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Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant sur-
veillance against possible relapse. Such an antigen-specific adaptive response begins when
tumor-specific T cells become activated. T-cell activation requires two signals on antigen
presenting cells (APCs): antigen presentation through major histocombatibility complex
(MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells
remain inactivated or can even become tolerized. Cancer cells and their associated microen-
vironment strategically hinder the processing and presentation of tumor antigens and
consequently prevent the development of anti-tumor immunity. Many studies, however,
demonstrate that interventions that over-turn tumor-associated immune evasion mech-
anisms can establish anti-tumor immune responses of therapeutic potential. One such
intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-
induced immunological events override tumor-associated antigen presentation impairment
and promote appropriate T cell–APC interaction. Detailed understanding of this phenom-
enon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-
cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor
immune responses.

Keywords: reovirus, oncolytic virus, immunotherapy, antigen presentation, anti-tumor immunity

INTRODUCTION
Anti-tumor immune response of appropriate magnitude and
specificity has become a valid indicator of good prognosis of cancer
and associated disease pathology (1–6). As such, many therapeu-
tic options are being investigated for their capacity to promote
anti-tumor immune responses. These immunotherapies, which
are based on exploiting the functions of immune cells [e.g., T
cells, dendritic cells (DCs)] or immune mediators (e.g., antibod-
ies, cytokines), represent a highly promising group of interventions
and have the potential to target a multitude of cancers. Con-
sidering the fact that the presence of tumor-specific CD8 T-cell
responses almost always correlate with positive patient outcomes
(3), the ultimate goal of most of these immunotherapies pri-
marily focuses on establishing anti-tumor T-cell immunity (3, 4,
7). Fully functional tumor-specific T cells can not only eliminate
existing cancer cells but also establish an active, ongoing, and long-
term surveillance against possibly relapsing cancer cells. Indeed,
the immunotherapy-promoted anti-tumor T-cell responses have
shown to delay the onset of pathology, reduce the severity of dis-
ease, and prolong the survival of cancer-bearing hosts in animal
experiments and in clinical settings (1–7).

Oncolytic viruses (OVs), in their naturally unmodified or
genetically engineered form, preferentially infect and lyse trans-
formed or cancerous cells in a process called oncolysis. Some of
the more prominent examples of these OVs include adenoviruses,
reovirus, herpes simplex virus (HSV), vaccinia, vesicular stomati-
tis virus (VSV), measles, maraba, and so on. In addition, every

year new candidate viruses are being proposed and investigated
for their potential oncolytic abilities (8). Thus far, OVs have been
shown to target cancers of almost every possible tissue origin
including breast, ovarian, prostate, brain, colorectal, kidney, etc.
both in vitro and in vivo. Considering the capacity of OVs to tar-
get cancer cells preferentially, many of these OVs are employed
as anti-cancer agents to target various cancers and are currently
under phase I, II, and III clinical trials internationally (8–12).

The primary mode of action for OVs is direct oncolysis. In
recent years, however, another aspect of OV-based oncotherapy
has become evident. Many reports have shown that, in addition
to their direct oncolytic activities, OVs aid in the development
of tumor-specific T-cell responses (13–20). Thus, if appropriately
managed, OV-based oncotherapies can target cancers through two
distinct mechanisms: direct oncolysis and anti-tumor immune
responses.

The induction of antigen-specific T-cell response begins when
antigen presenting cell (APC) presents an antigenic peptide to a
naïve T cell. In the absence of a successful antigen presentation
event, T cells either remain inactivated or become dysfunctional.
Hence, the process of antigen presentation is a critical step dur-
ing the initiation of T-cell response. Here, we first explain how the
components of the APC–T-cell interaction work, then discuss how
cancer cells avoid the presentation of tumor antigens, and finally
elucidate how the OV-driven immunological events influence
the tumor antigen presentation. We believe that the comprehen-
sive understanding on this aspect of OV-based oncotherapy will
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advocate the development of a clinically meaningful anti-tumor
immunity and consequently promote better cancer outcomes.

COMPONENTS OF THE NORMAL ANTIGEN PRESENTATION
PROCESS
As illustrated in Figure 1, the priming of antigen-specific T cell
occurs in lymphoid tissues and requires three signals on APCs:
antigen, co-stimulation, and cytokines. Antigenic peptides are pre-
sented through major histocombatibility complex (MHC) mole-
cules, co-stimulation is carried out by co-stimulatory molecules
such as B7 family member proteins, and cytokines such as inter-
feron (IFN)-α/β, interleukin (IL)-12, and IL-1 constitute the third
signal. Both CD8 and CD4 cells bear distinct receptors (called T-
cell receptors; TCRs) that interact with MHC class I or II molecules,
respectively (22–26). Class I and II MHC molecules have distinct
pathways through which proteins are processed and ultimately
presented to T cells. For MHC class I pathway, cytosolic proteins
go through the antigen processing and presentation machinery
(APM), which is made up of peptide transporters, chaperone
proteins, and the Golgi complex. First, proteasomes break down
designated ubiquitinated proteins into peptides of 2–25 amino
acids in length. These peptides are transported with the help of
peptide transporters (TAP1/TAP2) into the endoplasmic reticu-
lum (ER), where they are further trimmed to 8–10 amino acid
length to fit within the MHC groove (27–30). Next, chaperones
such as calnexin, calreticulin, ERp57, and tapasin aid the loading of
the trimmed peptide into the MHC groove. These MHC–peptide
complexes then migrate to the cell surface and become available
for the recognition by CD8 T cells (21, 30).

Apart from this classical pathway, extracellular antigens can
also be presented through MHC class I pathway using a special-
ized pathway called cross-presentation (21, 31). In vitro, various
APCs have shown to bear a capacity to cross-present extracel-
lular antigens; however, in vivo, the main mediators of cross-
presentation are DCs (32). There are two main pathways through

FIGURE 1 |The three signals necessary for the stimulation of
antigen-specificT cell. The priming of antigen-specific T cell requires three
signals: antigen, co-stimulation, and cytokines. Antigenic proteins undergo
antigen processing and then the peptides are presented through MHC
class I or II molecules for CD8 and CD4 T cells, respectively. The second
signal in the form of co-stimulation is provided by molecules such as B7
family member proteins such as B7.1 (CD86) and B7.2 (CD80) expressed on
APCs. These B7 proteins interact with their receptors such as CD28 on
interacting T cells. Inflammatory cytokines such as IFN-α/β, IL-12, and IL-1
constitute the third signal.

which cross-presentation can happen: cytosolic and vacuolar. In
the cytosolic pathway, first antigen processing occurs in cytosol
and then proteasome-generated peptides are fed in MHC class I
molecules. On the other hand, for vacuolar pathway, lysosomal
proteolysis contributes toward peptide generation, and antigen
processing and peptide loading occurs in endocytic compart-
ments. Together, both these pathways facilitate the presentation
of extracellular antigens, e.g., antigens from the pathogens that do
not infect DCs or self-antigens, to CD8 T cells (33–35).

The expression of MHC class II is more tightly regulated than
MHC class I and is primarily found on the surface of professional
APCs, such as DCs and macrophages (21). MHC class II antigen
processing primarily uses a lysosomal pathway that degrades pro-
teins taken up by endocytosis (extracellular antigens) or autophagy
(intracellular antigens). The newly synthesized MHC class II mol-
ecules assemble with a protein known as an invariant chain (li).
The li protein prevents the premature binding of endogenous pep-
tides or misfolded proteins in the MHC class II groove, and also
directs delivery of MHC molecules to endosomal vesicles where
the loading of the appropriate peptide happens. Once inside the
endosomal vesicle, the li is cleaved off, leaving a short class II-
associated invariant chain peptide (CLIP) fragment still bound in
the MHC groove. Finally, the release of the CLIP fragment and
the loading of the appropriate peptide are facilitated by HLA-DM
(H-2M in mouse) molecules (36). The MHC class II molecule dis-
plays the appropriate peptide and then travels to the surface to be
available for CD4 T-cell recognition (21, 34, 37, 38).

The second signal in the form of co-stimulation is induced
when molecules such as B7.1 (CD80) or B7.2 (CD86) expressed
on the same MHC–peptide bearing APC interact with its cognate
receptor such as CD28 on the interacting T cell (39–42). Other
similar co-stimulatory molecule–receptor interactions include the
dialogs between CD40L and 4-1BB (CD137) on T cells and CD40
and 4-1BB ligand (4-1BBL) on APCs, respectively. On the other
hand, molecules like CTLA-4 on T cells can also bind to B7 mole-
cules and induce inhibitory signals that are especially important in
preventing unchecked, sustained proliferation following the initia-
tion of T-cell response. Indeed, mice lacking CTLA-4 gene display
massive proliferation of lymphocytes which becomes fatal over-
time (41). Together, the balanced actions of these co-stimulatory
and co-inhibitory molecules dictate the fate of T-cell activation.

In recent times, the third signal in the form of inflammatory
cytokines has been recognized for the activation of both CD4 and
CD8 T cells (43, 44). Cumulative evidence demonstrates that IFN-
α/β and IL-12 are required as the third signal for the functional
activation of CD8 T cells (43, 45, 46), and that the absence of these
cytokines results in the development of defective CD8 T primary
and memory responses (47). For CD4 T cells, this third signal is
provided by IL-1 (43, 48).

When naïve CD8 or CD4 T cells interact with APCs expressing
both the necessary signals, they undergo clonal expansion and dif-
ferentiate into effector cells. Activated CD8 cells can kill target cells
through perforin, granzyme, or FasL-mediated mechanisms or can
produce cytotoxic cytokines such as IFN-γ or tumor necrosis fac-
tor alpha (TNF-α). On the other hand, activated CD4 cells can also
kill target cells or further provide “help” for the activation of other
immune cells including macrophages and (T and B) lymphocytes
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through the action of cytokines such as TNF-α, IFN-γ, granu-
locyte macrophage colony-stimulating factor (GM-CSF), CD40L,
IL-4, IL-5, IL-10, and transforming growth factor beta (TGF-β).
Most importantly, a fraction of primed T cells further evolves into
a memory phenotype that establishes protection against the same
immunogen in the future (23, 26, 49, 50).

TUMOR-ASSOCIATED IMPAIRMENT OF ANTIGEN
PRESENTATION
Tumors have developed various immune evasion mechanisms that
specifically target different aspects of signal 1, 2 or 3, and thus pre-
vent the initiation of functional tumor-specific T-cell response
(51, 52). More importantly, such defects in antigen presentation
and co-stimulation processes, alone or in combination with each
other, have been correlated with poor cancer outcomes (17, 30, 37).
These defects, which can occur on tumors themselves or on the
tumor-associated APCs, have been observed at the transcriptional
and/or post-transcriptional levels, and are affected by genetic and
environmental factors. For example, completely absent or aber-
rant expression of MHC class I as well as its constituent protein
β2 microglobulin (β2M) has been reported in patients with breast,
ovarian, cervical, skin, esophageal, and colorectal cancers (30, 52,
53). Furthermore, other components of the APM such as trans-
porter proteins TAP1 and TAP2, ER enzymes (ERAP1 and ERAP2),
proteasome subunits (LMP2, LMP7, and LMP10), and chaperone
proteins have been found to be defective in various cancers (4, 5,
30, 51, 54). Unlike MHC class I, the clinical significance of MHC
class II expression on tumor cells is still not clear (36). Many tumor
cells display constitutive or inducible levels of MHC class II (3, 4,
38). Breast and colorectal carcinomas express MHC class II mole-
cules on the surface; however, they often display the defects in the
expression of MHC class II pathway-associated components (55).
In contrast to healthy cells, melanoma cells do not upregulate the
expression of MHC class II following IFN-γ stimulation. Recently,
defects in MHC class II transactivator (CIITA) synthesis was asso-
ciated with impaired MHC class II expression in head and neck
cancer cells and some lymphomas (55–58). Similarly, the impaired
levels and functional attributes of HLA-DM and HLA-DO are
known to influence the presentation of tumor antigens through
MHC class II pathway (36, 55). In the context of such aberrant
MHC expression, both CD4 and CD8 cells cannot identify tumors
as targets.

Tumor-associated APCs also demonstrate defects in their anti-
gen presentation capacities and could directly contribute toward
the establishment of dysfunctional anti-tumor immune response
(52). Of note, tumor cells as well as their microenvironment
promote an immunosuppressive environment that prohibits the
generation of one or more of the three signals of antigen presenta-
tion on APCs (52, 54). For example, intra-tumoral DCs obtained
from cancer patients or cancer-bearing experimental animals dis-
play lower expression of MHC class I and II as well as CD80
and CD86 molecules (51, 52, 54, 59). Similar aberrant expres-
sion of MHC and co-stimulatory molecules can be induced on the
DCs isolated from healthy, non-cancer-bearing hosts when incu-
bated in the presence of cancer cells and supernatant from cancer
cell cultures (17). Additionally, tumor-associated DCs also express
various inhibitory molecules, such as programed death ligand-1

(PDL-1) and CTLA-4, which further contribute toward the silenc-
ing of anti-tumor T-cell response (41, 42). Finally, tumor microen-
vironment also recruits many suppressive cells [e.g., regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs)] and
cytokines (e.g., TGF-β, PGE-2) which further affect the antigen
presentation function of APCs (51, 52).

CONTRIBUTION OF VIRUS-DRIVEN IMMUNE RESPONSE IN
THE ANTIGEN PRESENTATION PROCESS
Viruses are strong immunogens, and bear a capacity to induce
all three signals, i.e., antigen, co-stimulation and inflammatory
cytokines, necessary for the activation of antigen-specific T-cell
response (60). Following exposure to a virus, the immune system
recognize the virus as a “foreign” entity through conserved recep-
tors of the innate immune system known as pattern recognition
receptors (PRRs, e.g., toll-like receptors, TLRs). These receptors
on APCs can identify molecular motifs known as pathogen-
associated molecular patterns (PAMPs) and virus-associated DNA
and single- or double-stranded RNA of genomic or replicative
intermediate origin. Additionally, replicating viruses are also rec-
ognized through intracellular helicases (60, 61). The recognition of
viral PAMPs through PRRs drives the immediate innate immune
response that constitutes the production of type I interferons,
including multiple forms of IFN-α and -β (62–64). These Type
I interferons enhance the expression of MHC class I and II, CD40,
CD80, CD83, and CD86 on the surface of DCs (46, 65, 66). Such
IFN-α/β response further stimulates the production of cytokines
(e.g., IL-1β, IL-6, IL-12, TNF-α) and chemokines [e.g., IL-8, mono-
cyte chemotactic protein-1 (MCP-1)], and amplifies the initial
innate response when these cytokines act through autocrine and
paracrine fashion (67). This cytokine-driven pro-inflammatory
response is critical in driving the expression of MHC as well as
co-stimulatory molecules involved in antigen presentation. Of
note, IFN-α has been shown to enhance the proliferative capac-
ity of naïve CD8 T cells, and thus is considered as a “signal 3”
necessary for successful T-cell activation (44). Additionally, this
innate response is also known to promote the cross-presentation
of antigens (3, 68). The APCs primed in this fashion travel to
the lymphoid organs wherein they interact with naïve T cells and
prime an antigen-specific adaptive immune response (34).

OV-MEDIATED REVERSAL OF TUMOR-ASSOCIATED
IMPAIRED ANTIGEN PRESENTATION
The immune responses that accompany oncolytic virotherapy
warrant a special consideration as the circumstances under which
these responses occur are very unique to this system. It should
always be remembered that OV-driven immune responses are
strong, whereas cancers usually persist in suppressive environ-
ments. The combination of these two contrasting entities most
likely produces the immunological consequences that are unchar-
acteristic of either the tumor- or virus-driven immune response
on their own (14). Interestingly, OVs preferentially target cancer
cells for their replication, and hence attract the anti-viral immune
response in a cancer microenvironment (14, 69, 70).

The strong immune responses initiated by viruses have the
potential to over-turn the suppressive effects of tumor-associated
immune evasion mechanisms (Figure 2), including those involved
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FIGURE 2 | Oncolytic viruses facilitate the tumor antigen
presentation preceding the initiation of anti-tumor immunity.
Following its therapeutic administration, OVs enhance the expression of
MHC molecules on tumor and immune cells. At the same time,
OV-mediated direct oncolysis of tumor cells exposes tumor-associated
antigens (TAAs) for the processing by APCs. Through the combined
actions of these immunological events, OVs facilitate the display of

otherwise inaccessible tumor-specific immunogenic peptides on the
surface of APCs (generation of signal no. 1). Additionally, OV-induced
inflammatory response promotes the expression of co-stimulatory
molecules on APCs (generation of signal no. 2) and production of
inflammatory cytokines (generation of signal no. 3). Together, OV-driven
immunological events over-turn tumor-associated antigen presentation
impairments, and initiate anti-tumor immunity.

in antigen processing and presentation pathway (71–74). Expo-
sure of immune as well as cancer cells to OVs induces the
expression of type I interferons (75). Similarly, animals injected
with the OV gain elevated IFN-α mRNA and protein levels imme-
diately following the administration of the virus. Furthermore,
DCs cultured in the presence of reovirus produce IL-1α, IL-
1β, IL-6, IL-12p40/70, IL-17, CD30L, eotaxin, GM-CSF, MCP-1,
MCP-2, MCP-5, macrophage colony-stimulating factor (M-CSF),
monokine induced by gamma interferon (MIG), macrophage
inflammatory protein-1 alpha (MIP-1α), RANTES, TNF-α, vas-
cular cell adhesion protein-1 (VCAM-1), etc., and show enhanced
expression of CD80, CD86, and CD40 (71). Similar phenotype
is also observed in DCs exposed to other OVs including HSV,
vaccinia, and measles (72, 76–78). Most importantly, APCs iso-
lated from the spleens of the tumor-bearing mice injected with
a therapeutic regimen of OVs also display higher expression of
co-stimulatory molecules as compared with those isolated from
the untreated or PBS-injected tumor-bearing animals (71, 79). It
should be noted that DCs isolated from tumor-bearing mice have
lower expression of co-stimulatory molecules as compared with
their healthy counterparts. However, this lowered expression is
over-turned following OV administration (17, 71).

Most OVs are potent inducers of MHC class I pathway-related
molecules (13, 14, 18, 19, 80). Exposure of tumor cells to OVs
in vitro enhances the expression of MHC class I molecules as
compared with that observed in untreated cells (17). For exam-
ple, when mouse ovarian tumor cells (ID8), which show com-
plete absence of MHC class I protein on its surface under native

conditions, manifest significantly higher MHC class I expression
upon exposure to reovirus for 24 h in vitro (17). Furthermore,
ID8 tumors collected from reovirus-treated C57BL/6 immuno-
competent mice also displayed significantly higher expression of
mRNA transcripts encoding MHC class I, β2M and TAP1/TAP2,
molecules as compared with that of tumors from untreated
animals (17).

From a functional point of view, OVs are known to directly
enhance the antigen presentation capacity of DCs (71). When
DCs are incubated in the presence of OV-infected ova-expressing
tumor cells, they can efficiently process and present a tumor-
associated antigen (TAA) to antigen-specific CD8 T cells. This
was shown in a cancer model wherein an ovalbumin (ova) is
employed as a surrogate tumor antigen. In this model, when
bone marrow-derived dendritic cells (BMDCs) are incubated with
reovirus-infected ova-expressing mouse melanoma (B16-ova) or
lung carcinoma (Lewis lung carcinoma, LLC-ova) cells, they dis-
play the ova-specific immune-dominant epitope in the context of
MHC class I molecules on their surface. Such display of surrogate
TAA is non-existent when BMDCs are incubated with B16-ova or
LLC-ova in the presence of inactivated virus or medium alone.
Most importantly, OV-induced TAA presentation on the BMDC
surface further stimulates the activation of TAA-specific CD8 T
cells (71). These observations conclusively demonstrate that OVs
can (1) promote the antigen presentation of TAAs on APCs and
(2) endow APCs with a functional capacity to stimulate TAA-
specific CD8 T cells. Of note, the use of ova as a surrogate TAA
should be cautiously considered as it could potentially undergo
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differential antigen processing and presentation than that for
endogenous TAA.

The over-turning of the tumor-associated impaired antigen
presentation, however, is only observed following exposure to
live, but not inactivated, OVs (71, 72, 81), and is thought to be
directly associated with the process of oncolysis. It is believed
that OVs expose otherwise inaccessible tumor antigens through
oncolysis and make them available to APCs. Simultaneously, OV-
driven inflammatory response also promotes the expression of co-
stimulatory signals on these APCs that are now armed with tumor
antigen. Thus, oncolytic activities of OV coupled with virus-driven
immunological events induce the signals necessary for the acti-
vation of tumor-specific T cells and aid in the development of
anti-tumor adaptive immunity.

Nevertheless, not all OVs aid in the antigen presentation
process. Thus far, VSV has been shown to downregulate the co-
stimulatory and antigen presentation functions, along with the
survival of DCs (82). This observation bears special significance
especially in the context of the capacity of various other viruses
to subvert and manipulate antigen presentation pathways (53, 68,
83, 84). Hence, it is imperative that candidate OVs be tested exten-
sively for their respective beneficial or detrimental immunological
capacities related to the process of tumor antigen presentation.

FUTURE DIRECTIONS
As outlined in this perspective, OVs bear a comprehensive capac-
ity to over-turn TAA presentation evasion mechanisms and to
promote a functional anti-tumor T-cell response. However, avail-
able information on this phenomenon is still limited and war-
rants a detailed exploration on various molecular and func-
tional aspects of OV-driven antigen presentation. Especially, the
effect of OVs on the processing and presentation of endogenous
tumor antigens in the context of various molecular components
of MHC class I and II pathway, and in relation with resultant
anti-tumor immune response, must be thoroughly explored. It
should also be noted that OV-induced antigen presentation also
promotes the development of the anti-viral adaptive immune
response that is known to prematurely curtail the spread of
OV in cancer cells. Only in recent years, the importance of
OV-driven immunological events has been acknowledged and
given appropriate attention. However, one thing is now clear:
OV-induced immune response dictates the efficacy of OV-based
oncotherapy. In the future, appropriate immune interventions
that promote a fine balance between anti-tumor and anti-viral
immune responses will ensure the maximum anti-cancer benefits
of OV-based oncotherapies.
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