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In recent years, the relevance of the tumor microenvironment (TME) in the progression of
cancer has gained considerable attention. It has been shown that the TME is capable of
inactivating various components of the immune system responsible for tumor clearance,
thus favoring cancer cell growth and tumor metastasis. In particular, effects of theTME on
antigen-presenting cells, such as dendritic cells (DCs) include rendering these cells unable
to promote specific immune responses or transform them into suppressive cells capable
of inducing regulatory T cells. In addition, under the influence of the TME, DCs can pro-
duce growth factors that induce neovascularization, therefore further contributing to tumor
development. Interestingly, cancer-associated DCs harbor tumor antigens and thus have
the potential to become anti-tumor vaccines in situ if properly reactivated. This perspec-
tive article provides an overview of the scientific background and experimental basis for
reprograming cancer-associated DCs in situ to generate anti-tumor immune responses.
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INTRODUCTION
Tumors are composed of cancerous cells and non-cancerous cells
such as fibroblasts, endothelial cells, and infiltrating leukocytes.
Together with non-cellular components (extracellular matrix pro-
teins), this constitutes the tumor microenvironment (TME). The
non-cellular components often support the growth and survival
of cancer cells. Moreover, cancer cell growth and survival are
influenced by the activation state and responses of infiltrating
leukocytes. In particular, leukocytes such as macrophages, T cells,
myeloid-derived suppressor cells (MDSCs), and dendritic cells
(DCs) have all been shown to participate in tumor development
in various settings. For instance, on one hand, chronic inflamma-
tion, either induced by infection (e.g., H. pylori, Hepatitis virus)
or irritants (tobacco smoke, asbestos) constitutes an important
risk factor for the development of cancer (1–4). On the con-
trary, tumor-infiltrating leukocytes, such as cytotoxic T cells can
mediate an immune response against the tumor by recognizing
tumor antigens and attacking tumor cells in a specific man-
ner (5, 6). Indeed, this is the basis of cancer immunotherapies.
Thus, immunosuppression is also able to support tumor growth.
Furthermore, existing evidence supports that adaptive immune
response influences the behavior of human tumors. In situ analy-
sis of tumor-infiltrating immune cells may therefore be a valuable
prognostic tool in the treatment of colorectal cancer and possibly
other malignancies (7).

There are two main ways in which leukocytes can collabo-
rate with tumor development (i.e., pro-tumorigenic processes):
suppression of the anti-tumor immune response and production
of growth factors. In particular, cancer-associated immune cells
such as regulatory T cells (Treg) or MDSCs have been shown to

directly inhibit the activity of specific anti-tumor cytotoxic T cell
responses (8, 9). In addition, infiltrating inflammatory cells secrete
a diverse repertoire of growth factors that can enhance cancer
cell proliferation and survival directly [e.g., interleukin (IL)-6 and
TNF-α] or by stimulating angiogenesis (10–17). In this context,
DCs are very interesting players, especially taking into account
their ability to participate in both pro-tumorigenic and anti-tumor
processes. For more detailed reviews on DCs in cancer biology and
immunotherapy, please refer to Ref. (18–21).

IMMUNE PROPERTIES OF DENDRITIC CELLS
Dendritic cells scan peripheral tissues where they recognize, take
up, and process antigens and then migrate to lymphoid organs
to present antigenic peptides to naive T lymphocytes in the con-
text of major histocompatibility molecules (MHC) (13, 22–24).
During this process, DCs become activated, upregulating MHC
class II molecules and co-stimulatory molecules such as CD40,
CD80, CD86, or OX40L. Upon activation, DCs typically show
a decrease in their phagocytic capability, an augment in their
efficacy to present processed antigens in the context of MHC
molecules, and consequently an improved capability to activate
T cells. Through the expression of both MHC class I and II mole-
cules, DCs are able to activate antigen-specific CD8+ T cytotoxic
and CD4+ T helper lymphocytes respectively (25–27). By means
of various signals, DCs do not only activate specific T cells, but
also drive their differentiation into distinct subsets and even can
imprint a migration pattern on these cells toward particular organs
or tissues (28). Depending on the stimulus and tissue microenvi-
ronment, activated DCs produce an array of cytokines including
IL-6, IL-12, IFN-γ, and TNF-α, in addition to several chemokines
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such as CCL2, CCL3, and CCL5 (29), and thus can play a critical
role in shaping the cytokine milieu and leukocyte recruitment and
activation.

Dendritic cells are a diverse group of professional antigen-
presenting cells that link innate and adaptive immune sys-
tems. Several distinct subsets of DCs have been identified and
broadly subcategorized into conventional (cDCs) and plasmacy-
toid (pDCs) (30). Each subset is considered functionally unique,
with different TLR expression profiles, response, and outcomes
leading to activation of alternate branches of the immune system.
For instance, mDC express TLR-2, -4, and -5 whose activation
induces IL-12 and IL-6 production. In contrast, pDCs express
TLR-7 and -9 ligation resulting in a strong type-I interferon namely
IFN-α and are critical players in the innate anti-viral response (31).
Such subset differences may have critical implications in success or
failure of reprograming cancer-associated DCs in situ to generate
anti-tumor immune responses.

CHARACTERISTICS OF CANCER-ASSOCIATED DCs
The presence of DCs in the stroma of various types of cancer has
been well-established (11, 32–35). Interestingly, often these cells do
not exert a positive immune influence but act as co-conspirators of
tumor growth by inducing regulatory T cell expansion, or directly
suppressing T cell responses. These cancer-associated DCs, albeit
carrying tumor antigen as we have previously shown (36), express
low levels of co-stimulatory molecules (37). Thus, upon encounter
with antigen-specific naïve T cells, they can induce an anergic state
in these cells favoring tumor immune-escape. This DC phenotype
could be caused by products generated by cancer cells or non-
cancer cells present in the microenvironment of the tumor. For
example, tumor-associated cytokines such as vascular endothe-
lial growth factor (VEGF), IL-10, prostaglandin E-2 (PGE2), and
transforming growth factor (TGF)-β can profoundly affect the
nature of DCs (38, 39). Indeed, we have previously shown that DCs
that were co-opted by the mouse tumors upon injection, acquired
angiogenic properties (10). As we have recently reported, the par-
ticular characteristics of the extracellular matrix components can
also shape the immune properties of these cells (40). Importantly,
tumor factors usually exert a systemic effect as previously described
(41, 42). For example, it has been demonstrated that VEGF induces
a potent systemic effect on both primary and secondary immune
organs (41). Therefore, DCs at lymphoid organs can be influenced
by tumor factors and/or immunosuppressive leukocytes that can
affect their properties (43).

Cancer-associated DCs can also contribute to tumor develop-
ment by producing factors that promote angiogenesis (44). In the
mouse model, we have recently shown that myeloid DCs are able
to produce an array of angiogenic molecules in vitro, including
matrix metalloproteases,VEGF, angiogenin, heparanase, and basic
fibroblast growth factors among others (40). We have also previ-
ously shown that DC precursors participate in tumor progression
and angiogenesis in a mouse model of ovarian cancer (10). More-
over, depletion of cancer-associated DCs in vivo was found to
reduce tumor growth and decrease angiogenesis in a mouse model
of ovarian cancer (45, 46). Not surprisingly, in the same way DCs
contributed to angiogenesis in the Lewis lung carcinoma model
(47). In humans, cancer-associated DCs have also been shown to

produce angiogenic factors and promote neovascularization in the
TME (11, 35, 48).

Collectively, these studies provide ample evidence in support
of tumors’ capability to reprogram the biology of DCs, inducing
them to exert immunosuppressive or angiogenic effects, favoring
tumor growth and survival.

REPROGRAMING CANCER-ASSOCIATED DC TO INDUCE
ANTI-TUMOR IMMUNITY
The“immune paralysis”of cancer-associated DCs can be overcome
in an experimental setting by blocking IL-10R while simulta-
neously activating specific pattern recognition receptors (PRRs).
Upon treatment, the cells regain their ability to activate antigen-
specific T cells (10, 49, 50). Considering that cancer-associated
DCs can harbor tumor antigen, a compelling strategy would be to
reprogram them in vivo. Thus, these cells will be transformed into
effective antigen-presenting cells capable of promoting anti-tumor
immunity and combating tumor growth.

In the mouse model, targeted delivery of antigens to DCs via
specific molecules expressed on the DC surface has been investi-
gated. For example, antibodies specific to these surface molecules
have been fused with antigens in order to induce an immune
response mediated by specific DC populations. Targeting oval-
bumin to CD205 and 33D1 molecules on the surface of DCs
in vivo helped to markedly enhance and qualitatively direct the
antigen-presenting properties of CD8+ and CD8− DC subpop-
ulations of splenic DCs. This difference in antigen processing is
suggested to be intrinsic to the DC subsets in association with
increased expression of proteins involved in MHC processing
(51). Likewise, immunization strategies have been designed using
antibody–tumor antigen fusion proteins targeting DCs via CD205
(52) or CD11c (53). In addition, antibodies specific to DC surface
molecules have been used to coat liposomes or nanoparticles to
deliver antigens and inflammatory compounds to DCs in situ in a
mouse model (54) or to target human DCs (55). Other strategies
involve the design of antigen-carrying lentiviral vectors capable of
selectively binding to DCs (56).

Evidence that phenotype of cancer-associated DCs can be
altered in vivo is found in human clinical trials. Anti-tumor
therapies using anti-VEFG antibodies, alone or in combination
with other drugs, have been evaluated in preclinical and clinical
studies (57–60). Interestingly, tumor patients treated with anti-
VEGF antibody showed decreased levels of immunosuppressive
DCs (61). Similarly, it has been demonstrated that the endothe-
lial cell-produced antiangiogenic cytokine vascular endothelial
growth inhibitor induces DC maturation (62). On the other hand,
further highlighting the complexity of DC modulation by the
TME, cancer patients treated with VEGF-trap [a fusion protein of
extracellular domains of VEGF receptor(R)-1 and -2, which can
capture all VEGF isoforms] did not show a significant improve-
ment in their immune response, despite a significant increase in
the proportion of activated DCs (63). Thus, therapies directly
focused on targeting DC in vivo must be designed to enhance
this effect.

Pioneering research has been performed by the Conejo-Garcia
group aimed at reprograming cancer-associated DCs in order
to generate a vaccine in situ (64). For these studies, a mouse
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model of ovarian cancer was used. Ovarian cancer character-
istically exhibits metastasis within the peritoneal cavity, and is
thus an excellent target for localized immunotherapies (65). In
a mouse model of ovarian cancer ascites, the group showed that
intraperitoneal co-delivery of TLR3 ligands and CD40-activating
antibodies induced up-regulation of co-stimulatory molecules in
cancer-associated DCs together with increased antigen presenta-
tion and anti-tumor T cell response (66). A more focused strategy
involved directly targeting cancer-associated DCs with nanopar-
ticles carrying pre-miRNA oligonucleotides that were able to
reprogram these immunosuppressive cells into promoters of anti-
tumor immune response by increasing miR-155 activity in the
targeted cells (67). In addition, similar results were obtained when
cancer-associated DCs were targeted by linear polyethylenimine
nanoparticles encapsulating non-viral siRNA. These particles were
avidly engulfed by the cells, activating them through TLR5 and
inducing a potent anti-tumor immune response (64). Lastly, an
alternative procedure to activate cancer-associated DCs in situ was
recently reported. As described by Baird et al. (68), intratumoral
administration of an avirulent strain of Toxoplasma gondii in a
model of ovarian cancer specifically infected cancer-associated
DCs (68). These cells reversed their immunosuppressive status and
were able to activate a robust anti-tumor T cell response. Finally,
future studies will also need to focus on enhancing the migratory
capability of reprogramed DCs toward lymph nodes in order to
generate a robust T cell response.

CONCLUSION
Dendritic cells comprise a population of leukocytes with the
capability of activating specific immune responses to promote
immunity or induce tolerance. They capture, process, and present
antigens thereby activating T cells that carry cognate receptors for
these presented antigens. Consequently, DCs serve vital function
in initiating adaptive immunity and orchestrating the immune
response outcome. The TME can exert undesirable effects on DCs
by either rendering them unable to promote specific immune
responses, or transforming them into suppressive cells capable of
inducing regulatory T cells collectively creating significant obsta-
cles and challenges in cancer immunotherapy. However, ample
evidence supports the feasibility to overcome the immune paralysis
of cancer-associated DCs. Herein, we summarized our perspective
overview of cancer-associated DCs reprograming in situ to gener-
ate anti-tumor immune responses that will orchestrate a desirable
outcome by halting tumor growth and survival. Knowledge of
TME, DC biology, and DC response to specific signals will promote
the discovery of new strategies for the reprograming of cancer-
associated DCs. The fact that cancer-associated DCs harbor tumor
antigens also opens up the tantalizing possibility of reprograming
these cells in vivo, thus inducing a de facto patient personalized vac-
cine. Using innovative approaches to target DCs is vital, and these
types of studies will be important in revealing the most effective
strategies to overcome setbacks that troubled the field for so long,
subsequently helping advance anti-tumor immunotherapy.
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