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No longer is histology solely predictive of cancer treatment and outcome. There is an
increasing influence of tumor genomic characteristics on therapeutic options. Both breast
and ovarian cancers are at higher risk of development in patients with BRCA 1/2-germline
mutations. Recent data from The Cancer Genome Atlas and others have shown a num-
ber of genomic similarities between triple negative breast cancers (TNBCs) and ovarian
cancers. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising
activity in hereditary BRCA 1/2-mutated and sporadic breast and ovarian cancers. In this
review, we will summarize the current literature regarding the genomic and phenotypic
similarities between BRCA 1/2-mutation related cancers, sporadic TNBCs, and sporadic
ovarian cancers. We will also review Phase I, II, and III data using PARP inhibitors for these
malignancies and compare and contrast the results with respect to histology.
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INTRODUCTION
BRCA1 and 2 proteins play integral functions in DNA homol-
ogous recombination repair (HRR). In normal cells, the HRR
pathway is activated in response to DNA double-stranded breaks
(1). In BRCA 1/2-deficient cells, HRR is faulty secondary to loss
of BRCA function, and therefore, other more error-prone DNA
repair pathways are activated. These less perfect mechanisms are
felt to be accountable, in part, for carcinogenesis. Similarly, tumors
with defective HRR mechanisms are more susceptible to the direct
DNA damaging effects of chemotherapy.

Homologous recombination repair dysfunction can be
exploited as a therapeutic strategy by the use of poly (ADP-ribose)
polymerase (PARP) inhibitors, which inhibit PARP proteins, most
commonly PARP1 and 2. As part of the base excision repair (BER)
pathway, PARP1 attaches long polymers of ADP-ribose on itself,
so that, XRCC1 and other repair proteins have the ability to
rapidly locate single-stranded DNA breaks (2–4). Newer evidence
reveals that the exact role of PARP1 in the BER pathway is per-
haps more indirect and not yet clearly defined (5). Recent studies
have also shown that PARP1 is more versatile, and has been impli-
cated in other DNA repair pathways, such as the non-homologous
end-joining (NHEJ) repair pathway (6, 7).

Several mechanisms by which PARP inhibition in HRR-
deficient cells lead to cell death have been investigated. Most
notably, the concept of synthetic lethality explains combinatory
lethal effects of BER and HR repair dysfunction, whereas alone,
HR or BER pathway disruptions are not lethal to the tumor cell
(8). Additionally, other potential mechanisms have been explored
including trapping of inhibited PARP1 at sites of DNA damage
preventing other repair proteins access, failure to initiate HRR by
PARP-dependent BRCA1 recruitment, and activation of the error-
prone NHEJ repair pathway leading to genomic instability and

subsequent cell death (9). Knowledge of PARP activity has led
to effective treatment strategies for BRCA 1/2-germline mutation
related tumors.

BRCA 1/2 -MUTATED OVARIAN AND BREAST CANCER
BRCA 1/2-mutation related ovarian and breast cancers account
for 5–10% of all female ovarian and breast cancers (10, 11).
Ovarian cancers in the setting of BRCA 1/2-germline mutations
can present with more aggressive, high-grade histologies, but are
frequently responsive to chemotherapy, particularly platinum-
based regimens, leading to an improved 5 years survival (12). The
chemotherapy-sensitive mechanism is felt to be related to the inti-
mate relationship between BRCA 1/2 proteins and defective HRR,
as discussed above. Recent studies have demonstrated that women
with BRCA-related ovarian cancers fare much better than sporadic
ovarian cancers (13–16). A study, published by the National Israeli
Study of Ovarian Cancer, showed women with BRCA mutations
had a median survival of 55.7 months compared to 37.9 months
in sporadic ovarian cancers (p= 0.002) (15). This may be in part
explained by the standard use of carboplatin-based therapies for
ovarian malignancies as the DNA damage induced by the plat-
inum should be more efficacious in the DNA repair-deficient
BRCA-related tumors.

Contrary to the more convincing outcomes in BRCA 1/2-
related ovarian cancers, the outcomes of BRCA mutation-related
breast cancers are less clear. Women with BRCA1 mutations typ-
ically develop breast cancer at an earlier age than BRCA2-related
and sporadic breast cancers. BRCA1-related breast cancers tend
to also be higher grade, hormone receptor-negative, and HER-
2-negative, or “triple negative” (17), and also frequently express
a basal phenotype (18–26). Patients with BRCA-mutated breast
cancers generally respond to therapy as well as sporadic cancers;
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however, the risk of second ipsilateral or contralateral primaries
may be as high as 3–5% per year, compared to 0.5–1% per year
risk, seen in sporadic breast cancers (17). In contrast to ovar-
ian cancer, platinum chemotherapy is not standardly adminis-
tered to patients with breast cancer. The use of platinum agents
has been evaluated in a small series which have demonstrated
high efficacy in breast cancer in particular in the setting of a
BRCA mutation. Silver et al. evaluated the use of neoadjuvant
platinum-containing chemotherapy in patients with triple nega-
tive breast cancer (TNBC) (N = 28), and found those more likely
to be platinum-sensitive were those with low BRCA1 gene expres-
sion (27). Likewise, in BRCA-mutated breast cancer patients who
received cisplatin in the neoadjuvant setting showed a high rate
of pathologic complete response (pCR) in a small series. Ten of
12 patients achieved pCR (83%). When non-platinum-containing
regimens were used, the pCR rate was 14% (28). These studies
highlight the rationale to further explore the use of platinum-
containing regimens, specifically for patients with TNBC and
BRCA mutations.

BRCAness: SPORADIC TRIPLE NEGATIVE BREAST CANCERS
Triple negative breast cancers account for ~20% of all breast can-
cers and are associated with an aggressive clinical picture (20,
25, 29). Due to lack of hormone receptor or HER-2 expression,
and no other known target for tailored therapy, the only cur-
rent treatment option is chemotherapy. Over 80% of hereditary
BRCA1-mutated cancers are TNBCs. Several studies have investi-
gated a potential role for BRCA1 inactivation in sporadic TNBC
given the similar clinical outcomes and histological characteristics
among these cancers and hereditary BRCA1-mutated breast can-
cers. Breast cancers developing in patients with BRCA1 mutations,
in addition to frequently being triple negative, also often express
basal markers (18–22, 25, 26). Gene microarray expression profil-
ing has shown considerable similarities between BRCA1-mutated
tumors and basal tumors (25). This shared phenotype has been
termed “BRCAness” (26). What is unknown is whether the basal
phenotype is a result of the BRCA loss or if the BRCA loss results
in the basal phenotype (6).

Recently, Lehmann and colleagues delved further into the
characterization of TNBC. They performed an analysis of gene
expression profiles of 587 TNBC cases and identified six separate
subtypes of TNBC. These six subtypes were: basal-like 1 (BL1),
basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M),
mesenchymal stem-like (MSL), and luminal androgen receptor
(LAR) subtype. Additional analysis of TNBC cell lines, repre-
sentative of each of these identified subsets, revealed differential
responses to various therapeutic agents. Both the BL1 and BL2
groups showed increased gene expression involved in DNA dam-
age response, and showed higher response to cisplatin (30). In a
follow-up study, Masuda et al. presented neoadjuvant chemother-
apy response data in each of the aforementioned TNBC subtypes
(31). In 130 TNBC patients, who received standard anthracycline-
and taxane-based chemotherapy, the BL1 subtype achieved a pCR
most frequently (52%). In contrast, the pCR in the BL2 subtype
was 0%. The molecular differences in BL1 and BL2 may explain
these differential responses. Specifically, the BL1 subtype involves
the cell cycle, DNA replication reactome, and the BRCA pathway,

among others, whereas the BL2 subtype involves growth factor,
glycolysis, and gluconeogenesis pathways. This work demonstrates
that even within “basal-like breast cancer (BLBC),” there may be a
great deal of heterogeneity.

Telli and colleagues recently presented a study evaluating gem-
citabine, carboplatin, and iniparib, a compound initially believed
to have PARP inhibitory effects, in the neoadjuvant treatment of
triple negative and BRCA-mutated breast cancer (32). This study
demonstrated a pCR of 36% overall, with a pCR in BRCA 1/2-
mutation carriers of 47%. Furthermore, patients who were both
triple negative and had a BRCA 1/2-mutation, had a pCR of
56%. Although only 10 patients were classified as BL1 or BL2,
there were an equal number of responders and non-responders
to the neoadjuvant platinum regimen. It is also notable that only
one patient classified as basal-like had a known BRCA mutation,
whereas, there were BRCA-mutated tumors that were classified as
IM, M, MSL, and unspecified (32). Although basal-like TNBC has
become nearly synonymous with BRCAness, this study found that
the basal-like subtype of TNBC was neither particularly respon-
sive to the treatment combination, nor had a higher number of
BRCA-germline mutations. In this study, the homologous recom-
bination deficiency (HRD) score appeared to be more predictive of
platinum response,as compared to TNBC intrinsic subtyping (30).
The HRD assay has been developed to evaluate for loss of heterozy-
gosity (LOH), which has been shown to be predictive of response
to platinum in BRCA-related and sporadic cancers (33). While,
this data is hypothesis-generating and thought-provoking, larger,
prospective studies will be needed before any formal conclusions
can be drawn.

In sporadic basal tumors, there are data that show reduced
BRCA1 mRNA expression. It is felt that epigenetic modifica-
tion of the BRCA gene, such as promoter hypermethylation, is
responsible for this (34–36). Interestingly, no tumors showed both
BRCA1 mutation and BRCA1 promoter methylation suggesting
that these events are mutually exclusive in The Cancer Genome
Atlas (TCGA) research network data (37). The association between
BRCA1-mutated and BLBCs provides an important rationale to
include this frequently encountered patient population in stud-
ies geared toward manipulation of the characteristic faulty DNA
repair mechanisms in BRCA1-mutated tumors. As we move into
an era where genomic analyses of tumors is becoming the norm, it
will be important to link the genome, methylome, and proteome
to clinical characteristics and outcomes.

BRCAness: SPORADIC HIGH-GRADE SEROUS OVARIAN
CANCERS
Similarly, there are many commonalities among BRCA 1/2-
mutated cancers and sporadic epithelial ovarian cancers (EOCs).
Although only 5–10% of ovarian cancers are directly attributable
to a germline mutation in BRCA1 or 2, there is a growing body
of evidence to suggest that additional mechanisms of BRCA dys-
function are involved in the pathogenesis of ovarian cancer (26,
38, 39). One study demonstrated alterations of BRCA1 and/or 2
in up to 82% of examined ovarian cancers (n= 92) (40). Methy-
lation of the BRCA1 promoter has been demonstrated in up to
14% of sporadic breast and up to 30% of sporadic ovarian cancers
(26, 35, 41–46). LOH has been described in ovarian tumors and
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Table 1 | Selected PARP inhibitor trials in BRCA 1/2 -mutated (BRCAmut) breast cancers.

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase I Advanced BRCAmut tumors (N =39, of which

8 BC)

BMN 673 None BRCAmut BC
De Bono et al. (71) ORR: 2/6

NCT01286987

Phase I Advanced solid tumors/hematologic

malignancies (N =100, of which 12 BC,

including 4 BRCAmut)

Niraparib None BRCAmut BC
Sandhu et al. (68) PR: 2/4

NCT00749502

Phase I Advanced solid tumors Olaparib None BRCAmut BC

Fong et al. (62) N =60, of which 9 BC, including 3 with

BRCAmut

CR: 1/3
NCT00516373 SD: 1/3

Phase II Recur, advanced BRCAmut OC (N =17)/BC

(N =10), or BRCAwt HGS and/or

undifferentiated OC (N =47)/TNBC (N =16)

Olaparib None BRCAmut BC
Gelmon et al. (65) CR+PR: 0/8

NCT00679783 SD: 5/8

Phase II BRCAmut solid tumors (BC, N =62, OC,

N =193)

Olaparib None BRCAmut BC
Kaufman et al. (89) CR: 0/62

NCT01078662 PR: 8/62

SD: 29/62

PFS rate: 29% for 6 months

OS rate: 44.7% for 12 months

Phase II BRCAmut advanced BC (N =27) Olaparib None ORR: 11/27

Tutt et al. (64) CR: 1/27

NCT00494234 PR: 10/27

ICEBERG 1 PFS: 5.7 months

Phase I Met or unresect BRCAmut BC and EOC

(N =45, of which 8 BC)

Olaparib+

carboplatin

None BRCAmut BC
Lee et al. (72) CR: 1/8

NCT00647062,

NCT01445418

PR: 6/8
SD: 1/8

Phase I Advanced solid tumors [N =87, including BC

(26%) and OC (7%), of which 12 BRCAmut]

Olaparib+

carboplatin±

paclitaxel

None BRCAmut

van der Noll et al. (90) CR: 17%b

NCT00516724 PR: 33%b

Phase I Recur or advanced EOC/TNBC Olaparib+ cediranib

(angiogenesis inhibitor)

None BRCAmut BC
Liu et al. (82) N =28, of which 3 BRCAmut BC ORR: 0/3

NCT01116648

Phase I/II

Kristeleit et al. (69)

NCT01482715

Advanced solid tumors and relapsed PSens

BRCAmut OC

Rucaparib None BRCAmut BC

PR: 1/17
N =29, of which 17 BC and 7 OC, including

BRCAmut tumors

SD: 10/29 (of which 4 were

BC, also 7/10 were BRCAmut)b

Phase I Advanced BRCAmut solid tumors (N =38, of

which 12 BC), or BRCAwt BLBC or OC

Veliparib None BRCAmut BC
Huggins-Puhalla et al. (91) PR: 1/12

NCT00892736 SD: 10/38b

Phase I

Ramaswamy et al. (92)

NCT01251874

Met or unresect BRCAmut BC, or BRCAwt

TNBC and other BCs

Veliparib+

carboplatin

None BRCAmut BC

PR: 2/6
N =38, of which 6 BRCAmut and 7 FAdef SD: 4/6

PR: 8/38b

SD: 17/38b

(Continued)
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Table 1 | Continued

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase I Met or unresect BRCAmut BC Veliparib+ carboplatin None CR: 3/26b

Somlo et al. (93) N =28 PR: 9/26

NCT01149083 SD: 7/26

PFS: 7.8 months

Phase I

Rodler et al. (94)

NCT01104259

Met BRCAmut BC or recur and/or met

BRCAwt TNBC

Veliparib+ cisplatin and

vinorelbine

None BRCAmut BC

PR: 3/5
N =18, of which 5 BRCA1/2mut PR: 6/11b

SD: 5/11b

Phase I Met BC Veliparib+

cyclophosphamide and

doxorubicin

None PR: 2/11 (both BRCA2mut)
Tan et al. (95) N =11, of which 3 BRCA2mut SD: 6/11 (of which 1

BRCA2mut)NCT00740805

Phase II Met BRCAmut BC (expansion cohort, N =24) Veliparib+ temozolomide None CR: 1/24

Isakoff et al. (96) PR: 2/24

NCT01009788 SD: 7/24

aData include only patients with measurable disease.
bCollective data reported.

BC, breast cancer; ORR, objective response rate; PR, partial response; CR, complete response; SD, stable disease; recur, recurrent; OC, ovarian cancer; BRCAwt, BRCA-

wild type; HGS, high-grade serous; TNBC, triple negative breast cancer; PFS, progression-free survival; OS, overall survival; met, metastatic; unresect, unresectable;

EOC, epithelial ovarian cancer; PSens, platinum-sensitive; BLBC, basal-like breast cancer; FAdef, fanconi anemia pathway deficiency.

may have multiple possible mechanisms leading to malignancy
including co-existing LOH of BRCA1 and p53, and hypermethyla-
tion acting in a synergistic fashion (33, 47–51). In contrast, BRCA2
methylation has not been found to be a significant contributor (39,
52). Identifying and manipulating these BRCA-like deficiencies in
DNA repair in sporadic ovarian cancers is of great importance
and provides rationale for including these patients in clinical trials
designed for BRCA-related malignancies.

Another important mechanism of BRCAness in ovarian can-
cers is the presence of somatic mutations in BRCA1 and 2 (53).
Hennessy and colleagues performed BRCA1/2 sequencing on 235
unselected ovarian cancers and found that 19% of the sample had
detectable mutations in BRCA1 (N = 31) or BRCA2 (N = 13). In
the 28 samples, where germline DNA was also available, 42.9% of
the BRCA1 mutations and 28.6% of the BRCA2 mutations were
somatic. Of interest, somatic BRCA 1/2-mutations in breast can-
cer appear to be less frequent. In the TCGA BLBC cohort, about
20% had either germline (N = 12) or somatic (N = 8) BRCA
1/2-mutations. Another study evaluated 77 TNBC samples and
only one harbored a somatic BRCA mutation (54). This poten-
tially explains the seemingly higher activity of single agent PARP
inhibitors, discussed later, in sporadic ovarian cancer as compared
to sporadic TNBC.

GENOMIC SIMILARITIES: BASAL-LIKE BREAST CANCER AND
HIGH-GRADE SEROUS OVARIAN CANCERS
The Cancer Genome Atlas network recently published findings
again demonstrating the four distinct molecular signatures in
breast cancer from diverse genetic and epigenetic alterations: lumi-
nal A, luminal B, basal-like, and HER-2 enriched subtypes (55).

Strikingly, BLBCs were notably different than the other three
subtypes based on comprehensive analyses using multiple plat-
forms. As expected, these cancers also often (80%) lacked expres-
sion of ER, PR, and HER-2 identifying as TNBCs. Specifically,
most BLBCs showed a high frequency of TP53 deleterious muta-
tions (80%), as well as, loss of RB1 and BRCA1. PIK3CA muta-
tions (~9%) were also a common feature of BLBC. Analyses also
highlighted increased MYC activation as a BLBC characteristic.

The BLBC mutation spectrum reported in the TCGA was simi-
lar to that identified in previously described serous ovarian cancers
(56) and BLBC were more similar to serous ovarian carcinomas
than to other subtypes of breast cancer. One gene, in particular,
TP53, had a >10% mutation frequency in both basal-like breast
and serous ovarian cancers. As well, both tumors when compared
to luminal showed increased BRCA1 inactivation, RB1 loss, cyclin
E1 amplification, high expression of AKT3, and MYC amplifi-
cation. These molecular commonalities strongly suggest shared
driving events in tumorigenesis, and similarly, show support for
shared treatment strategies for TNBCs and high-grade serous
ovarian cancers. Of note, p53 mutations have been described
to have high frequency in BRCA mutation-related cancers as
well (57, 58).

PARP INHIBITORS: PRECLINICAL ERA
Bryant et al. and Farmer et al. demonstrated synthetic lethal-
ity in BRCA2-deficient cells with the use of two different PARP
inhibitors (59, 60). PARP inhibitors have also shown efficacy
preclinically in cells lacking other HRR proteins, such as RAD51,
ATR, ATM, CHK1, and FANCA or FANCC (61). These studies
have given basis for clinical trials in both BRCA-deficient cancer
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Table 2 | Selected PARP inhibitor trials in BRCA 1/2 -mutated (BRCAmut) ovarian cancers.

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase I Advanced BRCAmut tumors (N =39, of

which 8 BC and 23 OC)

BMN 673 None BRCAmut OC
De Bono et al. (71) ORR: 11/17

NCT01286987

Phase I Advanced solid tumors/hematologic

malignancies (N =100, of which 49 OC,

including 22 BRCAmut)

Niraparib None BRCAmut OC
Sandhu et al. (68) PR: 8/20

NCT00749502

Phase I Advanced solid tumors Olaparib None BRCAmut OC

Fong et al. (62) N =60, of which 21 OC, including 16 with

BRCAmut

PR: 8/15
NCT00516373 SD: 1/15

Phase II Recur, advanced BRCAmut OC

(N =17)/BCs (N =10), or BRCAwt HGS

and/or undifferentiated OC (N =47)/TNBC

(N =16)

Olaparib None BRCAmut OC

Gelmon et al. (65) CR: 0/17

NCT00679783 PR: 7/17

SD: 6/17

Phase II Advanced PRef or PRes BRCAmut OC Olaparib Liposomal

doxorubicin

Olaparib 200 mg twice daily
Kaye et al. (66) PFS: 6.5 months

NCT00628251 ORR: 25%

Olaparib 400 mg twice daily

PFS: 8.8 months

ORR: 31%

Liposomal doxorubicin:

PFS: 7.1 months

ORR: 18%

Phase II BRCAmut solid tumors (BC, N =62, OC,

N =193)

Olaparib None BRCAmut OC
Kaufman et al. (89) CR: 6/193

NCT01078662 PR: 54/193

SD: 78/193

PFS rate: 54.6% for 6 months

OS rate: 64.4% for 12 months

Phase II Advanced BRCAmut OC Olaparib None ORR: 11/33

Audeh et al. (63) CR: 2/33

NCT00494442 PR: 9/33

PFS: 5.8 months

Phase I Met or unresect BRCAmut BC and EOC

(N =45, of which 37 OC)

Olaparib+ carboplatin None BRCAmut OC
Lee et al. (72) CR: 0/34

NCT00647062,

NCT01445418

PR: 15/34
SD: 14/34

Phase I Advanced solid tumors N =87, including

BC (26%) and OC (7%), of which 12

BRCAmut

Olaparib+ carboplatin±

paclitaxel

None BRCAmut

van der Noll et al. (90) CR: 17%b

NCT00516724 PR: 33%b

Phase I Recur or advanced EOC/TNBC Olaparib+ cediranib

(angiogenesis inhibitor)

None BRCAmut OC
Liu et al. (82) N =28, of which 12 BRCAmut OC CR: 1/11

NCT01116648 PR: 4/11

Phase I/II

Kristeleit et al. (69)

NCT01482715

Advanced solid tumors and relapsed

PSens BRCAmut OC

Rucaparib None BRCAmut OC

PR: 1/7
N =29, of which 17 BC and 7 OC,

including BRCAmut tumors

SD: 10/29 (of which 5 were

OC, also 7 were BRCAmut)b

CR+PR+SD: 6/7 in OC

(Continued)
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Table 2 | Continued

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase I Advanced BRCAmut solid tumors (N =38,

of which 20 OC), or BRCAwt BLBC or OC

Veliparib None BRCAmut OC
Huggins-Puhalla et al. (91) PR: 1/20

NCT00892736 SD: 10/38b

Phase II

Kummar et al. (97)

NCT01306032

Refractory progressive BRCAmut OC or

HGS OC

Veliparib (V)+

cyclophosphamide (C)

Cyclophosphamide

(C)

V+C: PR: 3/36b

C: PR: 5/38b

N =36 N =38

Phase I Met or unresect solid tumors Veliparib+ carboplatin

and gemcitabine

None CR: 2/59b

Bell-McGuinn et al. (98) N =59, of which 39 OC, 24 of 39 OC

BRCAmut

PR: 11/59b

NCT01063816 Of 13 responses, 8 BRCAmut

OC, 3 other OC

aData include only patients with measurable disease.
bCollective data reported.

BC, breast cancer; OC, ovarian cancer; ORR, objective response rate; PR, partial response; SD, stable disease; recur, recurrent; BRCAwt, BRCA-wild type; HGS,

high-grade serous; TNBC, triple negative breast cancer; PRef, platinum-refractory; PRes, platinum-resistant; PFS, progression free survival; OS, overall survival; CR,

complete response; met, metastatic; unresect, unresectable; EOC, epithelial ovarian cancer; PSens, platinum-sensitive; BLBC, basal-like breast cancer.

populations, as well as, those with malignancies sharing qualities
of BRCAness or HRR-deficiency, such as basal-like or TNBC and
serous ovarian cancer.

PARP INHIBITORS IN CLINICAL TRIALS
BRCA 1/2 -MUTATION STUDIES
The first published Phase I study evaluating PARP inhibitors in
the clinic used olaparib (AZD2281) enrolling patients with vary-
ing malignancies (Tables 1 and 2) (62). An expansion cohort of
BRCA-positive ovarian, breast, and prostate cancer patients was
enrolled at the recommended Phase II dose of 400 mg twice daily.
Nearly half of the evaluable patients had an objective response (19
patients, 47%). Results from this pivotal study showed olaparib
was generally well tolerated. From here, two Phase II proof-of-
concept trials (ICEBERG 1 and 2) (Tables 1 and 2) confirmed
activity in both BRCA-mutated ovarian and breast cancers, with
olaparib at 400 mg twice daily [ORR 11/33 (33%) and 11/27 (41%),
respectively], with low overall toxicities (63, 64).

Olaparib was also evaluated in patients with sporadic cancers
displaying a presumed BRCAness phenotype. Gelmon et al. per-
formed a non-randomized Phase II trial using olaparib in heavily
treated high-grade serous or undifferentiated ovarian carcinomas
and TNBCs (65) (Tables 1–4). Stratified by BRCA mutation sta-
tus, both BRCA-mutated and BRCA-wild type ovarian carcinoma
patients showed response to olaparib. In contrast, neither BRCA-
mutated nor sporadic breast cancer patients demonstrated signif-
icant response to olaparib. Potential explanations for these mixed
results include that not all TNBCs have a BRCA-like phenotype, so
there may have been some heterogeneity to this population (30).

In a population of BRCA-positive recurrent ovarian cancer
patients with a platinum-free interval of ≤12 months, olaparib
was compared to pegylated liposomal doxorubicin (PLD) in a
randomized Phase II trial (N = 97) (66) (Table 2). Progression
free survival (PFS) was not statistically significantly different for
olaparib 200 or 400 mg twice daily (combined or individually)

versus PLD (PFS 6.5 versus 8.8 versus 7.1 months, respectively).
Where the PFS and ORR were consistent with prior studies for
olaparib at 400 mg twice daily, the efficacy of PLD was higher than
expected when compared with previous trials. Toxicity profiles
were distinct between olaparib (nausea, vomiting, and fatigue)
and PLD (stomatitis and palmar-plantar erythrodysesthesia), and
overall, the drugs were well tolerated. Although olaparib did not
show an improvement in PFS over chemotherapy, these results
show that targeted therapy with a PARP inhibitor is as effective as
chemotherapy, with potential for improved tolerability.

Other PARP inhibitors have also been studied in clinical trials
including niraparib (MK4827) in both BRCA-positive and spo-
radic tumors. This compound’s mechanism of action includes
PARP inhibition via a novel PARP trapping mechanism (67). A
Phase I study utilizing niraparib monotherapy was recently pub-
lished that established a maximum tolerated dose of 300 mg/day
(N = 100) (68) (Table 1). Dose-limiting toxicities (DLTs) were
reported in the first cycle including grade 4 thrombocytopenia
at a dose of 400 mg/day. Non-hematologic DLTs included grade 3
fatigue and grade 3 pneumonitis at lower doses (30 and 60 mg/day,
respectively). Common treatment-related effects were anemia,
nausea, fatigue, thrombocytopenia, anorexia, neutropenia, con-
stipation, and vomiting, but were predominantly grade 1 or 2.
There were anti-tumor responses seen in the BRCA-mutated breast
and ovarian cancer population, and these were recorded at doses
>60 mg/day. Results from this study show promise for this newer
PARP inhibitor and currently there are multiple Phase III trials
recruiting in BRCA-positive breast and ovarian,and sporadic ovar-
ian cancer populations (NCT01905592, NCT01847274) (Tables 5
and 6).

Rucaparib (CO-338/AG-014699, also previously PF-01367338)
was recently evaluated in Phase I and II studies in advanced
solid tumors, including BRCA-positive breast and ovarian can-
cers. The PARP inhibitor as monotherapy and in combinations
with cytotoxic chemotherapy is under investigation. In a standard
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Burgess and Puhalla PARP inhibitors in breast and ovarian cancers

Table 3 | Selected PARP inhibitor trials in sporadic breast cancers.

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase II Recur, advanced BRCAmut OC (N =17)/BCs

(N =10), or BRCAwt HGS, and/or

undifferentiated OC (N =47)/TNBC (N =16)

Olaparib None BRCAwt TNBC
Gelmon et al. (65) CR+PR: 0/15

NCT00679783 SD: 2/15

Phase I Refractory or recur BC (N =4) and OC Olaparib+ carboplatin None BC

Lee et al. (99) PR: 3/4

NCT01237067 SD: 1/4

Phase I Advanced solid tumors N =87, including BC

(26%) and OC (7%), of which 12 BRCAmut

Olaparib+

carboplatin±

paclitaxel

None ORR: 14/87 (16%)b

van der Noll et al. (90) CR: 5%

NCT00516724 PR: 11%

SD: 28%

Phase I Recur or advanced EOC/TNBC Olaparib+ cediranib

(angiogenesis inhibitor)

None BC
Liu et al. (82) N =28, of which 8 BC ORR: 0/7

NCT01116648 SD: 2/7

Phase I Advanced solid tumors Olaparib+ cisplatin None CR: 1/54b

Balmana et al. (100) N =54, of which 42 BC PR: 17/54b

NCT00782574 SD: 23/54b

Phase I Met TNBC Olaparib+paclitaxel None PR: 7/19

Dent et al. (76) N =19 SD: 1/19

NCT00707707

Phase I Advanced BRCAmut solid tumors, or BRCAwt

tumors (N =25, of which 21 BLBC)

Veliparib None BRCAwt BLBC
Huggins-Puhalla et al. (91) PR: 1/21

NCT00892736 BRCAwt

SD: 7/25b

Phase I Refractory solid tumors/lymphoma Veliparib Cyclophosphamide PR: 7/35b

Kummar et al. (101) N =35, including BC and OC SD: 6/35b

NCT00810966

Phase I

Ramaswamy et al. (92)

NCT01251874

Met or unresect BRCAmut BC, or BRCAwt

TNBC and other BCs

Veliparib+ carboplatin None PR: 8/38

SD: 17/38
N =38, of which 6 BRCAmut and 7 FAdef FAdef

PR: 2/7

SD: 5/7

Phase I Met or unresect solid tumors Veliparib+ carboplatin

and gemcitabine

None CR: 2/59b

Bell-McGuinn et al. (98) N =59, of which 10 BC PR: 11/59b

NCT01063816 Of 13 responses, 8 BRCAmut

OC, 3 other OC, 2 others

Phase I Advanced solid tumors including BC Veliparib+ carboplatin

and paclitaxel

None BC
Appleman et al. (102) N =68, of which 14 BC CR: 3/14

NCT00535119 PR: 5/14

Phase I Met or unresect solid tumors, including BC

(Q1 week, N =10 TNBC, Q3 week, N =9

TNBC)

Veliparib+ carboplatin

and paclitaxel

None TNBC
Puhalla et al. (80)

NCT01281150

(Q1 week), CR: 2/10, PR:

3/10, SD: 3/10

(Q3 week), CR: 3/9, PR: 4/9,

SD: 1/9

Phase I

Rodler et al. (94)

NCT01104259

Met BRCAmut BC or recur and/or met

BRCAwt TNBC

Veliparib+ cisplatin and

vinorelbine

None PR: 6/11b

SD: 5/11b

N =18, of which 5 BRCA1/2mut

(Continued)
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Burgess and Puhalla PARP inhibitors in breast and ovarian cancers

Table 3 | Continued

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase I

Tan et al. (95)

NCT00740805

Met BC Veliparib+

cyclophosphamide

and doxorubicin

None PR: 2/11 (both BRCA2mut)
N =11, of which 3 BRCA2mut SD: 6/11 (of which 1

BRCA2mut)

aData include only patients with measurable disease.
bCollective data reported.

recur, recurrent; BRCAmut, mutated BRCA; OC, ovarian cancer; BC, breast cancer; BRCAwt, BRCA-wild type; HGS, high-grade serous; TNBC, triple negative breast

cancer; CR, complete response; PR, partial response; SD, stable disease; ORR, objective response rate; EOC, epithelial ovarian cancer; met, metastatic; BLBC,

basal-like breast cancer; FAdef, fanconi anemia pathway deficiency.

dose-escalation fashion, a Phase I/II study (Tables 1 and 2) is
currently evaluating rucaparib monotherapy in advanced solid
tumors (N = 29) including ovarian/primary peritoneal (N = 7)
and breast (N = 17) cancer patients (69). Thus far, no DLTs at
360 mg twice daily (study not yet complete) have been reported. To
date, two PRs were seen in one BRCA-positive ovarian cancer, and
one BRCA-positive breast cancer patient at 300 mg daily dosing
during the sixth week of therapy. Ten additional patients (ovar-
ian N = 5, breast N = 4, and colorectal N = 1) have experienced
stable disease (SD) at >12 weeks so far; seven of which are BRCA-
positive. Overall the disease control rate (PR+ SD > 12 weeks) for
ovarian cancer patients is 86% (6/7). Further results are anticipated
from this study. These promising results to date have supported
ARIEL2, a Phase II study of rucaparib in platinum-sensitive,
relapsed, high-grade epithelial ovarian, fallopian tube, or primary
peritoneal cancer patients, which is currently recruiting patients
(Table 6).

BMN 673, a novel, highly potent PARP 1/2 inhibitor, demon-
strated high efficacy in preclinical studies (70). BMN 673 elicits
DNA repair biomarkers at much lower concentrations [PARP1
half maximal inhibitory concentration (IC50) <1 nmol/L] than
earlier generation PARP inhibitors, i.e., olaparib, veliparib, and
rucaparib. Its anti-tumor activity has been tested in vitro and in
xenograft cancer models, as monotherapy and in combination.
Anti-tumor activity was seen in BRCA1, BRCA2, and PTEN defi-
cient cells with a 20 to more than 200-fold greater potency than
existing PARP 1/2 inhibitors. Synergism was also seen when BMN
673 was combined with temozolomide, SN38, or platinum drugs.
Thus far, BMN 673 has been the most specific PARP inhibitor in
its class.

The first in-human Phase I, clinical trial using BMN 673 in
solid tumor patients was recently presented at ASCO 2013 (71)
(Tables 1 and 2). Patients with advanced solid tumors defective in
DNA repair, including BRCA-mutated breast (N = 6), and ovarian
(N = 17) cancer patients, were eligible for the stage II expansion
phase at the maximum tolerated dose of 1000 mcg daily. In total,
39 patients with advanced solid tumors were enrolled, including
those tumors with deleterious BRCA mutations. Thrombocytope-
nia was dose-limiting and occurred in three patients at doses 900
or 1100 mcg daily. Most potential treatment-related adverse events
(AEs) were grade 1/2 and included fatigue, nausea, flatulence,
anemia, neutropenia, thrombocytopenia, and alopecia. Objective
responses were seen in 11/17 BRCA-mutated ovarian/primary

peritoneal cancer patients and 2/6 BRCA-mutated breast cancer
patients. Based on these encouraging results, the recommended
dose, 1000 mcg daily, will be studied in a Phase III trial in
BRCA-carrier metastatic or locally advanced breast cancer patients
(NCT01945775) (Table 5).

In addition to the single agent studies described above, PARP
inhibitors have been combined with chemotherapy in BRCA
mutation-related malignancies. Lee et al. in a Phase I/Ib study,
utilized olaparib, in combination with carboplatin, in a standard
dose-escalation study design in BRCA 1/2-mutated breast and
ovarian cancers (N = 45) (72) (Tables 1 and 2). The recommended
Phase II dose was 400 mg twice daily for 14 days with carboplatin
AUC 5. As noted in several other trials utilizing olaparib, and
other PARP inhibitors, myelosuppression was frequently present
with grade 3/4 AEs (neutropenia 42%), as well as, thrombocy-
topenia (20%), anemia (13%), carboplatin-hypersensitivity (9%),
and fatigue (7%). Responses included one CR in a breast cancer
patient that was durable (duration of 17 months), and a PR in
15/34 (44%) ovarian cancer (duration 3–28+ months) and 6/8
breast cancer (duration 5–24+ months) patients. Prolonged SD
was seen in 14/34 (41%) ovarian cancer patients for as long as
25 months and for 11 months in a breast cancer patient. Remark-
ably, the overall clinical benefit rate was 100% in breast cancer
patients and 85% in ovarian cancer patients. A summary of Phase
I–III studies utilizing PARP inhibitors in BRCA 1/2-mutated breast
and ovarian cancers can be found in Tables 1 and 2.

SPORADIC BREAST AND OVARIAN CANCER TRIALS
The earliest trials reported for sporadic TNBCs evaluated iniparib
(BSI-201) in combination with gemcitabine and carboplatin. The
Phase II trials showed promising anti-tumor activity, prolonged
median progression-free survival, and median overall survival
(OS) with minimal overall toxicity (73). Disappointingly, the
results were not significant in the Phase III trial (74). There are
a number of potential explanations for the lack of efficacy seen in
the Phase III study, including the heterogeneity within the subtypes
of TNBC. Importantly, it was discovered that iniparib was actu-
ally not a PARP inhibitor, at physiologic concentrations. Rather,
iniparib was shown to cause telomere-centric DNA damage (75).

There are also a number of reported and ongoing studies with
“true” PARP inhibitors in sporadic TNBCs, although, only a few
studies that have been published in final format. A Phase I/II study
of mention explored the use of olaparib in combination with
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Burgess and Puhalla PARP inhibitors in breast and ovarian cancers

Table 4 | Selected PARP inhibitor trials in sporadic ovarian cancers.

Trial Study population PARP inhibitor Comparison

therapy

Clinical responsesa

Phase II Recur, advanced BRCAmut OC (N =17)/BCs

(N =10), or BRCAwt HGS and/or

undifferentiated OC (N =47)/TNBC (N =16)

Olaparib None BRCAwt OC
Gelmon et al. (65) CR: 0/46

NCT00679783 PR: 11/46

SD: 18/46

Phase II Relapsed PSens serous OC after two

courses of platinum-based chemotherapy

Olaparib Placebo PFS: 8.4 months
Ledermann et al. (81) OS 29.7 months

NCT00753545 ORR: 12.3%

ORR+SD: 52.9%

Phase I Refractory or recur BC (N =4) and OC

(N =23)

Olaparib+ carboplatin None OC
Lee et al. (99) PR: 8/23

NCT01237067 SD: 11/23

Phase I Advanced solid tumors N =87, including BC

(26%) and OC (7%), of which 12 BRCAmut

Olaparib+

carboplatin±

paclitaxel

None ORR: 14/87 (16%)b

van der Noll et al. (90) CR: 5%

NCT00516724 PR: 11%

SD: 28%

Phase II Advanced PSens serous OC Olaparib+ carboplatin,

paclitaxel

Carboplatin,

paclitaxel alone

PFS: 12.2 months
Oza et al. (103) ORR: 64%

NCT01081951

Phase I Recur or advanced EOC/TNBC Olaparib+ cediranib

(angiogenesis inhibitor)

None OC
Liu et al. (82) N =28, of which 20 OC CR: 1/18b

NCT01116648 PR: 7/18b

SD: 3/18b

Phase I Advanced solid tumors Olaparib+ cisplatin None CR: 1/54b

Balmana et al. (100) N =54, of which 10 OC PR: 17/54b

NCT00782574 SD: 23/54b

Phase I Advanced solid tumors (N =23, of which 6

OC)

Rucaparib+ carboplatin None OC
Molife et al. (104) PR: 1/6

NCT01009190 SD: 2/6

Phase I Advanced BRCAmut solid tumors, or BRCAwt

tumors (N =25, of which 4 OC)

Veliparib None BRCAwt

Huggins-Puhalla et al. (91) SD: 7/25b

NCT00892736

Phase I Refractory solid tumors/lymphoma Veliparib Cyclophosphamide PR: 7/35b

Kummar et al. (101) N =35, including BC and OC SD: 6/35b

NCT00810966

Phase II

Kummar et al. (97)

NCT01306032

Refractory progressive BRCAmut OC or HGS

OC

Veliparib (V)+

cyclophosphamide (C)

Cyclophosphamide

(C)

V+C: PR: 3/36b

N =36 N =38 C: PR: 5/38b

Phase I Met or unresect solid tumors Veliparib+ carboplatin

and gemcitabine

None CR: 2/59b

Bell-McGuinn et al. (98) N =59, of which 39 OC, 24 of 39 BRCAmut PR: 11/59b

NCT01063816 Of 13 responses, 8 BRCAmut

OC, 3 other OC, 2 others

aData include only patients with measurable disease.
bCollective data reported.

recur, recurrent; BRCAmut, mutated BRCA; OC, ovarian cancer; BC, breast cancer; BRCAwt, BRCA-wild type; HGS, high-grade serous;TNBC, triple negative breast can-

cer; CR, complete response; PR, partial response; SD, stable disease; PSens, platinum-sensitive; PFS, progression free survival; OS, overall survival; ORR, objective

response rate; EOC, epithelial ovarian cancer; BLBC, basal-like breast cancer; met, metastatic; unresect, unresectable.
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Burgess and Puhalla PARP inhibitors in breast and ovarian cancers

Table 5 | Ongoing or future PARP inhibitor trials in BRCA 1/ 2 -mutated (BRCAmut) breast and ovarian cancers.

Trial Study population PARP inhibitor Comparison therapy ClinicalTrials.gov status

Phase III Met or unresect BRCAmut BC BMN 673 Physician’s choice –

capecitabine, eribulin,

gemcitabine, or vinorelbine

NCT01945775

Recruiting

Phase III HER-2 negative met or advanced

BRCAmut BC

Niraparib Physician’s choice (select

from four active comparators)

NCT01905592 (BRAVO)

Not yet open for recruitment

Phase III PSens BRCAmut or HGS OC

w/prior CR and second CR/PR

Niraparib (maintenance) Placebo NCT01847274

Recruiting

Phase III PSens BRCAmut (stage III or IV)

OC in first CR/PR

Olaparib (maintenance) Placebo NCT01844986

Not yet open for recruitment

Phase III Relapsed PSens BRCAmut OC

w/prior CR and second CR/PR

Olaparib (maintenance) Placebo NCT01874353

Not yet open for recruitment

Phase II Met or locally advanced BRCAmut

BC/OC

Rucaparib None NCT00664781
Active, not recruiting

Phase II

Miller et al. (105)

BRCAmut BC or BRCAwt TNBC

w/residual disease in adjuvant

setting (after NAC/surgery)

Rucaparib+ cisplatin Cisplatin NCT01074970

Ongoing, not recruiting

Phase I Met or unresect BRCAmut BC and

OC

Veliparib None NCT01853306
Recruiting

Phase I/II Relapsed PRes or partially PSens

BRCAmut EOC

Veliparib None NCT01472783
Veli-BRCA

Recruiting

Phase II Met or advanced BRCAmut BC Veliparib Placebo and carboplatin,

paclitaxel

NCT01506609
Isakoff et al. (106) Three arms, plus

temozolomide, or

carboplatin, paclitaxel

Recruiting

Phase II Advanced or recur BRCAmut EOC Veliparib None NCT01540565

Coleman et al. (107) Ongoing, not recruiting

Phase I BRCAmut solid tumors (e.g., BC

and OC)

Veliparib+oxaliplatin

and capecitabine

None NCT01233505
Recruiting

Phase I Met or unresect BRCAmut BC and

OC

Veliparib+ temozolomide None NCT00526617
Completed

met, metastatic; unresect, unresectable; BC, breast cancer, PSen, platinum-sensitive; HGS, high-grade serous; OC, ovarian cancer; CR, complete response; PR,

partial response; BRCAwt, BRCA-wild type; TNBC, triple negative breast cancer; NAC, neoadjuvant chemotherapy; PRes, platinum-resistant; EOC, epithelial ovarian

cancer; recur, recurrent.

paclitaxel in the first or second-line setting for metastatic TNBC
patients (N = 19) (76) (Table 3). Notably, patients were treated
with olaparib 200 mg daily with paclitaxel 90 mg/m2 weekly for
3 of 4 weeks and 15 of the patients had had previous taxane-
based therapy. Thirty-seven percent of patients had a PR, although,
there were significant dose modifications due to the greater than
expected rate of neutropenia, even despite use of growth factor
support. While taxanes are proven agents in TNBC (77–79), this
class is not typically thought to be a potentiating agent for PARP
inhibitors. Most studies have used a platinum agent for poten-
tiation, exploiting the DNA damage/dysfunctional DNA repair
pathways concept. Perhaps utilizing two agents that are active in

different parts of the cell cycle would potentially target more tumor
cells, overall, including those in different phases of growth. Addi-
tionally, the utility of PARP inhibitor/taxane-based combination
may have potentially overcome taxane resistance. There are ongo-
ing studies with platinum and taxane combinations with a PARP
inhibitor. Early looks at efficacy are promising (80).

Similarly in ovarian cancer, there have been a number of stud-
ies evaluating PARP inhibitors with chemotherapy, including in
the maintenance setting. Ledermann et al. studied olaparib in
the maintenance setting after second CR in platinum-sensitive
recurrent serous ovarian cancer patients. This was a Phase II,
randomized, double-blinded, placebo-controlled trial (N = 265)
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Burgess and Puhalla PARP inhibitors in breast and ovarian cancers

Table 6 | Ongoing or future PARP inhibitor trials in sporadic breast and ovarian cancers.

Trial Study population PARP inhibitor Comparison

therapy

ClinicalTrials.gov

status

Phase III PSens BRCAmut or HGS OC

w/prior CR and second CR/PR

Niraparib (maintenance) Placebo NCT01847274
Recruiting

Phase I Recur TNBC/HGS OC Olaparib+BKM120 (PI3 kinase

inhibitor)

None NCT01623349
Recruiting

Phase I Met or unresect TNBC/serous

EOC

Olaparib+ carboplatin None NCT01445418
Recruiting

Phase I/Ib Relapsed stage III or IV OC Olaparib+ carboplatin and

paclitaxel

None NCT01650376
Recruiting

Phase II Relapsed recur PSens high-grade

EOC

Rucaparib None NCT01891344 (ARIEL2)
Recruiting

Phase II

Miller et al. (105)

BRCAmut BC or BRCAwt TNBC

w/residual disease in adjuvant

setting (after NAC/surgery)

Rucaparib+ cisplatin Cisplatin NCT01074970

Ongoing, not recruiting

Phase I Recur or residual EOC/met TNBC Veliparib Pegylated liposomal

doxorubicin

NCT01145430
Pothuri et al. (108) Recruiting

Phase I Recur met or locally advanced

unresect solid tumors (e.g.,

BC/OCs) with organ dysfunction

Veliparib Carboplatin and

paclitaxel

NCT01366144

Recruiting

Phase I Recur OC Veliparib None NCT01459380

Two arms+doxorubicin,

carboplatin, and bevacizumab

Recruiting

Phase I Node-positive BC with incomplete

response to NAC

Veliparib Radiation therapy NCT01618357
Recruiting

Phase I Recur stage IV EOC Veliparib+ intraperitoneal

floxuridine (FUDR)

None NCT01749397
Recruiting

Phase I Newly diagnosed stage II–IV

optimally or suboptimally debulked

OC

Veliparib+paclitaxel, carboplatin,

bevacizumab

None NCT00989651

Recruiting
Two parallel arms

Phase II Stage IIA, IIIA–C TNBC Veliparib+paclitaxel+ carboplatin,

followed by doxorubicin,

cyclophosphamide (neoadjuvant)

Paclitaxel, carboplatin,

followed by doxorubicin,

cyclophosphamide

NCT01818063
Avery et al. (109) Recruiting

Phase II Recur HGS OC Veliparib+ temozolomide Pegylated liposomal

doxorubicin

NCT01113957
Completed

Phase I/II Recurrent, relapsed PRes or part

PSens OC

Veliparib+ topotecan None NCT01690598
Recruiting

Phase II Recur advanced non-PSens OC Veliparib+ topotecan None NCT01012817

Recruiting

PSen, platinum-sensitive; BRCAmut, BRCA 1/2-mutated; HGS, high-grade serous; OC, ovarian cancer; CR, complete response; PR, partial response; recur, recurrent;

TNBC, triple negative breast cancer; met, metastatic; unresect, unresectable; EOC, epithelial ovarian cancer; BC, breast cancer; BRCAwt, BRCA-wild type; NAC,

neoadjuvant chemotherapy; PRes, platinum-resistant.

(81) (Table 4). Median PFS was statistically significant between
the groups, 8.4 versus 4.8 months, in the olaparib and placebo
arms, respectively (p < 0.001). OS was not significantly differ-
ent (29.7 versus 29.9 months in the olaparib and placebo groups,

respectively). Further studies are needed to identify a popula-
tion of patients that may experience greater clinical benefit, such
as those with BRCA 1/2-mutations or those with a BRCAness
phenotype.
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Combination therapies with PARP inhibitors have also been
investigated in sporadic ovarian and breast cancers, specifically
with other novel targeted agents. Cediranib, an anti-angiogenesis
agent, was studied with olaparib in recurrent epithelial ovarian
or TNBCs (N = 28, 20 ovarian and 8 breast) (82) (Tables 1–4).
Patients were enrolled to four dose levels and the recommended
Phase II dose was cediranib 30 mg daily and olaparib 200 mg
twice daily was based on one occurrence of grade 4 neutrope-
nia (≥4 days) and one of grade 4 thrombocytopenia with dosages
of cediranib 30 mg daily and olaparib 400 mg twice daily. Seventy-
five percent of patients experienced grade 3 or higher toxicities
with grade 3 hypertension and fatigue, occurring in 25 and 18%
of subjects, respectively. Despite the frequent hematologic and
non-hematologic toxicities, the ORR was 44% in the evaluable
ovarian cancer population (N = 18). Sixty-one percent of ovarian
patients had clinical benefit (including those with SD). None of
the breast cancer patients experienced clinical response, but two
patients had SD for >24 weeks. A summary of Phase I–III studies
utilizing PARP inhibitors in sporadic breast and ovarian cancers
can be found in Tables 3 and 4.

PLATINUM AND PARP INHIBITOR RESISTANCE
BRCA 1/2-deficient cancers are known to be hypersensitive to plat-
inum agents which are thought account for, in part, better overall
prognosis for those patients with BRCA 1/2-germline mutation-
related breast and ovarian cancer. Not all patients respond to
platinum, however, and indeed, it is likely that the majority of
tumors will eventually become platinum-resistant. Additionally,
not all patients with BRCA 1/2-germline mutations or those
with an expected BRCAness phenotype respond to PARP inhi-
bition. Several mechanisms of resistance to both agents have
been hypothesized and are likely to be multifactorial in etiol-
ogy. Current evidence suggests that secondary mutations occur
in the BRCA1 or BRCA2 gene restoring the wild type BRCA 1/2
open reading frame which may provide return of DNA repair
through a functional HR pathway. These reversion mutations are
thought to lead to platinum resistance, as well as PARP inhibitor
resistance (83–87). It is imperative that these secondary muta-
tions are identified to help modulate therapeutic management of
these populations. Of interest, PARP inhibitor resistance may, in
fact, not affect subsequent therapy response, including subsequent
platinum regimens (88).

CONCLUSION
Poly (ADP-ribose) polymerase inhibitors have shown promising
activity as both monotherapy and in combination with cytotoxic
chemotherapy in BRCA 1/2-mutated cancers. More recently, this
concept has been implicated in sporadic high-grade serous ovar-
ian cancers and TNBCs. Like platinum agents, PARP inhibitors
have been efficacious in this population. Published data from
the TCGA network further support this therapeutic strategy by
showcasing the genomic similarities between high-grade serous
ovarian cancers and TNBCs. It may be worthwhile in the future
to study new drug therapies in tandem in these two populations.
New strategies are needed to combat tumor resistance mecha-
nisms, such as secondary mutations that revert BRCA genes to
wild type, to both platinum agents and PARP inhibitors. Future

directions for PARP inhibition include when best to use these
agents, in what combinations, and precisely, how to define the
optimal populations that will get the most benefit.
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