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Inhibitor of Apoptosis (IAP) proteins are a family of proteins with antiapoptotic functions
that contribute to the evasion of apoptosis, a form of programed cell death. IAP proteins are
expressed at high levels in a variety of human cancers including childhood acute leukemia.
This elevated expression has been associated with unfavorable prognosis and poor out-
come.Therefore, IAP proteins are currently exploited as therapeutic targets for cancer drug
discovery. Consequently, small-molecule inhibitors or antisense oligonucleotides directed
against IAP proteins have been developed over the last years. Indeed, IAP antagonists
proved to exhibit in vitro and in vivo antitumor activities against childhood pediatric leukemia
in several preclinical studies.Thus, targeting IAP proteins represents a promising molecular
targeted strategy to overcome apoptosis resistance in childhood leukemia, which warrants
further exploitation.
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INTRODUCTION
Cancer cells have typically acquired the ability to evade apopto-
sis, a form of programed cell death (1). In addition, the evasion
of apoptotic cell death contributes to treatment resistance, since
most anticancer therapies act by engaging this intrinsic program
of cell death in cancer cells (2). For example, antiapoptotic pro-
teins can block apoptosis (2). Inhibitor of apoptosis (IAP) proteins
are a family of endogenously expressed proteins that block signal
transduction to apoptosis (3). Of note, expression and/or function
of IAP proteins are altered in various cancers including childhood
leukemia. Therefore, IAP proteins are considered as promising tar-
gets for drug discovery. Several key discoveries made over the last
decade have provided insights into the various functions of IAP
proteins and their regulation in human cancers. In addition, major
advances have been achieved in the development of therapeutic
strategies to antagonize IAP proteins. This review focuses on the
role of IAP proteins and their therapeutic targeting in pediatric
leukemia.

APOPTOTIC SIGNAL TRANSDUCTION
There are two key signaling pathways to apoptosis, namely,
the death receptor (extrinsic) pathway and the mitochondrial
(intrinsic) pathway (4). Signal transduction via the death recep-
tor pathway starts with binding of death receptor ligands of
the tumor necrosis factor (TNF) receptor superfamily to their
related cell surface receptors, for example TNFα to TNF recep-
tor, CD95 ligand to CD95, and TNF-related apoptosis-inducing
ligand (TRAIL) to TRAIL receptors. This leads to activation
of caspase-8 at the death-inducing signaling complex (DISC).
Once activated, caspase-8 either directly cleaves effector caspase-
3 or, alternatively, cleaves Bid and thereby engages the mito-
chondrial apoptosis pathway (4). The mitochondrial (intrinsic)
pathway involves the release of mitochondrial intermembrane
proteins into the cytosol, including cytochrome c and second

mitochondria-derived activator of caspases (Smac) (5). Smac facil-
itates caspase-3, -7, and -9 activation by binding and neutralizing
IAP proteins (5). By comparison, cytochrome c supports the
assembly of the apoptosome complex, leading to caspase-9 and
-3 activation (5).

IAP PROTEINS: STRUCTURE AND FUNCTION
The family of IAP proteins comprises eight human analogs (3).
Among them, cellular IAP1 (cIAP1), cIAP2, X-linked inhibitor of
apoptosis (XIAP), melanoma-IAP (ML-IAP), and survivin have
been most extensively characterized (3). All IAP proteins contain
at least one baculoviral IAP repeat (BIR) domain of 70–80 amino
acids. Additional domains include the Really Interesting New Gene
(RING) domain, an E3 ubiquitin ligase responsible for ubiquiti-
nation and proteasomal degradation of substrates (6), and the
Caspase-Activating and Recruitment Domain (CARD), a protein–
protein interaction domain for oligomerization with other CARD
domain-containing proteins. XIAP is considered as the IAP family
member with the strongest antiapoptotic activities (7) and blocks
apoptosis by binding to and inhibiting activation of caspase-3, -7,
and -9 (3).

IAP PROTEINS IN PEDIATRIC LEUKEMIA
Expression levels of IAP proteins are elevated in a variety of
human malignancies including pediatric leukemia, which may be
caused by genetic events as well as by transcriptional or post-
transcriptional mechanisms. It is important to note that aberrant
expression of IAP proteins was described to correlate with adverse
patients’ outcome, suggesting that IAP proteins bear a prognostic
impact.

XIAP, cIAP1, AND cIAP2 IN PEDIATRIC LEUKEMIA
The prognostic significance of XIAP has been studied in child-
hood acute myeloid leukemia (AML). XIAP has been associated
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with adverse prognosis in pediatric leukemia by independent stud-
ies showing a correlation of high mRNA and protein expression
levels of XIAP and several unfavorable prognostic parameters
including high-risk groups for cytogenetics, immature morphol-
ogy, poor treatment response to induction chemotherapy, and
reduced relapse-free survival (8, 9). These findings indicate that
XIAP represents an indicator of poor prognosis in pediatric AML.
Also in childhood T-cell acute lymphoblastic leukemia (ALL),
elevated expression levels of XIAP protein turned out to be an
unfavorable prognostic factor, as there was a correlation between
high XIAP protein expression and poor prednisone response in
T-cell ALL (10). Of note, this correlation was specifically found
for XIAP protein rather than for XIAP mRNA expression, sug-
gesting that XIAP levels are controlled by posttranslational or
posttranscriptional mechanisms (10). Consistently, XIAP belongs
to the set of factors that harbor an internal ribosomal entry
site (IRES), which initiates translation even under conditions
of intracellular stress when protein synthesis is normally shut
down (11).

ML-IAP IN PEDIATRIC LEUKEMIA
In childhood ALL, a large study comprising the analysis of 222
patients showed that high expression levels of ML-IAP mRNA
correlated with a favorable rather than an unfavorable prognosis
(12). In addition, patients with higher XIAP expression exhibited
a better bone marrow response upon induction chemotherapy at
day 7 compared to patients with lower ML-IAP levels (12). Also,
ML-IAP turned out to be an independent favorable prognostic
factor in multivariate analysis for relapse-free survival of children
with ALL (12). These findings are particularly remarkable, since
ML-IAP gene expression has been linked to poor prognosis in
adult acute leukemia (13). While the reasons for this differential
impact of ML-IAP in childhood and adult acute leukemia have
not been identified, ML-IAP has been described to exhibit both
anti- and proapoptotic activities. On one hand, ML-IAP binds to
Smac and also promotes degradation of caspases via its ubiquitin
E3 ligase activity, thereby inhibiting apoptosis (14), and on the
other hand, the truncated form of ML-IAP (i.e., tML-IAP) that
is generated upon its cleavage by caspases has been reported to
promote apoptosis (15).

SURVIVIN IN PEDIATRIC LEUKEMIA
Overexpression of survivin was detected in two-thirds of precur-
sor B-cell ALL samples in contrast to negligible expression levels in
non-malignant hematopoietic cells (16). Higher survivin expres-
sion was associated with a higher risk of disease relapse or death
and also turned out to be a significant prognostic marker for 3-
year relapse-free, event-free, and overall survival (16). Analysis of
survivin splice variants in pediatric precursor B-cell ALL showed
an association between lower survivin-2B expression and affili-
ation to the high-risk group (17). Furthermore, high expression
levels of survivin were reported to correlate with poor overall sur-
vival in childhood de novo AML (9). A recent analysis of survivin
mRNA levels and survivin transcript splice variants on diagnostic
bone marrow samples from children with de novo AML showed
that high survivin-2B/∆Ex2 ratios were associated with refractory
disease and inferior survival in childhood AML (18).

TARGETING IAP PROTEINS FOR THE TREATMENT OF
CHILDHOOD LEUKEMIA
Since expression levels of IAP proteins were found to be ele-
vated in pediatric acute leukemia and since IAP proteins are
known as potent inhibitors of cell death, they are currently viewed
as potential targets for therapeutic intervention. For example,
small-molecule inhibitors that mimic the N-terminal part of the
endogenous IAP antagonist Smac were designed. In addition to
monovalent IAP antagonists, also bivalent compounds with higher
potency were designed that are composed of two monovalent
motifs connected via a central chemical link.

IAP ANTAGONISTS IN COMBINATION WITH TRAIL OR CD95 LIGAND
In childhood ALL, IAP antagonists at subtoxic concentrations
were shown to cooperate with the death receptor ligand TRAIL
to trigger apoptosis in a synergistic manner (19). The specificity
of the IAP antagonist-mediated sensitization toward TRAIL was
supported by data showing that a structurally related control com-
pound failed to sensitize ALL cells to TRAIL-induced cell death
(19). The synergistic induction of apoptosis by IAP antagonists
and TRAIL was accompanied by enhanced activation of caspases,
loss of mitochondrial membrane potential, and cytochrome c
release (19). Of note, XIAP antagonists even bypassed the Bcl-2-
imposed block to TRAIL-mediated apoptosis (19). Furthermore,
IAP antagonists triggered apoptosis in primary leukemic blasts
derived from children with ALL (19). In vivo, IAP antagonists suc-
ceeded to reduce the leukemic burden in an NOD/SCID mouse
model of childhood ALL (19). Besides the death receptor ligand
TRAIL, IAP antagonists were found to cooperate with agonistic
anti-CD95 antibodies or a hexameric form of the CD95 ligand to
trigger apoptosis in pediatric ALL cells (20).

IAP ANTAGONISTS IN COMBINATION WITH TNFα
Furthermore, IAP antagonists have also been reported to act
together with TNFα, another death receptor ligand, in order to syn-
ergistically trigger cell death in leukemia cells (21–23). Recently,
Smac mimetic in conjunction with TNFα was shown to engage
necroptosis as an alternative form of programed cell death in
apoptosis-resistant ALL cells that were genetically deficient for
Fas-associated death domain (FADD) or caspase-8 (22). Receptor-
Interacting Protein (RIP)1 was critically required for this type of
cell death, which lacked typical features of apoptotic cell death such
as caspase activation or DNA fragmentation (22). These studies
demonstrate that IAP antagonists can potentiate TNFα-stimulated
cell death by promoting either apoptosis or necroptosis, depending
on the cellular context.

IAP ANTAGONISTS IN COMBINATION WITH ANTICANCER AGENTS
In addition to death receptor agonists, it was also reported that IAP
antagonists act in concert with various anticancer drugs, including
AraC, Gemcitabine, Cyclophosphamide, Doxorubicin, Etoposide,
Vincristine, and Taxol, to trigger apoptosis in ALL cells in a syner-
gistic manner (24). Of note, IAP antagonists failed to sensitize nor-
mal peripheral blood lymphocytes for Cytarabine-induced apop-
tosis, similar to their failure to enhance the sensitivity to TRAIL-
or CD95-mediated apoptosis (19, 20, 24). Also, IAP antagonists
did not enhance the cytotoxic effects of Cytarabine on normal
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human hematopoietic progenitor cells or mesenchymal stromal
cells (24). The chemosensitization of ALL cells by IAP antagonists
was found to critically depend on the serine/threonine kinase RIP1
that was required to form a cytosolic cell death complex containing
RIP1/FADD/caspase-8, thereby driving caspase-8 activation (24).
Furthermore, IAP inhibition using the Smac mimetic LBW242 sig-
nificantly increased prednisone-induced apoptosis in a precursor
B-cell ALL cell line (10).

SURVIVIN INHIBITION
Knockdown of survivin by either short-hairpin RNA (shRNA) or a
locked antisense oligonucleotide was reported to induce apoptosis
in leukemia cell lines and also potentiated the chemotherapeu-
tic antileukemic effects (25–27). In addition, a survivin-locked
antisense oligonucleotide resulted in a significant inhibition of
tumor progression in a mouse primary xenograft model of relapse
ALL (25). Based on preclinical studies suggesting that targeting
endogenous levels of survivin mRNA may augment the response to
chemotherapy, a phase 1 study combining a survivin mRNA antag-
onist, EZN-3042, with re-induction chemotherapy was recently
conducted in childhood relapsed ALL (28). However, the study
has been prematurely terminated, since this regimen turned out to
be too toxic at a dose that was required for downregulation of sur-
vivin expression and since the clinical development of EZN-3042
was discontinued (28).

CONCLUSION
IAP proteins are promising novel targets for molecular targeted
therapy in childhood leukemia. Agents antagonizing IAP pro-
teins, including small-molecule inhibitors and antisense oligonu-
cleotides, have been shown to trigger apoptotic and non-apoptotic
cell death alone or in combination in preclinical studies in pedi-
atric leukemia. Currently, IAP antagonists are under evaluation in
early clinical trials in adult leukemia. Thus, IAP-targeting treat-
ment strategies warrant further clinical investigation in childhood
leukemia.
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