most
potent P-gp ligand in nanomolar range. It has been co-
administrated in clinical trials with chemotherapeutic agents for
restoring the efficacy of therapy (35–38). Results were quite
unsatisfactory because of poor selectivity against other ABC
transporters that are not involved in MDR. Tariquidar has been
evaluated in vivo for diagnosing breast tumors in animal model
using (R)-11C-verapamil (35, 39, 40).

Recently, the suitability of 11C-tariquidar and 11C-elacridar for
visualizing cerebral P-gp expression in healthy human subjects, in
analogy to a previous preclinical study (16, 35), was investigated.
However, 11C-tariquidar and 11C-elacridar displayed a “substrate-
like in vivo behavior”; in particular, they are dual P-gp/BCRP
substrates and these findings disagreed with in vitro results (41).

(E)-6,7-Dimethoxy-2-[3-(5-methoxy-3,4-dihydronaphthalen-
1(2H )-ylidene)propyl]-1,2,3,4-tetrahydroisoquinoline, better
known as MC18 (Chart 1), is a small molecule bearing tetralin
moiety (42). To date, 11C-MC18 is the first P-gp inhibitor
studied in vivo in PET studies. It displayed fourfold higher
uptake in the target organs compared with 11C-tariquidar and
11C-elacridar (43).

STRATEGIES TO REVERT MDR
The pivotal role of P-gp in MDR has stimulated the develop-
ment of P-gp ligands able to reverse the resistance to a wide
number of drugs. Hence, the need to design potent and selective
P-gp inhibitors stimulated the development of small molecules on
which structure–activity relationship (SAR) studies could be eas-
ily and better performed. The development of these compounds is
depicted in Figure 6 and it is based on the synthesis of bioisosteres
obtained through subsequent lead optimization studies.

SMALL LIBRARIES FROM VERSATILE SCAFFOLDS
Tetralin derivatives
The lead compound of this class is MC18 (Figure 6A)
(EC50= 1.50 µM), bearing an (E)-double bond, a potent P-gp
inhibitor (42). When the double bond shifts into the tetralin ring,
the ligands are less potent than MC18 and are P-gp substrates.
Moreover, the presence and the position of methoxy substituent on
tetralin nucleus are important in terms of the potency and intrinsic
activity. The saturated derivative, MC266 (EC50= 6.35 µM), was
the best P-gp substrate in this class. Therefore, the partial confor-
mational restriction of spacer is involved in the P-gp-interacting
mechanism. These two lead compounds, inhibitor and substrate
respectively, have been 11C-radiolabeled and tested in vivo PET
studies leading to significant and coherent results in comparison
with the in vitro data previously reported (43).

Biphenyl and naphthyl derivatives
The conformational restriction of MC18 seems to be a require-
ment for improving P-gp-inhibitory activity. In order to evaluate
this statement, the restriction of the spacer linking the non-basic
moiety was tested in a series of molecules bearing two differ-
ent fragments: 1,4-biphenyl and 2-naphthyl moieties (Figure 6A)
(44).

In the biphenyl series, 4-biphenyl derivatives displayed the
best activity in P-gp-inhibitory activity and among these com-
pounds, the best result was obtained for MC70 (EC50= 0.69 µM).

In recent years, MC70 was extensively studied in order to confirm
its P-gp-interacting activity considering its role to enhance the
chemotherapeutic agent when co-administrated (45).

Although tetralin and biphenyl derivatives displayed high P-gp
activity, they were active toward other ABC transporters such as
BCRP and MRP1.

Aryloxazole and arylthiazole derivatives
Aryloxazole and arylthiazole derivatives (Figure 6A) were
designed as cycloisosters to improve the P-gp-inhibitory activ-
ity and selectivity. The results demonstrated that aryloxazole and
arylthiazole derivatives, designed as cycloisosteres of biphenyl
derivative MC70, were found to be less potent than the refer-
ence compound in inhibiting P-gp (46). Indeed, these compounds
were screened by SAR studies toward BCRP and MRP1 giving
interesting structural determinants for these pumps as depicted
(Figure 7). Finally, it was found that both aryloxazoles and
arylthiazoles were P-gp substrates.

Furthermore, the aryl fragments were replaced by a naph-
thyl nucleus and three heteronuclei (oxazole, thiazole, and furyl)
have been evaluated (47). The obtained results showed that the
replacement of aryl nucleus with naphthyl moiety lead to obtain
compounds with three different activity profiles:

1. P-glycoprotein inhibitors: unsubstituted oxazoles or bearing
−F and−OH on the naphthyl fragment;

2. Unambiguous substrates (48): oxazole bearing−OCH3 on the
naphthyl fragment and thiazole bearing −Br and −OCH3 on
the naphthyl fragment.

3. Ambiguous substrates (48): oxazole bearing Br on the naph-
thyl fragment and unsubstituted thiazole or bearing Br on the
naphthyl fragment.

Finally, all furyl derivatives were ambiguous substrates.

Galloyl-based derivatives
The 3,4,5-trihydroxybenzoyl and 3,4- and 3,5-dihydroxybenzoyl
fragments (Figure 6A) have been employed as scaffolds for a set
of ligands that are representative of pharmacophoric nucleus of
tariquidar (49).

For this purpose, compounds have been divided into four
different structural series that present:

1. variation at R,
2. variation at R1,
3. polyhydroxy derivatives,
4. pyrogallol 1-methyl ethers.

The benzamides of the first set showed good P-gp-inhibitory
activity (IC50 ranging from 20 to 1.4 µM). These outcomes led to
deepen the study with two approaches:

1. keeping fixed the 3,4,5-trimethoxy-N -(2-nitrophenyl)benzamide
scaffold and introducing a series of R1 substituents in the
4-position of the aniline moiety;

2. desmethylating one or more methoxy groups belonging to A
ring.
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FIGURE 6 | Scaffolds of versatile libraries. (A) Bioisosteric approach; (B) NO release ligands.

The evaluation of data suggested that, with the exception of
the 4-bromo and 4-methoxy congeners, all compounds of this
second set were potent and selective P-gp inhibitors. In particular,
molecules bearing R=NO2 and in R1 H or benzo[1,3]dioxol-5-yl
displayed submicromolar activity.

The screening of the gallamide derivatives indicated a moder-
ate inhibitory potency for P-gp, independently with respect to the
number and position of phenolic groups.

In the last series, all the pyrogallol-1-monomethyl ether
derivatives showed moderate P-gp-inhibitory activity.
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FIGURE 7 | SAR studies of aryloxazole and arylthiazole derivatives. Picture reported in Ref. (47).

Taking into account that the most important inhibitory activ-
ity changes were mainly concerned with the structural modi-
fications on B ring, the role of the amide function was eval-
uated by testing the corresponding anilide and amine. The
amine was equipotent with respect to the other tested com-
pounds toward P-gp, despite the drastic change in terms
of planarity and conformational flexibility. By contrast, the
anilide showed no inhibitory activity toward P-gp. The 3,4,5-
trimethoxyamide derivatives displayed moderate inhibitory activ-
ity toward P-gp.

Furoxan derivatives
Another strategy to reverse MDR is the nitration of a tyro-
sine present in TM6 domain of P-gp (50). It was reported
that furoxans are able to produce in situ NO interacting
with a thiol group. In fact, furoxans (Figure 6B) have been
developed on the base of their properties to induce NO
release and this pharmacological effect is the mechanism of
coronary dilators (51–53). Moreover, the correlation between
a decreased NO synthesis and MDR onset in doxorubicin-
sensitive and doxorubicin-resistant cells has been widely reported
(54). For this reason, a series of furoxan derivatives was
designed and tested in activity and selectivity toward ABC
transporters. Firstly, diphenylfuroxan derivatives and 3- and 4-
phenylfuroxan isomer pairs, bearing different substituents with
stereo-selective and lipophilic properties, were evaluated. In
particular, the compounds having electron-withdrawing sub-
stituent and high lipophilic group such as phenylsulfonyl, dis-
played the best P-gp activity. The evaluation of phenylsulfonyl-
furoxan isomer pairs, bis(phenylsulfonyl)furoxan derivatives, and
3-phenylsulfonyl substituted furoxans, bearing alkoxy groups at
position 4, displayed that 3-phenylsulfonyl substituted furoxans
were found to be P-gp inhibitors, and the 4-substituted lig-
ands showed the best activity and selectivity. Indeed, the best
results were obtained both for 3,4-diphenylsulfonyl derivative
(EC50= 3.0 µM) and for alkoxy derivatives such as n-Butoxy,
iso-Propoxy, and iso-Butoxy (EC50= 2.26, 2.15, and 2.23 µM,
respectively) (55).

DUAL EFFECT DRUGS
Although the co-administration of a P-gp inhibitor and an anti-
neoplastic agent could be considered a potential strategy to revert
MDR, to date this approach was not clinically available because of
pharmacokinetic limitations, in particular different apparent per-
meability, bioavailability, and metabolism. For this reason, others
approaches were taken into account in the recent past:

– use of P-gp-targeted antibodies (56);
– encapsulation of anticancer drugs in liposomes (57);
– nanospheres able to circumvent MDR (58).

New innovative approaches to revert MDR could be: the devel-
opment of molecules having a dual effect, potent cancer cell-killing
agent and P-gp activity/expression inhibitor, and the collateral
sensitivity (CS).

For example, some taxanes inhibited P-gp activity employing
Rhodamine 123 as a fluorescent dye (59). These compounds could
disclose new perspectives because they not only acted as cytotoxic
agents but also inhibited the activity of P-gp efflux pump.

In another study (60), starting from Indirubin (a traditional
Chinese medicine), the most potent derivative, PH II-7, has been
evaluated. This compound showed antitumor activity inducing
itself apoptosis and S phase cell cycle arrest, and in the meantime,
it is not a P-gp substrate and so, high cell concentration of this
compound was detected. The confocal microscopy displayed that
this compound was not P-gp effluxed and significantly increased
Adriamycin and Vincristine effect by reversing MDR.

MULTITARGET DRUGS
Another strategy could be the design of multitarget drugs bear-
ing scaffolds depicted in Figure 6, having antitumor and P-gp
inhibitory activities. An example is the hybridization of the NO-
donor furoxan scaffold with the anilinopyrimidine moiety present
in Gefitinib, leading to phenylsulfonylfuroxan-anilinopyrimidine
derivative (Figure 8). This compound displayed epidermal growth
factor receptor (EGFR) inhibitory activity in the treatment of
non-small-cell lung cancer (NSCLC) (61). It induced apoptosis in
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FIGURE 8 | NO-donor furoxan moiety linked to Gefitinib-like scaffold.

H1975 and HCC827 cells, inhibited EGFR downstream signaling
in H1975 cells, and suppressed the nuclear factor-κB activation in
H1975 cells. Furthermore, it released high levels of NO in H1975
cells but not in normal human cells, inducing apoptosis, inhibit-
ing metastasis, and sensitizing tumor cells to chemotherapy by the
inhibition of drug efflux transporters (51, 62). In this study, the two
nuclei, furoxan and anilinopyrimidine, were separately evaluated
for their effects. The activity showed by the two nuclei separately
was lower than that exerted by the linked molecule. These results
suggest that the antiproliferative activity of the compound might
be attributed to the synergic effects of anilinopyrimidine and
NO-donor moieties.

In another study, a class of 4-substituted methoxybenzoylaryl-
thiazoles (SMART, Figure 9) was evaluated (63). These com-
pounds exhibited great potency in vitro and broad spectrum
cellular cytotoxicity. The in vitro and in vivo evaluation of the
anticancer properties of three SMART compounds demonstrated
that they potently bound to the colchicine-binding site in tubulin,
inhibited tubulin polymerization, arrested cancer cells in G2/M
phase, and induced apoptosis. Moreover, these compounds were
able to overcome MDR since they were found equally cytotoxic
in a parent cell line (OVCAR-8) and in a MDR-positive cell line
(NCI/ADR-RES).

These findings demonstrated that some scaffolds such as
furoxan and arylthiazole, already reported in our library as P-
gp ligands, could be considered as the starting point to develop
multitarget drugs. In these studies, the chemotherapeutic moiety
is linked to furoxan (NO donor useful to revert MDR) or arylth-
iazole fragment (P-gp modulator), and the final effect was more
potent that the single effect expected from each drug.

COLLATERAL SENSITIVITY
An alternative potential approach to treat drug-resistant tumors is
the CS where several compounds selectively kill MDR cells without
affecting the non-resistant parental cells (64).

R

N

S O

O

O
O

FIGURE 9 | SMART ligand.

Different hypotheses have been proposed to better explain this
mechanism:

– production of reactive oxygen species (ROS);
– energetic level changes;
– extrusion of essential endogenous substrates for cell survival;
– perturbation of cell membranes.

The first hypothesis takes into account that several CS agents
are substrates of P-gp, stimulating ATPase activity and in the
meantime, the substrate extrusion from the plasma membrane
into the extracellular environment (65). Once back in the extra-
cellular environment, substrates repeat this cycle and P-gp per-
forms a process known as futile cycling to increase the ATP
hydrolysis inducing oxidative stress. MDR cells initiate apop-
tosis when ROS levels overcome a certain limit. Two reported
ligands inducing CS are siramesine and the P-gp substrate and
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σ2 agonist 9-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-
yl)butyl]-9H -carbazole that generate more ROS in the MCF7/Adr
than in the MCF7 cell line (66).

Another hypothesis is that P-gp-expressing cells are more sen-
sitive to changes in energy utilization. Indeed, several compounds
that interfere with cellular metabolic pathways, such as glycoly-
sis or oxidative phosphorylation, have been identified as MDR-
selective agents. The glycolysis antimetabolite 2-deoxy-d-glucose
(2-DG) seems to confirm this finding. Indeed, 2-DG activates
apoptosis and selectively kills numerous MDR cell lines compared
to drug-sensitive parental lines.

The extrusion hypothesis asserts that CS agents mediate cyto-
toxicity by stimulating, sensitizing, or facilitating the extrusion
of endogenous essential components. This phenomenon is not
reported in P-gp-expressing cells but it may be the case for
MPR1-mediated CS.

Moreover, several CS agents alter membrane biophysical prop-
erties (67). Indeed, they induce membrane perturbation in P-gp-
expressing cell lines, leading to the hypothesis that changes in
membrane structure and fluidity contribute to CS (68). Penta-
zocine and verapamil are reported to reduce membrane fluidity in
the colchicine-resistant B30 cell line.

CONCLUSION
To date the co-administration of a chemotherapeutic drug with a
P-gp inhibitor, the encapsulation of anticancer drugs in liposomes,
and the nanosphere formulation to reverse MDR failed for several
reasons. This review aims to disclose new strategies in the design of
multitarget drugs useful toward MDR. Interesting approaches are:
(i) the development of drugs bearing a unique moiety responsible
for the anticancer effect and MDR reversing activity; (ii) the design
of molecules bearing different pharmacophores for multitarget
activity; (iii) the evaluation of CS agents.

In the present review, we overviewed our P-gp ligands library
to suggest new scaffolds that could be used to design multitarget
drugs in accordance with the approaches already reported.
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