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Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play
major regulatory roles in many cellular processes including DNA-processing and repair,
proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentia-
tion. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic
spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint.
Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and
signal integration molecules. In line with this notion, CK1 is tightly connected to the regu-
lation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1
for accurate cell division and regulation of tumor suppressor functions, it is not surprising
that mutations and alterations in the expression and/or activity of CK1 isoforms are often
detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast
carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore,
scientific effort has enormously increased (i) to understand the regulation of CK1 and its
involvement in tumorigenesis- and tumor progression-related signal transduction pathways
and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts.
In this review, we summarize the current knowledge regarding CK1 regulation, function,
and interaction with cellular proteins playing central roles in cellular stress-responses and
carcinogenesis.
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THE CK1 FAMILY
Members of the CK1 (formerly named casein kinase 1) family
were among the first kinases described in literature (1). Although
the milk protein component casein is not a physiological sub-
strate for CK1, it reflects its preference for serine or threonine
residues N-terminally flanked by already phosphorylated amino
acid residues or acidic amino acids (2–7). Seven distinct genes
encoding mammalian CK1 isoforms α,β,γ1,γ2,γ3, δ, and ε as well
as various post-transcriptionally processed splice variants (tran-
scription variants; TV) have been characterized (except for β all
are expressed in humans). The closest relatives to the CK1 family
are tau tubulin kinases 1 and 2 (TTBK1/2) and the vaccinia-related
kinases 1–3 (VRK1-3) (Figure 1A). All CK1 isoforms are highly
conserved within their kinase domains (51–98% identical) while
the highly related isoforms CK1δ and ε display the highest homol-
ogy. However, CK1 family members differ significantly in length
and primary structure of their regulatory non-catalytic C-terminal
domains, resulting in molecular weights ranging from 32 kDa
(CK1α) to 52.2 kDa (CK1γ3) (Figure 1B) (5, 8–16). Meanwhile,
CK1 homologous proteins have also been isolated from yeast,
basidiomycetes, plants, algae, and protozoa (9, 15, 17–23). Since
recognition motifs for CK1 are found on most cellular proteins,
more than 140 in vitro and in vivo substrates have been reported
thus far (see CK1 Substrate Specificity and Table 1). Therefore, in

a cellular context a tight regulation of CK1 activity and expression
is indispensable. Known general mechanisms for CK1 regulation
include (i) phosphorylation by inhibitory autophosphorylation
and/or (ii) phosphorylation by other cellular protein kinases, and
(iii) interaction with cellular proteins or subcellular sequestration
(see Regulation of CK1 Activity). Based on the broad spectrum of
target proteins, CK1 family members are involved in modulating a
variety of cellular functions: in immune response and inflamma-
tion (see CK1 in Immune Response and Inflammation), in spindle
and centrosome-associated processes (see Interaction of CK1 with
Centrosomes, Tubulin, and Microtubule-Associated Proteins),
in DNA damage-related signal transduction (see CK1 in DNA
Damage-Related Signal Transduction), in circadian rhythm (see
CK1 in Circadian Rhythm and its Connections to Stress Response),
and in apoptosis (see CK1-Signaling in Apoptotic Pathways). Con-
sequently, a deregulation or dysfunction of CK1 in pathways
responsible for regulation of growth, proliferation, and apoptosis
may result in pathological conditions (see CK1 and the Wnt Path-
way, CK1 in the Hedgehog Pathway to CK1 in the Hippo Pathway),
such as tumorigenesis (see CK1-Related Tumorigenic Functions
and CK1 in Metastatic Processes) or neurological diseases. There-
fore, interest in CK1 isoforms as new drug targets has enormously
increased within the last 15 years and led to development of several
CK1-specific inhibitors (see CK1-Specific Inhibitors).
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FIGURE 1 | Structural presentation of CK1δ. (A) Phylogenetic relation
between CK1 isoforms of Homo sapiens (CK1α, γ1–3, δ, and ε) and other
members of the human CK1 family (TTBK1–2, VRK1–3). (B) Schematic
alignment of human CK1 isoforms α, γ1–3, δ, and ε. Their molecular weight
varies between 32 (CK1α) and 52.2 kDa (CK1γ3). In case transcription
variants have been reported for one isoform, the molecular weight is given
as range from the smallest to the largest variant. All CK1 isoforms are highly
conserved within their kinase domains (light green box, 286 aa), but differ
within their variable N- (4–40 aa) and C-terminal (39–122 aa) non-catalytic
domains (dark green boxes) [according to Knippschild et al. (333)]. Ribbon
(C) and surface (D) diagram of the molecular structure of CK1δ (PDB code
4HGT) modeled in complex with Mg2+-ATP at a resolution of 1.80 Å. The
nomenclature is adapted from Xu et al. (24) and Longenecker et al. (25).
Until today, crystal structures of human CK1 isoforms γ1 (PDB code
2CMW), γ2 (2C47), γ3 (2CHL, 2IZR, 2IZS, 2IZT, 2IZU, 4HGL, 4HGS, 4G16,
4G17), δ (4KB8, 4KBA, 4KBC, 4KBK, 4HNF, 3UYS, 3UYT, 3UZP), and ε (4HNI,

4HOK) are accessible as well. For reasons of clarity, we focused on CK1δ

exemplarily, due to its superior relevance. The catalytic domain folds into
two lobes primarily containing strands (N-terminal), respectively helices
(C-terminal) forming a catalytic cleft between that represents the ATP
binding pocket as well as a substrate binding site. KHD indicates the kinesin
homology domain within L-9D. DD refers to a putative dimerization domain
containing various amino acids of β1, β2, β5, L-5B, β7, and αB, whereas NLS
displays a putative nuclear localization signal sequence at the junction
between L-EF and αF. A tungstate molecule binding site identifies a specific
phosphate moiety binding motif (W1). The active site contains a deep
hydrophobic pocket (HPI) and a spacious hydrophobic region (HRII) (25–28).
All modeling and docking studies were performed using Schrödinger
software (Maestro, version 9.3, Schrödinger, LLC, NewYork, NY, 2012; Glide,
version 5.8, Schrödinger, LLC, New York, NY, 2012). The illustration of
modeling results was generated by the PyMOL Molecular Graphics System
(Version 1.5.0.4, LLC) (29).

CK1 STRUCTURE AND DOMAINS
As a member of the superfamily of serine/threonine-specific
kinases, CK1 represents the typical bi-lobal structure, which
includes a smaller N-terminal lobe, primarily consisting of β-
sheets, and a larger, mainly α-helical C-terminal lobe. The two
lobes are connected by a hinge region forming a catalytic cleft for
substrate and ATP binding (Figures 1C,D) (24, 25). In comparison
to the general structural features of protein kinases, a prominent
α-helix (αA-helix) within the N-terminal region is crucial for con-
formational regulation of kinase activity. A conserved glycine-rich
loop (P-loop, bridging strands β1 and β2) forms the ceiling of the
ATP active site and contributes to coordination of the γ-phosphate

moiety of ATP (30). Contributing to structure-based inhibitor
design, another loop (L-78) in close proximity to the hinge region
has been demonstrated to trigger CK1 inhibitor selectivity (31).
Within the C-terminal region, a specific phosphate moiety binding
motif (W1) has been identified affording recognition of phospho-
rylated protein substrates and is further believed to be involved
in CK1 regulatory interactions (9, 24, 25). In addition, a kinesin
homology domain (KHD) within the T-loop (L-9D) and a puta-
tive dimerization domain (DD, containing various amino acids of
strands β1, β2, β5, hinge region, β7, and αB) can be found inside
the catalytic domain of CK1δ (Figures 1C and 2) (26, 32–34). The
KHD is thought to support the interaction of CK1 isoforms with
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Table 1 | Reported substrates for CK1 family members and reported in vitro and in vivo substrates of CK1 family members of several species.

Functional groups CK1 substrates

Cytoskeleton-associated

proteins, adhesion factors,

and scaffolding proteins

Myosin (56), troponin (56), ankyrin (57), spektrin 3 (58), filamin (59), vinculin (59), neurofilamentary proteins (60, 61),

dynein (62), α-/β-tubulin (32), microtubule-associated protein (MAP) 1A (63), MAP 4 (32), stathmin (32), tau (32, 64),

keratin 17 (65), desmolein (65), annexin II (65), centaurin-α (p42IP4) (66, 67), neural cell-adhesion molecule (NCAM)

(68), E-cadherin (69), RhoB (70), myelin basic protein (MBP) (55), kinesin-like protein 10A (KLP10A) (71), lectin L-29

(72), galectin-3 (73), end binding 1 (EB1) (74), Sid4 (75), connexin-43 (76), metastasis suppressor 1 (MTSS1) (77), and

Hsp79 and Hsp90 (78)

Receptors β-Subunit of the insulin-receptor (79), TNFα-receptor (80), muscarin M3-receptor (81), Ste2p (α-factor-receptor) (82),

Ste3p (α-factor-receptor) (83), platelet derived growth factor (PDGF) receptor (84), retinoid X receptor (RXR) (85), low

density lipoprotein-related receptor protein (LRP) 6 (86, 87), type I interferon receptor (IFNAR1) (88), estrogen

receptor α (ERα), amplified in breast cancer 1 (AIB1) (89), calmodulin (CaM) (90), and Ror2 (91)

Membrane transporters Erythrocytes anion transporter (92), uracil permease (Saccharomyces cerevisiae) (93), translocase of the outer

mitochondrial membrane 22 (Tom22) (94), and α-T663-hENaC (95)

DNA-/RNA-associated

proteins

Non-histone chromatin proteins (96), RNA polymerase I and II (97), topoisomerase IIα (98), Star-poly(A) polymerase

(Star-PAP) (99), Rec8 (100), DNA methyl-transferase (Dnmt1) (101), TAR DNA-binding protein of 43 kDa (TDP-43) (102),

DEAD-box RNA helicase DDX3 (103), Ubiquitin-like, with PHD, and RING finger domains 1 (UHRF1) (104)

Ribosome-related proteins 15 kDa (105), 20 kDa (105), 35 kDa (105), L4 (65), L8 (65), L13 (65), ribosomal protein S6 (rpS6) (106), and ENP1/BYSL

and LTV1 (107)

Transcription and splice

factors

p53 (108), cyclic AMP responsive element modulator (CREM) (109), Swi6 (110), nuclear factor of activated T-cells

(NFAT) (111), serine/arginine-rich (SR) proteins (112), T-cell factor (Tcf) 3 (113), brain and muscle Arnt-like protein (BMAL)

1 (114), cryptochrome 1 (CRY) (114), β-catenin (115, 116), armadillo (117), SMAD 1–3 and 5 (118), osmotic response

element-binding protein (OREBP) (119), cubitus interruptus (Ci) (120), forkhead box G1 (FoxG1) (121), SNAIL (122),

tafazzin (TAZ) (123), yes-associated protein (YAP) (124), proliferator-activated receptor γ co-activator 1α (PGC-1α) (125),

Drosophila Myc (d-Myc) (126), cyclic AMP response element-binding protein (CREB) (127), Sre1N (yeast sterol

regulatory element-binding protein homolog) (128), and NFκB (nuclear factor “kappa-light-chain-enhancer” of

activated B-cells) subunit p65 (129)

Translation factors Initiation factors (IF) 4B (130), 4E(5, 6, 130, 131)

Viral proteins Simian virus 40 large T-antigen (SV40 T-Ag) (132), hepatitis C virus non-structural 5A (NS5A) (133), human

cytomegalovirus ppUL44 (134), Poa semilatent hordeivirus triple gene block 1 (TGB1) (135), Kaposi sarcoma-associated

herpesvirus latency associated nuclear antigen (LANA) (136), and yellow fever virus methyl-transferase (137)

Kinases and phosphatases Cyclin-dependent kinase 5 (Cdk5) (138), protein kinase C (PKC) (139), protein kinase D2 (PKD2) (140), cell division

cycle 25 (Cdc25) (141–143), and PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1) (144)

Inhibitors and modulators Inhibitor 2 of PPA 1 (145, 146), dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) (147), disheveled

(148), mammalian period circadian protein (mPER) (149), adenomatous polyposis coli (APC) (150), Bid (151), protein

kinase C potentiated myosin phosphatase inhibitor of 17 kDa (CPI-17) (152), nm23-H1 (153), 14-3-3 proteins (154),

MDM2 (155), MDMX (156), FREQUENCY (FRQ) (157), WHITE COLLAR-1 (WC-1) (158), CARD containing MAGUK

protein (CARMA1)/caspase recruitment domain (CARD11) (159), SLR1 (160), endogenous meiotic inhibitor 2 (Emi2)

(161), Chk1-activating domain (CKAD) of claspin (162), PER2 (163), protein S (164), Rap guanine nucleotide exchange

factor 2 (RAPGEF2) (165), and Sprouty2 (SPRY2) (166)

Enzymes (miscellaneous) Acetyl-CoA carboxylase (167), glycogen synthase (168, 169), yeast endoprotease Ssy5 (170), and neural precursor cell

expressed developmentally down-regulated protein 4 (Nedd4) (171)

Vesicle- and

trafficking-associated proteins

SV2 (172), β3A- and β3B-subunit of the AP-3 complex (173), snapin (174), and ceramide transfer protein (CERT) (175)

Receptor-associated proteins Fas-associated death domain (FADD) (176), receptor interacting protein 1 (RIP1) (177)

Factors of neuro-degenerative

diseases

Presenilin-2 (178), tau (64), β-secretase (179), parkin (180), and α-synuclein (181)

Metastatic tumor antigens Metastatic tumor antigen 1, short form (MTA1s) (182)
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FIGURE 2 | Phosphorylation sites located in the C-terminal domain of
CK1δ. (A) Alignment of the rat CK1δ C-terminal sequence with the human
CK1δ transcription variants 1 and 2 C-terminal sequences (accession
numbers L07578, NM001893, and NM139062, respectively) generated by
using the program ClustalW (36, 37), showing conserved amino acids
(gray) and obvious differences in the C-terminal domain beyond amino acid

399. (B) Domain structure of rat CK1δ (NLS: nuclear localization signal,
KHD: kinesin homology domain). (C) Phosphorylation sites in the
C-terminal regulatory domains of CK1δ rat and human transcription
variants 1 and 2, that have so far been confirmed experimentally (38–53).
Kinases identified for phosphorylation of the C-terminal domain are shown
for rat CK1δ (38, 39).

components of the cytoskeleton as this domain has been shown
to be necessary for the interaction of kinesins with microtubules
(MT) (26, 32–34). Furthermore, a putative nuclear localization
signal sequence (NLS) at the junction between L-EF and αF has
been reported to affect substrate binding (Figure 1C). The present
NLS however seems to be not sufficient for nuclear localization of
CK1δ because only CK1αL variants, carrying an additional NLS in
the L-exon, are able to localize to the nucleus (35).The L-9D loop
represents the homolog of the so-called activation-loop identified
in other protein kinases and may therefore play a role in CK1

regulation. Moreover, loops L-9D and L-EF may be of importance
in substrate recognition (Figure 1C) (24–27). The ATP active site
itself mainly consists of a deep hydrophobic pocket (HPI, selectiv-
ity pocket) lined by the gatekeeper (Met-82 in CK1δ) and a second
spacious hydrophobic region (HRII) adjacent to the hinge region
as well as sugar and phosphate binding domains (Figure 1D) (31).

CK1 SUBSTRATE SPECIFICITY
Belonging to the group of acidotropic protein kinases, CK1 fam-
ily members mainly recognize substrates containing acidic or
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phosphorylated amino acid residues. The canonical consensus
sequence for CK1 protein kinases is represented by the motif
pSer/Thr-X-X-(X)-Ser/Thr whereas pSer/Thr indicates a phos-
phorylated serine or threonine residue. However, CK1 not only
relies on phospho-primed motifs since the phospho-serine or
phospho-threonine can also be replaced by an agglomeration of
negatively charged acidic amino acids (2–7). In addition, non-
canonical consensus sequences for CK1 family members have
been described such as the SLS motif, found in β-catenin and
nuclear factor of activated T-cells (NFAT), or the motif Lys/Arg-
X-Lys/Arg-X-X-Ser/Thr occurring in sulfatide and cholesterol-3-
sulfate (SCS) binding proteins (54, 55). Generally, substrate recog-
nition motifs for CK1 protein kinases are massively distributed on
cellular proteins. At present, more than 140 in vitro and in vivo
substrates for CK1 isoforms have been reported, underlining its
pleiotropic character (Table 1).

REGULATION OF CK1 ACTIVITY
Although members of the CK1 family are ubiquitously expressed,
their expression levels differ depending on tissue and cell type
(34, 183, 184). Certain factors seem to change the expression
and activity of CK1, such as stimulation with insulin (185) or
gastrin (140), viral transformation (186), treatment with topoi-
somerase inhibitors or other small molecules like calotropin
(187), γ-irradiation (188), or altered membrane concentrations
of phosphatidylinositol-4,5-bisphosphate (PIP2) (172). At the
protein level, certain mechanisms regulating CK1 activity have
been identified: structure-related regulation, subcellular local-
ization, interaction with other proteins, and post-translational
modifications.

In X-ray crystallography, CK1δ was found to form dimers. In
the dimeric form, the adenine binding domain is occupied by the
specific intramolecular contacts of the dimerization domain. As a
consequence, ATP is excluded from the active center of the kinase.
Therefore, formation of homodimers could possibly have a neg-
ative regulatory effect on CK1δ kinase activity in vivo (26). This
hypothesis is supported by further observations: the expression
of a mutant CK1δ with impaired kinase activity lead to down-
regulation of endogenous CK1δ activity in a dominant-negative
way in simian virus 40 (SV40)-transformed cell lines as well as to
changes in mammary tumorigenesis in WAP-mutCK1δ/WAP-T
bi-transgenic mice (189, 190).

Appropriate sequestration of CK1 proteins to particular cellular
compartments is crucial for access to their pool of substrates (21,
191, 192). As an example, in Saccharomyces cerevisiae kinase activ-
ity of C-terminal deletion mutants of membrane-bound YCK1
and YCK2 could only be rescued by replacing the nuclear localiza-
tion signal of the CK1 homolog Hrr25 with a prenylation motif,
which is required for plasma membrane localization. Conversely,
loss of Hrr25 function after deletion of its NLS could only be
rescued by replacing the prenylation motif in YCK1 and YCK2
with a NLS. These observations led to the conclusion that merely
partial cellular overlap of these three isoforms is not enough
to rescue the deletion phenotype (192). In experiments using a
CK1δ kinase-dead mutant, it has been shown that not only the
existence of the kinase domain, but also the catalytic activity of
the protein is essential for its appropriate subcellular localization

(193). Additionally, a study designed to identify binding part-
ners, which recruit CK1 to Alzheimer’s disease (AD) ubiquitinated
lesions identified a dysbindin structural homolog that interacts
with CK1γ, δ, and ε, and in the case of CK1δ it has been shown to
be a concentration-dependent inhibitor (194).

It is very common to find certain motifs in proteins that act
as scaffolds, which direct the proper positioning of protein com-
plexes. It has also been suggested that such scaffolds additionally
exert complex allosteric control of their partners thereby regulat-
ing their activity [reviewed in Cheong andVirshup (195) and Good
et al. (196)]. In general, proteins that function as scaffolds tether
members of signaling pathways into complexes thereby increasing
the interaction efficiency between partner molecules (196, 197).
In the case of CK1, these scaffolds have an important regula-
tory role because they might change the affinity of CK1 isoforms
for their substrates as well as the rate of phosphorylation and
activation of CK1 kinase activity over the basal level (196, 198).
In fact, protein scaffolds have been already found to exert sub-
stantial control over different kinase-mediated signaling pathways
[reviewed in Brown et al. (199)], though they are not limited to the
coordination of kinase cascades (196). Examples for such protein
scaffolds include the centrosomal and Golgi N-kinase anchoring
protein (CG-NAP), also known as A-kinase anchoring protein 450
(AKAP450) (191) and the DEAD-box RNA helicase DDX3, which
has been previously identified as scaffolding adaptor that directly
activates the kinase IκB (200). AKAP450 specifically interacts with
CK1δ and ε and recruits them to the centrosome, where they can
exert centrosome-specific functions coupled to the cell cycle. This
interaction is confirmed by the ability of AKAP450 to re-localize
CK1δ at the plasma membrane, when it itself is attached to the
membrane (191). Recently, it has been suggested that the inter-
action of CK1δ with AKAP450 is necessary to mediate primary
ciliogenesis (201). In addition, evidence is increasing that in Wnt-
signaling CK1 activity depends on DDX3 as a co-factor. DDX3
directly interacts with CK1ε in a Wnt-dependent manner, and
promotes phosphorylation of Disheveled (DVL) (103). DDX3 can
therefore be seen as regulatory subunit of CK1 isoforms with the
potential to increase the activity of CK1α, γ2, δ, and ε by up to five
orders of magnitude (103). Since CK1 isoforms have been shown
to phosphorylate DDX3, it could be speculated that CK1 isoforms
might also play a role in regulating the functions of DDX3 (103).

Finally, CK1 activity can furthermore be regulated by post-
translational modifications, mainly represented by reversible
phosphorylation either through autophosphorylation or site-
specific phosphorylation mediated by cellular kinases. Within
the regulatory C-terminal domains of CK1δ and ε, sequences
with the motif pSer/Thr-X-X-Y (Y: any amino acid except ser-
ine or threonine) can be generated by autophosphorylation events
and can consecutively act as pseudo-substrates blocking the cat-
alytic center of the kinase (202–205). By using CK1δ truncation
mutants, Ser-318, Thr-323, Ser-328, Thr-329, Ser-331, and Thr-
337 were detected as candidate sites for intramolecular autophos-
phorylation. Although not all of them influenced kinase activity,
truncation of the C-terminal part up to amino acid (aa) 317
significantly enhanced activity of CK1δ (204). For CK1ε amino
acid residues Ser-323, Thr-325, Thr-334, Thr-337, Ser-368, Ser-
405, Thr-407, and Ser-408 within the C-terminal domain are
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considered to be potential autophosphorylation sites (203). C-
terminal inhibitory autophosphorylation could also be demon-
strated for CK1γ1-3 as well as for CK1α and its splice variants
CK1αL and CK1αS (16, 206).

Apart from intramolecular autophosphorylation, CK1 iso-
forms are also phosphorylated by other kinases. In the case
of CK1δ, phosphorylation by PKA (cAMP-dependent protein
kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2), pro-
tein kinase C isoform α (PKCα), and Chk1 (checkpoint kinase 1)
has been demonstrated (38, 39) (Figure 2). PKA could be fur-
ther characterized as a major CK1δ C-terminal targeting kinase
predominantly phosphorylating Ser-370 both in vitro and in vivo.
Mutation of Ser-370 to alanine increased kinase activity in vitro
and enhanced formation of an ectopic dorsal axis during embry-
onic development of Xenopus laevis (39). More recently, Chk1 has
been demonstrated to phosphorylate CK1δ at serine residues 328,
331, and 370, as well as threonine residue 397. Mutations at these
sites proved to significantly increase kinase activity (38). Moreover,
several residues in the C-terminal domain of CK1δ were found in
a phosphorylated state in large-scale mass spectrometry analyses.
However, the kinases responsible for the detected phosphorylation
events were not specified (Figure 2 and references therein).

Generally, dephosphorylation of CK1 by serine/threonine-
specific protein phosphatases or low levels of H2O2 result in an
increase of kinase activity (202, 203, 207). Proteolytic cleavage of
the C-terminal domain also results in multiple increase of CK1
kinase activity in vitro (28, 202, 204). In addition, neddylation of
CK1α seems to be involved in CK1 regulation (208).

CK1 IN STRESS-RELATED CELLULAR FUNCTIONS
In response to stress situations like mechanical damage, toxin
exposure, or environmental stress exposure, cells experience a
variety of molecular changes, which are generally referred to as
cellular stress response. The purpose of these changes is to pro-
tect the cell against conditions, which may cause acute damage,
but also to build some kind of resistance toward long term unfa-
vorable conditions. In response to extreme temperature or toxic
substances, expression of heat shock proteins (Hsp) is transcrip-
tionally increased. Most of these proteins belong to a group of
proteins, which are involved in the (un-)folding of other pro-
teins (209). A quite recent report links phosphorylation events
mediated by CK1, CK2, and GSK3β to the regulation of Hsp70
and Hsp90. In more detail, phosphorylation of Hsp70 and Hsp90,
mediated by these kinases, plays an important role in regulating
their binding to co-chaperones like HOP (protein folding activ-
ity) and CHIP (ubiquitin ligase activity). In highly proliferative
cells, phosphorylated Hsp70 and 90 form complexes with HOP
whereas CHIP-binding is prevented by phosphorylation of Hsp70
and 90. Therefore, CK1, CK2, and GSK3β together with the action
of phosphatases might be involved in complex regulation of the
C-terminal phosphorylation of Hsp70 and Hsp90 and their bind-
ing to co-chaperones (78). Moreover, apart from environmental
or external stress conditions, cells may also be challenged by stress
originating from pathological conditions as in the case of inflam-
matory or proliferative diseases. A detailed presentation of CK1
isoforms in regulating cellular stress response can be found in the
following chapters.

CK1 IN IMMUNE RESPONSE AND INFLAMMATION
By analyzing lymphatic tissues of BALB/c mice, remarkable
immunoreactivity of CK1δ and ε in granulocytic and megakary-
otic cells as well as in a subpopulation of lymphocytes has been
detected (183, 184, 210). Mitogenic activation of T-lymphocytes
was accompanied by a significant increase in both CK1δ protein
levels and kinase activity (210).

So far, several mechanisms have been reported by which CK1
isoforms might be involved in regulating lymphocyte activa-
tion and granulocyte physiology. Transcriptional activators of the
NFAT family of proteins play a major role in T-cell activation.
Their translocation to the nucleus can be blocked by phosphory-
lation of numerous sites present in the NFAT regulatory domain
(211). Some of these are phosphorylated by various CK1 isoforms
(rat liver CK1 and Danio rerio CK1α) with high efficiency. In a
two-phase phosphorylation mechanism, first phosphorylation of
the non-canonical site Ser-177 is initiated by CK1 binding to a
cluster of acidic residues within the sequence of aa 173–218. This
event enhances the subsequent phosphorylation of downstream
residues in a hierarchical manner (212). In contrast, Okamura and
colleagues reported NFAT1 to be phosphorylated by CK1 within
the serine-rich region SRR-1 (aa 149–183) after binding of CK1 to
a N-terminal motif between aa 1–98 (213).

Upon T-cell receptor engagement dynamic association of CK1α

to the CBM (CARMA/BCL10/MALT1) complex has been shown.
This complex acts as an NFκB (nuclear factor “kappa-light-chain-
enhancer” of activated B cells) activating platform containing the
scaffold protein CARMA1, the adaptor protein BCL10, and the
paracaspase MALT1. Here, CK1α complex association is linked to
NFκB activation, increased cytokine production, and lymphocyte
proliferation. However, CK1α was found to be a bi-functional reg-
ulator of NFκB signaling since phosphorylation and subsequent
inactivation of CARMA1 leads to termination of receptor-induced
NFκB activation (159). Just recently, CK1γ1 has been demon-
strated to be a negative regulator in innate immunity by directly
phosphorylating the NFκB subunit p65 following RIG-I pathway
stimulation after RNA virus infection. This phosphorylation event
is sufficient to target p65 for its degradation (129). Following
immune receptor engagement a signal transduction platform is
assembled around the T-cell receptor. This specialized cell–cell
junction is known as the immunological synapse whose forma-
tion also leads to remodeling of the actin cytoskeleton and to
repositioning of the centrosome to the immunological synapse
(214). Herein, the polarization process is supported by CK1δ phos-
phorylating the microtubule plus-end-binding protein 1 (EB1).
Formation of CK1δ–EB1 complexes is associated with increased
speed of microtubule growth and most likely also with subsequent
centrosome translocation in activated T-cells (74).

In granulocytes as well as in solid tumors cell survival is signif-
icantly promoted by the transcriptional activator HIF-1 (hypoxia-
inducible factor-1), which is able to respond to changes in cellular
oxygen levels. HIF-1 is continuously produced and marked for
degradation by a hydroxylation step involving oxygen-dependent
hydroxylases. Under hypoxic conditions, the continuous destruc-
tion of HIF-1 is blocked (215). Additionally, HIF-1 expression
and activity can be regulated by oxygen-independent mecha-
nisms resulting in phosphorylation of critical residues in HIF-1
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regulatory domains. CK1δ has been identified as one of these
kinases able to phosphorylate Ser-247 in the PAS-B (Per-ARNT-
Sim-B) domain of HIF-1α. This modification has no effect on
HIF-1α stability but affects the formation of the transcriptionally
active HIF-1α-ARNT heterodimer, which is seen as an obligatory
step prior to DNA binding (216). Therefore, active CK1δ can be
seen as negative regulator of HIF-1-mediated cell survival.

Additionally, for the highly CK1δ homologous isoform CK1ε,
a major role for transcriptional regulation in granulocytes has
been suggested. Along with human granulocytic differentiation, a
down-regulation of CK1ε has been observed. Here, active CK1ε

was shown to interact with and to stabilize SOCS3 (suppressor
of cytokine signaling 3) leading to attenuation of STAT3. Con-
sequently, overexpression of CK1ε inhibited granulocyte-colony-
stimulating factor (G-CSF) induced differentiation of myeloid
progenitor cells (217).

INTERACTION OF CK1 WITH CENTROSOMES, TUBULIN, AND
MICROTUBULE-ASSOCIATED PROTEINS
Members of the CK1 family represent central components in the
regulation of several cellular functions linked to cell cycle pro-
gression, spindle-dynamics, and chromosome segregation. CK1α

has been shown to be located at the centrosome, microtubule
asters, and the kinetochore (218–220). In addition, CK1δ espe-
cially associates with the spindle apparatus during mitosis and
directly modulates MT by phosphorylation of α-, β-, and γ-
tubulin, thereby exerting stress-induced functions at the spindle
apparatus and the centrosome (221, 222). Recently, knockdown of
CK1δ by siRNA was reported to inhibit microtubule nucleation at
the Golgi apparatus (201). Furthermore, homologs of CK1, such
as casein kinase 1-like 6 (CKL6), associate with cortical MT in vivo
and phosphorylate tubulin in vitro (223).

In addition to the direct interaction of CK1 with MT,
their polymerization and stability can also be regulated by
CK1-mediated phosphorylation of microtubule-associated pro-
teins (MAPs) (224). CK1δ regulates microtubule- and spindle-
dynamics in response to genotoxic stress in order to maintain
genomic stability by site-specific phosphorylation of tubulin,
stathmin, and the MAPs MAP4, MAP1A, and tau (32, 63, 219,
225–227) as well as the phosphorylation of Sid4 that delays cytoki-
nesis (75). An abnormal hyperphosphorylation of tau by CK1δ

can lead to microtubule destabilization and is associated with the
pathogenesis of AD (220, 225, 227).

Recent studies provide evidence that CK1 influences dynein-
dependent transport along MT. For instance, CK1ε phosphorylates
dynein intermediate chain (DIC) of the motor protein dynein
thereby activating minus-end directed transport of membrane
organelles along MT and regulating dynein activity by phospho-
rylation of the DIC component IC138 (Figure 3) (62, 228).

A particular interesting role of centrosome-associated CK1 has
been proposed in regulating cell cycle progression by interaction
with the Wnt pathway and p53 (Figure 3). CK1δ is associated
to the centrosome and related to Wnt3-dependent neurite out-
growth. In this context, phosphorylation of DVL by centrosome-
associated CK1δ facilitates neurite formation (32, 193, 229). CK1δ

co-localizes with DVL2 at basal bodies and gradually accumulates
at centrosomes when cells proceed through the cell cycle (230). The

hypothesis of CK1 fulfilling regulatory roles at the centrosome is
further underlined by the already discussed findings that CK1δ

and ε are anchored at the centrosome through interaction with
AKAP450 (see Regulation of CK1 Activity) (191) and that CK1δ

phosphorylates EB1, which is relevant for centrosome position-
ing during T-cell activation (see CK1 in Immune Response and
Inflammation) (74). Remarkably, further studies revealed that a
subpopulation of p53 is located at the centrosome in order to pre-
vent genomic instability. Therefore, the coordinated function of
both CK1 and p53 could ensure the integrity of the centrosome
and thereby maintain genomic stability (231–233).

CK1 IN DNA DAMAGE-RELATED SIGNAL TRANSDUCTION
CK1 family members can be considered as central components
within the regulation of several cellular functions linked to DNA-
processing or DNA damage [reviewed in Knippschild et al. (219)].
In context of DNA damage-associated signal transduction, p53
is activated initiating the activation of pathways ensuring cen-
trosome integrity and genomic stability. This signaling network
essentially involves coordinated action of CK1 and p53 (187,
231–233).

CK1α, δ, and ε are able to phosphorylate certain N-terminal
target sites of p53 (Ser-6, Ser-9, Ser-15, Thr-18, and Ser-20)
(187, 234–237). By phosphorylation of p53 (mostly at Ser-15
and Thr-18) CK1δ and ε decrease p53 binding affinity to its
cellular counterpart Mouse double-minute 2 homolog (MDM2)
resulting in increased levels of MDM2-released, active p53 (234,
238, 239). Conversely, phosphorylation of MDM2 at several ser-
ine residues within its central acidic domain (Ser-240, Ser-242,
Ser-246, and Ser-383) results in increased MDM2-p53-binding
and subsequent degradation of p53 under non-stress condi-
tions. Phosphorylation of Ser-118 and Ser-121 by CK1δ, how-
ever, can mark MDM2 for SCF/β-TrCP (Skp1, Cullins, F-box/β-
transducin repeat containing E3 ubiquitin protein ligase) binding
and ubiquitination, finally leading to proteasomal degradation
of MDM2 (Figure 4) (155, 239–241). Under normal condi-
tions, CK1α has furthermore been suggested to be a key player
promoting p53 inhibition and degradation by MDM2. There-
fore, CK1α is physically interacting with MDM2 resulting in p53
degradation. Inhibition or depletion of CK1α as well as inhi-
bition of CK1α-MDM2 association leads to p53 stabilization
(208, 242). For the MDM2 homolog MDMX, phosphorylation
of Ser-289 by CK1α has been confirmed resulting in increased
binding to p53 and subsequent inhibition of p53 transcriptional
function (156).

Among the target genes activated by p53 following geno-
toxic stress also transcription of CK1δ can be induced (187).
Given the previously discussed fact that p53 can be activated by
CK1δ-mediated phosphorylation in this network, an autoregula-
tory feedback loop between CK1δ and p53 has been suggested
(Figure 4).

Apart from DNA damage, p53 activation can also be induced
by hypoxia. Herein, p53 levels are stabilized via HIF-1α and
its positive regulatory effect on ATM/ATR (ataxia telangiectasia-
mutated/ataxia telangiectasia and Rad3-related) (243, 244). As
discussed previously, HIF-1α represents a substrate for CK1
and its transcriptional activity can be negatively regulated by
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FIGURE 3 | Centrosome-associated functions of CK1. For
dynein-dependent transport along microtubules (MT), CK1ε

phosphorylates the dynein intermediate chain (DIC) of dynein, likely
IC138, thereby activating minus-end directed transport of membrane
organelles along MT (62, 228). CK1δ and CK1ε are associated with the
centrosome mediated through interaction with the scaffold protein
AKAP450 (A-kinase anchor protein 450) (191, 193, 203). Both

isoforms are related to Wnt-signaling and neurite outgrowth by
phosphorylation of DVL (229, 230). In addition, CK1δ phosphorylates
the end binding protein 1 (EB1), which is relevant for centrosome
positioning during T-cell activation (74). Furthermore, a subpopulation
of p53 in coordinated function with CK1 at the centrosome could
ensure the integrity of the centrosome and thereby maintain genomic
stability (231–233).

CK1δ-mediated phosphorylation (216). However, since this modi-
fication has no effect on HIF-1α protein stability, the precise role of
CK1δ-mediated HIF-1α phosphorylation in regulating ATM/ATR-
and p53-specific functions under hypoxic conditions remains to
be characterized.

More recent work suggested that interferon (IFN)-related sig-
naling is able to activate p53 as a response to loss of epigenetic gene
silencing (246). Among other critically involved epigenetic regula-
tors, UHRF1 (ubiquitin-like, with PHD and RING finger domains
1) regulates the maintenance of DNA methylation during DNA
replication (247). The stability of UHRF1 is regulated by protea-
somal degradation including a priming step by CK1δ-mediated
phosphorylation of Ser-108 thereby creating a recognition site for
the SCF/β-TrCP ubiquitin ligase (104). Consequences of this neg-
ative regulatory connection between CK1δ and UHRF1 may also

include the loss of stable DNA methylation and IFN-dependent
activation of p53.

DNA/RNA virus infection has been described as a further
mechanism resulting in p53 activation. This effect might be
mediated via IFN-related p53 accumulation (245) but also via
CK1-dependent signaling. In this context, CK1α-mediated phos-
phorylation of p53 at Ser-20 is induced after infection of T-cells
with human Herpes virus 6B (HHV-6B). This phosphorylation
event stabilizes the binding of p53 to the transcriptional co-
activator p300. Therefore, CK1α takes part in gene regulation
following virus infection induced p53 activation (236). Also infec-
tion with SV40 interferes with the p53 signaling network. SV40
large T-antigen (T-Ag) inactivates p53-dependent transcriptional
activation whereas the oncogenic properties of T-Ag are enhanced
by CK1-mediated phosphorylation (189, 190, 248). Moreover,
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FIGURE 4 | CK1 isoforms in DNA damage-induced signal transduction.
After induction of DNA damage (situation A) p53 and Chk1/2 are activated by
ATR/ATM-mediated phosphorylation while the p53-regulatory component
MDM2 is inhibited. The activation of Chk1 is supported by claspin whereas
Chk1/claspin-binding is promoted by CK1γ1-mediated phosphorylation of
claspin (162). The CK1 isoforms α, δ, and ε are able to activate p53 by
site-specific phosphorylation (187, 234, 235, 237). Activated p53 in turn
induces the expression of target genes like Bax (leading to apoptosis), p21
(leading to cell cycle arrest), and also CK1δ (autoregulatory feedback loop)
(187). MDM2-mediated degradation of p53 can be activated via interaction
with and phosphorylation by CK1α, but also through phosphorylation by CK1δ

or ε leading to enhanced binding of MDM2 to p53. CK1δ-mediated
phosphorylation of Ser-118 and Ser-121 however marks MDM2 for
proteasomal degradation (155, 239–241). In case Chk1/2 gets activated after
DNA damage the phosphatase Cdc25, normally initiating cell cycle
progression, is blocked by inhibitory phosphorylation and subsequent
degradation. In the regulation of Cdc25 inhibition and degradation also CK1
isoforms α and ε are involved (141, 143). Signaling mediated by p53 can also
be initiated by hypoxia (via CK1δ-regulated HIF-1α; situation B) (216, 243, 244)
or DNA/RNA virus infection (via IFN and/or CK1α-related signal transduction;
situation C) (236, 245). Depicted phosphorylation events refer to reported
CK1-specific target sites.

as a consequence of SV40 infection/transformation, MDM2 is
metabolically stabilized, post-translationally altered, and able to
build trimeric complexes with T-Ag and p53 as well as com-
plexes with free p53 thereby inhibiting proteasomal degradation
of p53 (249).

Abnormalities in p53 are also related to phenotypes of pre-
mature aging. Recently, a mechanistic connection between the
proteasome activator REGγ, CK1δ, and p53 has been demon-
strated using a mouse model for premature aging. In this pathway,
CK1δ is degraded after direct binding to REGγ. Subsequently,
degradation of MDM2 is disturbed due to the lack of CK1δ and
p53 levels decrease. These findings provide new insights to the
conversely discussed anti- and pro-aging effects of p53 (250).

Obviously,CK1 family members are involved in p53-related sig-
nal transduction in response to cellular stress conditions in numer-
ous ways (Figure 4). However, in most cases upstream regulators
and the mechanism of CK1 activity regulation in these pathways
still remain unknown. Another component in DNA damage-
initiated signal transduction, being targeted by CK1 isoforms, is
the protein phosphatase Cdc25A (cell division cycle 25A). Acti-
vation of cyclin-dependent kinases (Cdks) by dephosphorylation

mediated by Cdc25 is required for cell cycle progression from
G1 to S phase (251). Among phosphorylation by other cellular
kinases, site-specific phosphorylation of Cdc25A by CK1α and ε

at residues Ser-79 and Ser-82 targets Cdc25A for degradation via
the ubiquitin-proteasome pathway (141, 143). This CK1-regulated
degradation of Cdc25A supports DNA damage-induced cell cycle
arrest, which is mediated via inhibition of Cdks by p53 and p21
(252). Since CK1 isoforms are involved in both, the degradation
of Cdc25A as well as of p53, CK1 family members might act in a
synergistic way to initiate cell cycle arrest.

In addition, CK1γ1 is related to DNA damage signaling by
catalyzing the phosphorylation of claspin, an adaptor protein crit-
ically involved in ATR-mediated activation of Chk1. In this context,
CK1γ1-mediated phosphorylation of claspin enhances its binding
to Chk1 (162). Chk1 in turn has been identified as a cellular kinase
phosphorylating CK1δ leading to decreased CK1δ-specific activity
(38). The significance of this observation for the p53/MDM2/CK1-
signaling network remains to be determined. However, given the
information that Chk1 is down-regulated by p53 activation the
Chk1/CK1δ/p53-interconnection might be involved in fine-tuning
the negative regulatory effect of p53 on Chk1 (253).
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In hematopoietic cells, the physical interaction of CK1ε with
PTEN (phosphatase and tensin homolog) has been proposed to
modulate cell survival. Normally, constitutively active Akt kinase
or Akt activated by the upstream phosphatidylinositol 3-kinase
(PI3K) leads to the inhibition of p53 and p53-induced apopto-
sis, thereby providing a resistance mechanism for genotoxic stress
(254, 255). However, in case PTEN is stimulated as shown for the
interaction of PTEN with CK1ε, PI3K-mediated Akt activation
is inhibited. Subsequent inhibition of p53 via active Akt is cir-
cumvented and the cells’ sensitivity toward genotoxic stress can be
restored (256).

In the context of Akt signaling, CK1α was reported to affect
DEPTOR, an inhibitor of the mTOR (mammalian Target of
Rapamycin) kinase, which regulates cell growth, proliferation,
and survival [reviewed in Sarbassov et al. (257)]. Phosphoryla-
tion of DEPTOR by CK1α leads to βTrCP-mediated proteasomal
degradation of DEPTOR resulting in activation of mTOR sig-
naling, which is consistent with DEPTOR down-regulation and
mTOR activation found in many cancers (258). Therefore, CK1α

might provide a therapeutic target for the treatment of cancers
characterized by low DEPTOR levels and activation of mTOR
signaling, leading to increasing DEPTOR levels, and inhibition
of mTOR signaling. Paradoxically, DEPTOR is overexpressed in
multiple myeloma, which is necessary for PI3K-mediated acti-
vation of Akt and thereby inhibition of p53 and p53-induced
apoptosis (259, 260).

Under conditions of genotoxic stress rapid changes in
connexin-43 (Cx43) leading to alterations in gap junction-
dependent intercellular communication have been observed in
corneal endothelial cells associated with stabilization of gap junc-
tion communication (261). Earlier reports already showed phos-
phorylation of Cx43 by CK1δ, which stimulates the incorporation
of Cx43 into gap junction plaques and which therefore most likely
also takes part in long term cellular adaptations in response to
genotoxic stress (76).

Further DNA-associated proteins being modulated by CK1
isoforms are topoisomerases. For topoisomerase IIα, phosphory-
lation of Ser-1106 by CK1δ and ε has been demonstrated (98). This
phosphorylation event is linked to enhanced DNA-cleavage activ-
ity of topoisomerase IIα via the stabilization of topoisomerase-
DNA cleavable complexes after etoposide treatment (98).

CK1 IN CIRCADIAN RHYTHM AND ITS CONNECTIONS TO STRESS
RESPONSE
In almost every higher organism, an autonomous timer is known
and referred to as the circadian clock. This timer consists of a signal
transduction pathway to integrate external signals for time adjust-
ment, a molecular oscillator generating the circadian signal, and
a signal transduction pathway controlling the circadian period-
icity of certain biological processes. Therefore, circadian proteins
are closely connected to key regulators of the cell cycle, oxidative
stress, and carcinogenesis. Basically, in the mammalian circadian
clock the positive regulators CLOCK and brain and muscle ARNT-
like protein (BMAL1) as well as the negative regulators PERIOD
(PER) and CRYPTOCHROME (CRY) form an oscillating system
controlling their own expression levels (Figure 5) [reviewed in
more detail in Kelleher et al. (262)].

Linking circadian rhythm to cell cycle control, the heterodimer
CLOCK/BMAL1 transcriptionally controls the expression of cell
cycle regulators. PER1 interacts with ATM and Chk2 (264),
whereas TIM, the mammalian homolog of Drosophila timeless
protein, interacts with Chk1, ATR, and the ATR-related protein
ATRIP (265). Furthermore, BMAL1 was identified to be neces-
sary for p53-dependent growth arrest in response to DNA damage
(266). Within the metabolism of reactive oxygen species (ROS)
circadian proteins also seem to be involved, since the circadian
clock could offer reliable control of daily variation in antioxidant
response necessary to counteract increased oxidative stress. This
connection is reasonable and important as oxidative stress is linked
to the pathogenesis of cardiovascular diseases, atherosclerosis, and
cancer (267). As an example, BMAL1 deficiency leads to chronic
oxidative stress and an accelerated aging phenotype in mice (268).
Conversely, activity of the circadian clock itself can be regulated
by components of ROS metabolism (269). Finally, the circadian
clock is also linked to the development of cancer. For PER2 mutant
mice increased formation of radiation-induced lymphomas was
reported and the frequency (FRQ) of intestinal and colonic polyps
was increased in APCmin/+PER2m/m mice compared to APCmin/+

littermates (270).
In order to control the circadian rhythm involved, regulating

components are subject to post-translational modifications like
reversible phosphorylation (271). In general, CK1 isoforms δ and
ε are able to phosphorylate and regulate the clock proteins BMAL1
and CRY and can modulate the expression of the period length
modulator prohibitin 2 (PHB2) (114, 263). CK1δ is seen as an
important regulator in circadian rhythm but also the involvement
of other CK1 isoforms has been detected. CK1δ and ε are able
to influence the length of the circadian period by regulating the
stability and subcellular localization of PER (Figure 5) (149, 163,
272, 273). Phosphorylation of PER1 by CK1ε masks the nuclear
localization signal of PER1 by conformational changes and marks
PER for proteasomal degradation (149). CK1δ and ε interact with
PER/CRY complexes thereby promoting nuclear localization of
PER/CRY complexes (149, 274). In a high-throughput compound
screening also CK1α was found to stimulate the degradation of
PER1. In this screen, the protein kinases CK1α, CK1δ, and ERK2
were identified as targets for the compound longdaysin. However,
CK1α binding affinity to PER1 is much weaker than for CK1δ or
ε (275). The same is true for CK1γ (276). Thus, CK1δ and ε can
be regarded as redundant for PER phosphorylation and essential
for nuclear accumulation of PER (277). Inhibition of CK1δ and ε

by the pan-CK1δ/ε inhibitor PF-670462 led to remarkably length-
ened circadian rhythms (in vivo locomotor activity) and molecular
oscillations (in vitro in the suprachiasmatic nucleus and periph-
eral tissue slices). These observations could not be made using the
CK1ε-specific inhibitor PF-4800567 (278). PF-4800567 effectively
blocked CK1ε-mediated nuclear localization of PER3 and degra-
dation of PER2 but only showed minimal effect on the circadian
clock in cycling Rat1 fibroblasts (273). The CK1ε tau mutation,
however, which was discovered in the Syrian hamster as the first
mammalian circadian mutation, was characterized as a gain of
function mutation resulting in clock acceleration. In mice express-
ing the CK1ε tau mutation increased phosphorylation of PER1 and
2 can be detected leading to increased degradation of nuclear and
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FIGURE 5 | CK1 in circadian rhythm regulation. By binding of the
BMAL1/CLOCK heterodimer to the E-box, transcription of E-box-containing
genes is initiated (1) (here shown for PER1-3, CRY1 and 2, and REV-ERBα),
the transcripts are translated in the cytoplasm (2). Degradation of cytoplasmic
PERs is triggered mainly by CK1δ and ε, but also by isoforms α and γ (3), while
PER degradation is inhibited by binding of CRYs to PERs (4). Subsequently,
complexes of CRY/PER and CK1δ/ε translocate to the nucleus (5). In the
nucleus the CRY/PER complex represses the transcriptional activation of

BMAL1/CLOCK target genes (6). CRYs and PERs finally shuttle back to the
cytoplasm for proteasomal degradation (7). Repression of BMAL1 expression
by REV-ERBα represents a second negative feedback loop (8). Together, these
feedback loops are able to generate cyclic expression of BMAL1 and
E-box-containing genes [for review see Knippschild et al. (219) and Cheong
and Virshup (195)]. CK1δ and ε differentially effect expression of the period
length modulator PHB2. Whereas CK1δ is able to promote PHB2
transcription, its expression is reduced by CK1ε (9) (8, 263).

cytoplasmic PER and acceleration of the mammalian clock (279,
280). Um and colleagues discovered, that the circadian period of
Rat1 fibroblasts treated with the diabetes drug metformin was
shortened by 1 h. By metformin treatment, AMP-activated kinase
(AMPK) is activated, which phosphorylates CK1ε at Ser-389 lead-
ing to increased activity of CK1ε and subsequent degradation of
Per2 (281). A higher level regulator of CK1ε activity in circadian
rhythm is protein phosphatase 5 (PP5), which can raise the activity
of CK1ε by dephosphorylation. As a consequence, phosphoryla-
tion by CK1ε and subsequent degradation of PER is also increased
(282). Recently, CK1δ (but not CK1ε) has been shown to be crucial
for the circadian timing mechanism in zebrafish (283).

Presented observations point to PER proteins as multikinase
targets, which can be multiply phosphorylated and thereby regu-
lated. Herein, the balance between phosphorylation and dephos-
phorylation by phosphatases is of certain importance. In cells
deficient for CK1δ and ε, phosphorylation of PER is disturbed and
PER proteins remain cytoplasmic. In case protein phosphatase 1
(PP1) is disrupted, phosphorylation of PER is accelerated. This
effect is specific to PP1 and in contrast to previous Drosophila
studies cannot be observed for PP2A (276).

CK1-SIGNALING IN APOPTOTIC PATHWAYS
For several CK1 isoforms, an involvement in the regulation of
apoptotic signal transduction has been described. CK1α, δ, and
ε are components of Fas-mediated apoptosis and induce an acti-
vation of initiator caspase 8. Here the pro-apoptotic protein Bid,
which belongs to the Bcl-2 family, is of major interest. Amino acids
Ser-64 and Ser-66 of Bid are supposed to be major targets for CK1-
mediated phosphorylation while Thr-58 is targeted by CK2. Only
unphosphorylated Bid can be processed by caspase 8-mediated
proteolysis and can participate in cytochrome c-mediated apop-
tosis. Accordingly, inhibition of CK1 and CK2 induces accelerated
Fas-triggered apoptosis by blocking inhibitory phosphorylation
of Bid. Vice versa an overexpression of CK1ε and CK2 leads to
a decreased number of apoptotic cells due to increased phos-
phorylation of Bid, blocking its caspase 8-mediated processing.
Therefore, phosphorylation of Bid by CK1δ and ε and CK2 can
inhibit Fas-mediated apoptosis (151).

Moreover, CK1 (isolated from pig spleen) can phosphory-
late the p75 neurotrophin receptor, thereby negatively regulating
p75-mediated apoptosis (284). CK1α is involved in apoptosis by
interaction and phosphorylation of retinoid X receptor (RXR), a
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class of retinoic acid receptors regulating cell survival by build-
ing heterodimers with NGF1B (nerve growth factor 1B), IGFBP-3
(insulin-like growth factor binding protein 3), and β-catenin. In
this case, CK1 activity inhibits the induction of apoptosis by RXR
agonists (85, 285–287).

Furthermore, CK1α is able to phosphorylate FADD (Fas-
associated protein with death domain) at Ser-194 in vitro as well as
in vivo and is supposed to be involved in regulating non-apoptotic
functions of FADD like cell cycle interaction, sensitivity toward
chemotherapeutics, and nuclear localization (176, 288). In ery-
throcytes, CK1α modulates cytosolic calcium activity and thereby
regulates programed cell death (289).

PARTICIPATION OF CK1 IN THE DEVELOPMENT OF CANCER
During animal development, a precise coordination of cell pat-
terning events is required to ensure appropriate organ architecture
and size. Several developmental pathways control growth, prolifer-
ation, and apoptosis by strict regulation, which can result in patho-
logical conditions when dysregulated. The Wnt (Wingless/Int-1),
Hh (Hedgehog), and Hippo signaling pathways are important in
tissue development, growth, and homeostasis (290–293). Aberrant
activation of these pathways as well as mutations of components
of these pathways has been linked to various cancer entities (294–
298). Due to the contribution of CK1 family members in pathways
associated with growth and development, the following sections
concentrate on the current knowledge of CK1 participation and
regulation in the Wnt, Hh, and Hippo signaling pathways.

CK1 AND THE WNT PATHWAY
Components of the Wnt-signaling pathway are involved in many
developmental processes including dorsal axis formation, tissue

patterning, and establishment of cell polarity (299–302). In addi-
tion, Wnt/β-catenin-mediated signaling plays an important regu-
latory role in cell proliferation processes in both, embryonic and
mature organisms. Mutations in Wnt pathway components have
been found in various human cancers, including cancers of the
skin, liver, brain, and colon (291, 303–312).

In the canonical Wnt/β-catenin signaling pathway, all CK1
family members are involved. However, this involvement is quite
complex. So far, positive as well as negative regulatory functions
have been described. In absence of the Wnt ligand CK1α inter-
acts with and phosphorylates Axin, adenomatous polyposis coli
(APC), and β-catenin (at Ser-45), thereby priming β-catenin for
further phosphorylation by GSK3β and subsequent degradation
(195, 313) (Figure 6A). After binding of Wnt ligand to Frizzled
(Fzd) the Wnt co-receptor LRP5/6 is phosphorylated either by
membrane-bound CK1γ (positive regulation) (86) or by CK1ε

(negative regulation) (314). Phosphorylated LRP5/6 then recruits
Axin and the β-catenin destruction complex to the membrane
and inhibits GSK3β. Wnt-activated CK1δ and CK1ε phosphorylate
Axin as well as the scaffold protein DVL at multiple sites and can
introduce a conformational change to the β-catenin destruction
complex followed by dissociation of several components, thereby
preventing β-catenin from being phosphorylated and degraded
(148,195). Recently,RNA helicase DDX3 was identified as a regula-
tory subunit of CK1ε in Wnt-signaling. Wnt-activation promotes
recruitment of DDX3 to CK1ε and binding directly stimulates
kinase activity, promoting phosphorylation of DVL, finally lead-
ing to stabilization of β-catenin (103). Accumulated β-catenin then
translocates to the nucleus to activate the expression of TCF/LEF
(T cell factor/lymphoid enhancing factor)-triggered target genes
(Figure 6B) (291). CK1ε is also involved in the formation of an

FIGURE 6 | CK1 in Wnt-signaling. (A) In the absence of the Wnt ligand,
β-catenin is progressively phosphorylated by CK1α and GSK3 (1), recruited
to β-TrCP for ubiquitination (2), and thereby primed for proteasome-
dependent degradation (3). (B) After binding of Wnt to Frizzled and LRP5/6
(1), LRP5/6 is phosphorylated by CK1γ (positive regulation) and CK1ε

(negative regulation) (2). It then recruits Axin and the β-catenin destruction
complex to the membrane and inhibits GSK3 (3, 4). Wnt-activated CK1δ and
ε phosphorylate Disheveled (DVL) and Axin (5), induce a conformational

change in the β-catenin destruction complex and initiate the dissociation of
various components (6). CK1ε cooperates with DDX3 in phosphorylating
DVL (7). Also, TCF3 can be phosphorylated by CK1δ and ε thereby increasing
its binding to β-catenin followed by the nuclear translocation of TCF3/β-
catenin (8). The non-canonical Wnt pathway is positively regulated by CK1δ-
and ε-dependent release of Rap1 from Sipa1L1 inhibition (9). The Rho/JNK
signaling cascade is activated after phosphorylation of DVL (10) [adapted
from Cheong and Virshup (195)].
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active transcription complex by phosphorylating TCF3 thereby
mediating its activation and binding to β-catenin (113).

CK1ε is associated with a positive regulatory function by join-
ing the Wnt multi-protein complex to phosphorylate DVL, which
in turn gets activated and inhibits GSK3β, finally resulting in
stabilization of β-catenin (148).

Signaling in the non-canonical Wnt pathway is positively regu-
lated by CK1δ and ε, which release Rap1 from Sipa1L1 inhibition.
Subsequent to phosphorylation of DVL the Rho/JNK signaling
cascade can be activated (Figure 6B) [reviewed in Cheong and
Virshup (195)].

CK1 IN THE HEDGEHOG PATHWAY
The Hh signaling pathway regulates a variety of processes dur-
ing embryonic development such as differentiation, prolifera-
tion, and organogenesis (290). In the adult organism, Hh sig-
naling is significantly reduced but plays a critical role in regu-
lating epithelial maintenance and regeneration of organs, which
undergo constant renewal; among them, epithelia of internal
organs and brain (315). Therefore, mutations or dysregulation
of components of this pathway are associated with tumorigenesis
and cancer development, including basal cell carcinomas, medul-
loblastomas, gliomas, gastrointestinal tumors, prostate cancer, and
hematological malignancies (315–318).

In mammals, major components of the Hh pathway are repre-
sented by the three Hh homologous ligands Sonic hedgehog (Shh),
Indian hedgehog (Ihh), and Desert hedgehog (Dhh), the negative
regulatory 12-pass membrane receptor Patched (PTCH), the pos-
itive regulatory 7-pass membrane protein smoothened (SMO),
the glioma-associated oncogene (GLI) transcription factors GLI1,
GLI2, GLI3, a multi-protein complex consisting of intraflagellar
transport proteins, protein kinase A (PKA), GSK3, CK1, and sup-
pressor of fused (SUFU) (319). In absence of Hh ligands, PTCH
inhibits the localization of SMO to the cilia cell surface and
represses SMO activity, thereby suppressing signal transmission
via the GLI transcription factors into the nucleus. PKA, GSK3β,
and CK1 phosphorylate the GLI transcription factors leading to
their proteolytic processing into the repressor forms, which cannot
activate target gene transcription (Figure 7A) (320, 321). Hh sig-
nal transduction is initiated upon binding of a Hh ligand to PTCH,
thereby releasing SMO from PTCH-mediated inhibition, leading
to its accumulation on cilia cell surface and consequent activation
and release of the GLI transcription factors from the multi-protein
complex. Activated GLIs then translocate to the nucleus, where
they induce transcription of Hh target genes (Figure 7B) (319).

In 2002, Price and Kalderon postulated a negative regulatory
role of CK1 in Hh signaling in Drosophila melanogaster (322).
They demonstrated that CK1δ- and GSK3-mediated phosphory-
lation of Ci-155 (full-length Cubitus interruptus, the Drosophila
homolog of GLI2 and GLI3) at PKA primed sites is required for the
partial proteolysis of the transcription factors, thereby preventing
Hh target gene transcription [reviewed in Price (323)]. The PKA,
GSK3,and CK1 sites are conserved in Ci,GLI2,and GLI3,which are
all similarly processed and may play similar roles in Drosophila and
vertebrates (324–327). Furthermore, Wang and Li demonstrated,
that CK1 and GSK3 phosphorylation sites are needed to process
GLI3 (327). CK1 has also been implicated in positive regulation

of SMO. Chen and co-workers demonstrated that mammalian
SMO is activated via multiple phosphorylation events mediated
by CK1α and G protein coupled receptor kinase 2 (GRK2), thereby
inducing its cilia accumulation and active conformation (328).

CK1 IN THE HIPPO PATHWAY
During development, the evolutionary conserved Hippo pathway
contributes to several processes, which restrict organ size by con-
trolling cell proliferation and apoptosis [reviewed in Zhao et al.
(124)]. Consequently, pathway deregulation can trigger tumori-
genesis and occurs in a broad range of human cancers. Abnor-
mal Hippo activity is associated with cancer cell proliferation,
enhanced cell survival, and maintenance of a stem cell phenotype
[reviewed in Harvey et al. (329)].

The mammalian Hippo pathway is initiated by various growth
suppressive signals like cell contact inhibition. The upstream
kinases mammalian STE20-like protein kinase 1/2 (MST1/2),
together with the scaffold proteins vertebrate homolog of
Drosophila Salvador (WW45) and MOB kinase activator 1A/B
(MOB1A/B) phosphorylate the large tumor suppressor 1 and 2
(LATS1/2). LATS1/2-dependent phosphorylation of the transcrip-
tional co-activator Yes-associated protein (YAP) and its paralog
Tafazzin (TAZ) then leads to YAP/TAZ inhibition by spatial sep-
aration from its nuclear target transcription factors TEAD (TEA
domain) and SMAD (SMA/mothers against decapentaplegic) and
additionally by phosphodegron-mediated degradation, prevent-
ing Hippo target gene transcription (Figure 8A) (330, 331).

Zhao and co-workers as well as Liu and co-workers identified
CK1δ and ε as new temporal regulators of the Hippo pathway.
YAP is phosphorylated by LATS on Ser-381 and this phosphory-
lation provides the priming signal for CK1δ or ε to phosphorylate
a phosphodegron in YAP, which in turn recruits β-TrCP lead-
ing to YAP ubiquitination and degradation (124). Furthermore,
TAZ phosphorylation at Ser-311 by LATS also leads to subse-
quent CK1ε-mediated phosphorylation of a phosphodegron in
TAZ and consequently to its degradation (123). Xu and co-workers
recently postulated the interaction of the Hippo and Wnt pathway
via CK1ε. Herein, the Hippo upstream kinase MST1 is able to
suppress the Wnt/β-catenin pathway by directly binding CK1ε,
thereby preventing phosphorylation of DVL (Figure 8B) (332).

CK1-RELATED TUMORIGENIC FUNCTIONS
The important role of CK1 family members within various sig-
naling pathways is furthermore supported by reports linking CK1
isoforms to modulation of key regulatory proteins such as p53,
MDM2, and β-catenin, which act as signal integration molecules
in stress situations and generally can be seen as a key regula-
tory connection to tumorigenesis [for more detailed review see
Knippschild et al. (219, 333), and Cheong and Virshup (195)].
Considering the importance of signals mediated by CK1δ and ε

to finally ensure genome stability, it is obvious that mutations
leading to changes in the activity or expression levels of CK1 iso-
forms or mutations of CK1-specific target sites in its substrates
can contribute to the development of cancer (Table 2). Foldynová-
Trantírková and co-workers provided evidence that mutations in
CK1ε, which are frequently found in breast cancer, lead to loss of
function in the Wnt/β-catenin pathway but result in activation of
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FIGURE 7 | CK1 in Hh signaling. (A) In absence of Hh ligand, PTCH localizes
in the cilium and inhibits surface trafficking and cilia localization of SMO. GLI
proteins are phosphorylated by PKA, GSK3β, and CK1, which lead to
proteasome-dependent cleavage of GLI into a N-terminally truncated form,
generating the repressor forms GLI2R and GLI3R. GLI2/3R translocate to the
nucleus and inhibit translation of Hh target genes. Furthermore, SUFU

prevents GLI from activating Hh target genes, by binding it in the cytoplasm
and the nucleus. (B) In response to Hh, SMO is activated by GRK2 and
CK1α-dependent phosphorylation and enters the primary cilium. Activated
SMO orchestrates a signaling cascade, eventually resulting in the dissociation
of the SUFU-GLI complex and the translocation of full-length GLI2/3 to the
nucleus, where Hh target gene expression is induced.

the Wnt/Rac1/JNK and Wnt/Ca2+ pathway, consequently leading
to increased migratory capacity and decreased cell-adhesion (334).
A mutation within the C-terminal region of CK1δ detected in an
adenomatous colorectal polyp leads to a higher oncogenic poten-
tial and promotes the development of adenomas in the intestinal
mucosa (335). Furthermore, conditional knock-out of CK1α in the
intestinal epithelium leads to activation of p53 and Wnt-signaling,
while in p53 deficient gut, loss of heterozygosity of the CK1α gene
causes a highly invasive carcinoma, indicating that CK1α acts as a
tumor suppressor when p53 is inactivated (336).

In 1981, Elias and co-workers already reported an increased
nuclear CK1 kinase activity in AML patients (186). Until now,
several reports link altered CK1 expression and/or activity to
cancer. Reduced CK1α protein and mRNA expression levels in pri-
mary melanomas and melanoma metastases compared to benign
melanocytic lesions or early-stage melanomas have been detected.
In the same study, reduced CK1α expression was also observed
in lymphomas, ovarian, breast, and colon carcinomas, compared

with the respective benign tissue (337). In renal cell carcinoma
elevated CK1γ3 expression and activity levels have been described
(338), whereas in choriocarcinomas strong expression levels of
CK1δ were detected (222). Changes in the immunoreactivity of
CK1δ have been observed in breast carcinomas, depending on
the grade of tumor differentiation. High-grade ductal carcinomas
in situ (DCIS) as well as invasive poorly differentiated carcinomas
show reduced CK1δ immunostaining, whereas well differentiated
carcinomas and low grade DCIS show strong staining of tumor
cells (219). Regarding CK1ε, Fuja and co-workers observed similar
correlations between tumor differentiation and immunohistolog-
ical staining (341). Expression of CK1ε is also down-regulated in
mammary cancers in SV40-transgenic mice expressing SV40 T-Ag
(184). A recent study suggests that CK1ε is overexpressed in breast
tumors and acts as a pivotal regulator of mRNA translation and cell
proliferation. CK1ε phosphorylates the negative-acting factor 4E-
BP1 (eukaryotic translation initiation factor 4E binding protein
1), thereby preventing its inhibitory function on the translation
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FIGURE 8 | CK1 in Hippo signaling in vertebrates. (A) In absence of growth
suppressive signals YAP/TAZ promotes tissue growth and differentiation by
regulating the activity of different transcription factors in the nucleus,
including SMADs and TEADs. (B) Cell-density activated pathway regulation is
controlled by multiple upstream branches by activating the core kinase
cassette that represses YAP/TAZ driven gene transcription, either by
degradation of TAP/TAZ or by forming physical complexes, preventing its
nuclear access. Initially, MST1/2 is activated by various components and
phosphorylates LATS1/2 (1), which in turn phosphorylates TAP/TAZ on Ser-311

or Ser-381 (2a). This phosphorylation primes YAP/TAZ for further
phosphorylation by CK1δ/ε (3a) and consequent recruitment of and
ubiquitination by β-TrCP (4a), priming YAP/TAZ for degradation (5a). However,
LATS1/2 driven phosphorylation of TAP/TAZ on Ser-127 (2b) leads to the
formation of 14-3-3-YAP/TAZ complexes, which accumulate in the cytoplasm
preventing YAP/TAZ access to the nucleus (3b). Hippo pathway regulates
Wnt/β-catenin signaling by inhibition of DVL, either by MST1/2-mediated
prevention of CK1ε-dependent phosphorylation of DVL, or by direct inhibition
of DVL by YAP/TAZ. ABCP: apicobasal cell polarity protein.

initiation complex elF4E (eukaryotic initiation factor 4E) and con-
sequently leading to dysregulated mRNA translation and breast
cancer cell growth (342). Elevated protein levels of CK1δ and ε

were also observed in single tumor cells of grade 3 tumors of ductal
pancreatic carcinomas and inhibition of CK1δ and ε by the CK1-
specific inhibitor IC261 reduced pancreatic tumor cell growth
in xenografts (339). In contrast, Relles and co-workers detected
reduced expression levels in pancreatic ductal adenocarcinomas
(340). CK1ε expression is increased in adenoid cystic carcinomas
of the salivary gland (343), in epithelial ovarian cancer (344), in
tumors of brain, head and neck, renal, bladder, lung, prostate,
and salivary gland, in leukemia, melanoma, and seminoma (345).
Toyoshima and co-workers found that CK1ε expression is signifi-
cantly correlated with MYCN amplification in neuroblastoma and
poor prognosis. In addition, CK1ε expression has been associ-
ated with c-MYC in several other tumors such as colon, lung, and
breast cancer (346). In a recent study, Lin and co-workers demon-
strated that loss of cytoplasmatic CK1ε expression correlates with
poor survival rates in oral squamous cell carcinoma (347). Järas
and co-workers recently found that CK1α is essential for AML

cell survival and treatment with the CK1-specific inhibitor D4476
results in highly selective killing of leukemia stem cells by reducing
Rsp6 (radial spoke protein 6) phosphorylation and activation of
p53 (Table 4) (348).

In summary, the data reported so far provide evidence that
CK1 isoforms exhibit oncogenic features by promoting prolifer-
ation, genome instability, and inhibition of apoptotic processes.
This assumption is also supported by the fact that CK1 isoforms
are often overexpressed in tumors and that overexpression of
CK1ε correlates with poor survival as shown for patients with
ovarian cancer (344). However, this finding cannot be general-
ized and might depend on additional factors, as in the case of
oral squamous cell carcinoma loss of CK1ε expression correlates
with poor survival rates (347). In addition, the functions of CK1α

in tumorigenesis are manifold making it difficult to classify it as
oncogene or tumor suppressor. In AML CK1α seems to exhibit
oncogenic features (348), whereas in intestinal epithelium loss of
heterozygosity of the CK1α gene causes a highly invasive carci-
noma, indicating that CK1α acts as a tumor suppressor when p53
is inactivated (336).
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Table 2 | CK1 isoforms in different tumor entities.

Isoform Characteristic feature Tumor entity Reference

CK1α Low/absent expression Primary/metastatic melanoma, lymphomas, ovarian, breast, and colon carcinomas (337)

CK1γ3 Altered activity/expression Renal cell carcinoma (338)

CK1δ Increased expression levels Choriocarcinomas (222)

CK1δ Reduced immunostaining Poorly differentiated breast carcinomas and DCIS (219)

CK1δ/ε Elevated protein levels High-grade ductal pancreatic carcinomas (339)

CK1ε Reduced expression levels Pancreatic ductal adenocarcinoma (340)

CK1ε Increased immunoreactivity Mammary DCIS (184, 341)

Decreased immunoreactivity Invasive mammary carcinoma

CK1ε Overexpression Breast cancer (342)

CK1ε High gene expression Adenoid cystic carcinoma of the salivary gland (343)

CK1ε Overexpression Epithelial ovarian cancer (344)

CK1ε Overexpression Tumors of brain, head and neck, renal, bladder, lung, prostate, salivary gland,

leukemia, melanoma, and seminoma

(345)

CK1ε Overexpression MYC-driven cancers (neuroblastoma, colon, lung, and breast cancer) (346)

CK1ε Loss of cytoplasmic expression Poor prognosis in oral cancer patients (347)

CK1 IN METASTATIC PROCESSES
In many cases, CK1 family members can also be involved in the
regulation of metastatic processes. However, their potential to
promote or suppress metastasis seems to depend not on the spe-
cific isoform but on their position in cellular signal transduction
and the cellular context. Phosphorylation of nm23-H1 by CK1δ

and ε has been shown to induce complex formation of nm23-H1
with a cellular partner called h-prune. Both proteins are linked
to proliferative disorders and the nm23-H1-h-prune complex for-
mation has even been proposed to positively influence cell motility
(349). With this link of CK1 kinase activity to nm23-H1-h-prune
complex formation an obvious role for CK1 in the mediation of
metastasis has been established (153).

Quite recently, the stability of metastasis-related proteins has
been shown to be regulated by CK1δ-mediated phosphorylation.
First, the epigenetic sensor UHRF1 is critically involved in the
maintenance of DNA methylation patterns during DNA replica-
tion and can be linked to carcinogenesis and metastasis if dys-
regulated (350, 351). Second, as mentioned before, proteasomal
degradation of UHRF1 is regulated by CK1δ-mediated phospho-
rylation (104). Similar findings have been reported for metastasis
suppressor 1 (MTSS1, also known as MIM, missing in metastasis),
an anti-metastatic protein whose degradation also is triggered by
CK1δ-mediated phosphorylation at Ser-322, thereby inducing its
interaction with SCF/β-TrCP (77, 352).

Furthermore, current reports demonstrate the involvement
of CK1α in regulating the stability of metastasis-associated
factors. When cell motility is induced the Rap guanine
exchange factor (RAPGEF2) is phosphorylated by IKKβ and
CK1α, initiating SCF/β-TrCP-mediated degradation. RAPGEF2
degradation-failure leads to inhibition of hepatocyte growth
factor (HGF)-induced cell migration and expression of non-
degradable RAPGEF2 suppressed metastasis of human breast
cancer cells (165).

In canonical Wnt-signaling, CK1α has been positioned to be
a tumor suppressor and cancer cells may activate proliferative
processes via the Wnt/β-catenin pathway by suppressing CK1α

expression. In the absence of CK1α, p53 is critically involved
in controlling invasiveness as shown in a model for colon can-
cer (336). Re-expression of CK1α in metastatic melanoma cells
reduced growth in vitro and metastasis formation in vivo (337).
Consistent with these findings phosphorylation of β-catenin at
Ser-45 by CK1α via activation by Wnt-5a has been shown to
increase complex formation of β-catenin with E-cadherin thereby
maintaining intercellular adhesion. Loss of Wnt-5a is thought to
be associated with initial metastatic de-adhesion events (353, 354).
Conversely, E-cadherin-mediated cell–cell contacts can be nega-
tively regulated by CK1ε-mediated phosphorylation of E-cadherin
at Ser-846 (69). In this context also, the Zn-finger transcription
factor Snail is important as it can promote epithelial to mesenchy-
mal transition (EMT) by down-regulating E-cadherin expression
(355). Herein, CK1ε primes Snail for GSK3β-mediated phos-
phorylation, which marks Snail for degradation. Therefore, loss
of CK1ε kinase activity prevents GSK3β-mediated phosphoryla-
tion and degradation of Snail supporting EMT and metastatic
processes (122).

CK1-SPECIFIC INHIBITORS
Due to the obvious involvement of CK1 isoforms in the pathogen-
esis of inflammatory and proliferative diseases and its contribution
to the development of neuro-degenerative disorders, CK1 family
members are attracting more and more attention as drug tar-
gets in regard to therapeutic applications. So far, several highly
potent CK1-specific small molecule inhibitors have been iden-
tified (Table 3) and some have already been characterized for
their therapeutic potential in animal models (Table 4). Most of
these compounds are ATP-competitive type I inhibitors raising
the problem of comparability of their effectiveness since their IC50
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Table 3 | CK1-specific small molecule inhibitors.

Inhibitor Structure IC50 (µM) ATP (µM) Reference

CKI-7 CK1: 6 100 (356, 357)

IC261 CK1δ/ε: 2.5 100 (357, 358)

D4476 CK1δ: 0.3 100 (357)

Peifer-17 CK1δ: 0.005; CK1ε: 0.073 100 (31)

Peifer-18 CK1δ: 0.011; CK1ε: 0.447 100 (31)

PF-670462 CK1δ: 0.013; CK1ε: 0.080 10 (273, 359)

PF-4800567 CK1δ: 0.711; CK1ε: 0.032 10 (273)

(Continued)
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Table 3 | Continued

.
Inhibitor Structure IC50 (µM) ATP (µM) Reference

(R)-DRF053 CK1δ/ε: 0.014 15 (360)

4,5,6,7-Tetrabromo-2-mercaptobenzimidazole CK1: 2.2 20 (361)

1,4-Diaminoanthra-quinone CK1δ: 0.3 Not reported (362)

1-Hydroxy-4-aminoanthra-quinone CK1δ: 0.6 Not reported (362)

(−)-Matairenisol CK1: 10 10 (363)

Lamellarin 3 CK1δ/ε: 0.41 15 (364)

Lamellarin 6 CK1δ/ε: 0.8 15 (364)

SB-202190 CK1δ: 0.6 50 (365)

(Continued)
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Table 3 | Continued

.
Inhibitor Structure IC50 (µM) ATP (µM) Reference

SR-3029 CK1δ: 0.044 10 (366)

SR-2890 CK1δ: 0.004 10 (366)

Bischof-5 CK1δ: 0.04; CK1ε: 0.199 10 (367)

Bischof-6 CK1δ: 0.042; CK1ε: 0.033 10 (367)

Hua-1h CK1γ: 0.018 Not reported (368)

Yang-2 CK1: 0.078 Not reported (369)

CK01 similar to PF-670462 Not reported Not reported (370)

MRT00033659 CK1δ: 0.8935 20 (371)

TG0003 CK1δ: 0.4; CK1ε: 0.55 Not reported (277, 372)

Salado-34 CK1δ: 0.01 10 (373)
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Table 4 | Effects of CK1-specific inhibitors in selected animal models.

Process Inhibitor Model Effects Reference

Circadian rhythm PF-670462 Rat Inhibition of CK1δ/ε yields perturbation of oscillator function leading to phase

delays in circadian rhythms

(359)

PF-670462 Rat Chronic treatment with the CK1δ/ε specific inhibitor PF-670462 yields

cumulative phase delays in circadian rhythms

(374)

PF-670462 Monkey Inhibition of CK1δ/ε produces phase shifts in circadian rhythms of Cynomolgus

monkeys

(375)

PF-670462;

PF-4800567

Mouse Whereas PF-670462 causes a significant phase delay in animal models of

circadian rhythm, CK1ε-specific PF-4800567 only shows a minimal effect on

the circadian clock

(273)

CK01 Mouse Chronic administration of CK01 leads to a reversal of the anxiety-related

behavior, and partial reversal of the depression-related phenotypes of the

Clock mutant mouse

(370)

PF-670462;

PF-4800567

Mouse Selective inhibition of CK1δ acts as a potent in vivo regulator of the circadian

clock and may represent a mechanism for entrainment of disrupted or

desynchronized circadian rhythms

(278)

PF-670462;

PF-4800567

Zebrafish The use of a pan-CK1δ/ε inhibitor and a CK1ε-selective inhibitor revealed that

activity of CK1δ is crucial for the functioning of the circadian timing mechanism

in zebrafish at multiple levels

(283)

Drug use disorder PF-670462 Rat Inhibition of CK1δ/ε in the nucleus accumbens with the selective inhibitor

PF-670462 blocks amphetamine-induced locomotion by regulating of the

AMPA receptor phosphorylation

(376)

Sensitivity to opioids PF-4800567 Mouse Co-administration of the CK1ε specific inhibitor of PF-4800567 increased the

locomotor stimulant response to methamphetamine and fentanyl

(377)

Alcoholism PF-670462 Rat The inhibition of CK1δ/ε with systemic PF-670462 injections dose-dependently

prevented the alcohol deprivation effect

(378)

Cancer IC261 Mouse Inhibition of CK1 isoforms by IC261 influences the growth of induced

pancreatic tumors in SCID mice

(339)

IC261 Mouse IC261 treatment blocks MYCN amplified neuroblastoma tumor growth in vivo (346)

D4476 Mouse Inhibition of CK1α activity leads to reduced Rps6 phosphorylation and

activation of p53, resulting in selective elimination of leukemia cells

(348)

Spinal inflammatory

pain transmission

IC261; TG003 Mouse Both compounds decreased the frequency of spontaneous excitatory

postsynaptic currents (sEPSCs) in inflammatory pain models

(379)

values have been determined at different ATP concentrations (see
Table 3).

CKI-7 (N -(2-aminoethyl)-5-chloroisoquinoline-8-sulfonami
de), was the first ATP-competitive inhibitor being described
to show selectivity toward CK1 (356). Later, IC261 (3-[(2,4,6-
trimethoxyphenyl)-methylidenyl]-indolin-2-one) and D4476 (4-
[4-(2,3-dihydro-benzo)[1,4]dioxin-6-yl)-5-pyridin-2-yl-1H -imi
dazol-2-yl]-benzamide) have been described as more potent and
selective inhibitors, which also bind to the ATP binding pocket
of CK1 (357, 358). Several effects reported for IC261-treated
cells may however not be related to the selective inhibition of
CK1 (380, 381). IC261 is also able to bind MT thereby inhibit-
ing their polymerization similar to the spindle poison colchicine

(380). Nevertheless, IC261 inhibits site-specific phosphorylation
of p53 and Bid thereby inducing apoptosis in so-called type II
cells (151, 187). Furthermore, its therapeutic potential has been
demonstrated in xenotransplantation models for pancreatic can-
cer and neuroblastoma tumors (339, 346) (Table 4). However, it is
still questionable whether the described anti-tumorigenic effects
of IC261 are all mediated through selective inhibition of CK1δ

and ε.
Two very potent and selective inhibitors for CK1δ and ε have

been developed by Pfizer Global Research and Development: while
PF-670462 possesses only poor isoform selectivity compound
PF-4800567 shows a 22-fold stronger inhibition of CK1ε than
CK1δ (273, 359). Furthermore, PF-4800567 demonstrated in vivo
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FIGURE 9 | CK1 in neuro-degenerative diseases. It has generally been
accepted that overexpression of CK1 plays an important role in
neuro-degenerative diseases, especially in tauopathies, such as Alzheimer’s
disease (AD). CK1δ is known to be up-regulated up to 30-fold on mRNA level
in hippocampal regions of Alzheimer‘s disease (AD) brains (383). CK1δ plays
a critical role in formation of neurofibrillary tangles through phosphorylation
of tau at amino acids Ser-202/Thr-205 and Ser-396/Ser-404 (responsible for
binding to tubulin) in human embryonic kidney 293 cells, thereby leading to a
release of tau from MT and to destablilization of MT. Phosphorylation of
these sites could be inhibited by the CK1-specific inhibitor IC261 (227). It is
further known, that CK1 is associated to paired helical filaments in AD (384)
and to tau-containing neurofibrillary tangles, in AD, Down syndrome,

progressive supranuclear palsy, Parkinsonism–dementia complex and
pallido-ponto-nigral degeneration (383, 385). The overexpression of
constitutively active CK1ε, proposed to be involved in processing of amyloid
precursor protein (APP) on γ-secretase level, results in an increase of
amyloid-beta (Aβ) production, which is attenuated by use of CK1-specific
inhibitors (386). In addition, Höttecke et al. (381) could show that the
inhibition of γ-secretase by one of these inhibitors does not depend on
CK1δ. An in silico analysis further revealed multiple CK1 consensus
phosphorylation sites in the intracellular regions of APP, β-secretase, and
γ-secretase subunits. Conversely, Aβ seems to influence CK1 activity (387).
sAPPα/β: secreted amyloid precursor protein α/β; AICD: amyloid precursor
protein intracellular domain.

potency by altering the circadian clock in cycling Rat1 fibroblasts
and in a mouse model for circadian rhythm (273). Recently, the
use of PF-670462 (and the similar compound CK01) proofed to
be beneficial in the treatments of bipolar disorder (370), addic-
tive behavior (378), and in perturbed circadian behavior (278),
respectively.

By using structure-based virtual screening Cozza and co-
workers identified two amino-anthraquinone analogs as CK1δ-
specific inhibitors (362). Furthermore, several roscovitine-
derivatives, among them (R)-DRF053, have been shown to inhibit
both CK1 and CDK family members (360). In 2009, imidazole-
(compounds 17 and 18) and isoxazole-derivatives have been found

to be highly potent inhibitors for CK1δ and ε (31). Furthermore, a
2-phenylamino-6-cyano-1H -benzimidazole derivate (compound
1h) was identified as CK1γ-specific inhibitor with excellent selec-
tivity, cellular potency, and acceptable pharmacokinetic properties
(368). A new lead compound (a N 6-phenyl-1H -pyrazolo[3,4-
d]pyrimidine-3,6-diamine derivative), which inhibits CK1 with
an IC50 value of 0.078 µM was discovered by Yang and colleagues
(369). By using a pyrazolo-pyridine analog as CK1/Chk1 dual-
specific inhibitor the p53 pathway could be stabilized and reacti-
vated (MRT00033659) (371). Benzimidazole-based CK1-specific
inhibitors were reported by several recent studies (Table 3)
[SR-3029 and SR-2890 (366), Bischof-5 and Bischof-6 (367),
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and Hua-1h (368)]. Furthermore, N -(benzothiazolyl)-2-phenyl-
acetamides have been characterized as inhibitors for CK1δ-
mediated phosphorylation of TDP-43 and may offer new ther-
apeutic possibilities for the treatment of amyotrophic lateral scle-
rosis (ALS) (373). Quite recently, also the Clk-specific inhibitor
TG003 was used to inhibit CK1 isoforms in a mouse model for
mechanical allodynia and thermal hyperalgesia (Table 4) (379).

The potential of CK1-specific inhibitors for the treatment of
neuro-degenerative diseases, like AD and Parkinson’s disease, have
been recently reviewed in detail by Perez and colleagues (382).
The involvement of CK1 isoforms in the pathogenesis of AD is
illustrated in Figure 9.

As an alternative to small molecule inhibitors lacking appropri-
ate ADME (absorption, distribution, metabolism, and excretion)
properties or showing unfavorable side effects synthetic peptides
can also be used, which copy naturally occurring motifs that
specifically influence the activity of the kinase or its interaction
with cellular binding partners (388). Lately, small CK1α-derived
peptides were used as Biologic tools to block CK1α binding to
MDM2. At least, one peptide was identified to block the CK1α-
MDM2 interaction (but not CK1α kinase activity) thus leading to
decreased CK1α-MDM2-mediated degradation of p53 (208).

FINAL REMARKS
Summarizing the findings cumulated within many years regard-
ing CK1 and its cellular functions, CK1 isoforms can be seen as
central players in the regulation of numerous physiological cel-
lular processes. Respecting this involvement in important cellular
signal transduction pathways, it is reasonable that dysregulation
of CK1 isoforms has been linked to the incidence of inflam-
matory and proliferative diseases but also to neuro-degenerative
disorders. A summary of CK1-associated functions in neuro-
degenerative diseases can be found in Figure 9 and its associated
figure legend. If potent CK1 (isoform)-specific inhibitors were
available new therapeutic possibilities for personalized medicine
could be provided. However, the development of isoform-selective
compounds available for in vivo application still remains chal-
lenging and inhibitor development should include not only con-
ventional small molecule design, but also novel peptide inhibitor
approaches.
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