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Epithelial ovarian cancer remains the deadliest gynecologic malignancy. Despite advances
in treatment, new approaches are needed. Histone deacetylases (HDACs) are a family of
enzymes that regulate gene expression by removing acetyl groups from lysine residues
on histones and non-histone proteins. Inhibition of HDACs with small molecules has led
to the development of histone deacetylase inhibitors (HDACi) that are in clinical use, pri-
marily for hematologic malignancies. Although clinical trials with HDACi as single agents
in solid tumors have been disappointing, data from independent labs and recent work by
our group show that class I selective HDACi have potent anti-tumor effects in pre-clinical
models of ovarian cancer.This review summarizes the role of HDACs in ovarian cancer and
the potential niche for selective class I HDACi, particularly HDAC3 in ovarian cancer therapy.
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INTRODUCTION
Ovarian cancer is the deadliest gynecological malignancy in the
United States, with 21,980 new cases and 14,270 deaths esti-
mated for 2014 (1). Epithelial ovarian cancer is classified into two
broad subtypes based on biological, histological, and molecular
features (2–4). Type I low-grade serous, low-grade endometri-
oid, clear cell, and mucinous tumors are typically indolent and
relatively chemotherapy resistant. Somatic mutations in KRAS,
BRAF, PIK3CA, PTEN, CTNNB1, and ARID1A genes are com-
mon in Type I tumors. In contrast, Type II high-grade serous,
high-grade endometrioid, carcinosarcoma, and undifferentiated
tumors are aggressive, highly proliferative tumors that are rel-
atively chemotherapy sensitive. Type II tumors are genomically
unstable with a high degree of copy number alterations, muta-
tions in TP53, and alterations in the homologous recombination
(HR) DNA damage repair pathway (2–4). HR deficiency con-
fers relative sensitivity to DNA damaging agents such as cisplatin,
carboplatin, and more recently PARP inhibitors (2, 5–7). Approx-
imately 70% of epithelial ovarian cancers are Type II high-grade
serous tumors (2).

Current treatment for epithelial ovarian cancer entails a combi-
nation of cytoreductive surgery and platinum-based chemother-
apy (8–12). Platinum-based chemotherapy has extended survival
significantly in patients who undergo optimal tumor debulking
surgery (13, 14). Despite optimal initial therapy, however, most
tumors recur and options for recurrent disease are restricted by
few effective drugs and frequent dose-limiting toxicities of tradi-
tional cytotoxic drugs (8, 9). Extending the disease-free interval
(initial response to platinum therapy) and re-sensitizing tumors
to platinum-based drugs (overcoming platinum resistance), while
minimizing toxic side effects is an ongoing and urgent clinical
dilemma, and new treatment approaches are urgently needed.

This review summarizes the role of histone deacetylase inhibitors
(HDACi) as epigenetic anti-cancer therapy and evidence that class
I selective HDACi, particularly those biased to HDAC3 may be a
promising therapeutic strategy for ovarian cancer.

HISTONE DEACETYLASES
Histone deacetylases are a large family of enzymes that deacety-
late lysine residues on histones and non-histone proteins (15, 16).
Deacetylation of lysine residues of histone tails allows tighter bind-
ing of the nucleosome to negatively charged DNA, which results in
chromatin compaction. Chromatin compaction is associated with
silencing of gene transcription and other functions of genome
maintenance such as DNA replication and DNA damage response
and repair (16–20). Deacetylation of histones represses the tran-
scription of tumor suppressor genes such as the cyclin-dependent
kinase inhibitor, p21 p21(WAF1/CIP1), and the DNA damage
repair gene BRCA1, and directly or indirectly promotes the expres-
sion, activity, or downstream effects of known oncogenes such as
c-MYC (21), RAS (22, 23), and AKT (24). Direct deacetylation of
non-histone proteins p53, STAT3, c-MYC, α-tubulin, and Hsp90
is implicated in tumorigenesis (15, 25–27).

The first mammalian HDAC was discovered by using the small
chemical molecule trapoxin as a probe. Trapoxin is a micro-
bially derived cyclotetrapeptide that inhibits histone deacetylation
in vivo and causes cell cycle arrest in mammalian cells (28). The
protein HD1 (HDAC1), similar to the yeast transcriptional regula-
tor Rpd3p/Hda1,was subsequently isolated and cloned. Since then,
18 mammalian HDACs have been identified and are grouped into
four classes based on homology to yeast deacetylases. The family
of Rpd3/Hda1 are class I (HDAC1, 2, 3, and 8); class IIa (HDAC4,
5, 7, 9); class IIb (HDAC6 and 10); and class IV: HDAC11 (15, 17,
29) (Figure 1). Class I HDACs are ubiquitously expressed, whereas
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Khabele HDAC inhibitors in ovarian cancer

FIGURE 1 | Histone deacetylases and class I HDACi. (A) Zinc
(Zn2+)-dependent classes of HDACs. The Class III HDACs are nicotinamide
adenine dinucleotide (NAD+)-dependent. (B) Class I HDACs share more
than 50% homology, particularly in the catalytic domain. (C) Class I HDACi

alter biological pathways that lead to decreased tumorigenicity and
chemotherapy sensitization (HDAC, histone deacetylase; HDACi, histone
deacetylase inhibitors; NES, nuclear export signal; NLS, nuclear localization
signal).

class II and IV HDACs have tissue specificity for smooth muscle,
heart, brain, liver, and colon (29). Class III HDACs, related to
yeast sirtuins are nicotinamide-dependent enzymes and will not
be discussed in this review.

Class I HDACs 1–3 share more than 50% homology, but
have distinct structures and cellular functions (15) (Figure 1).
HDAC3 lacks the N terminus regions of the other class I HDACs,
exists in a distinct multi-protein complex from HDACs 1 and
2, and is associated with N-COR/SMRT co-repressors (15, 16,
30–32). Furthermore, the C terminus of HDAC3 has a unique
nuclear export sequence and both nuclear and cytoplasmic local-
ization, which suggests differential function from the other class
I HDACs that are confined to the nucleus (33). Knockout mouse
models of HDAC1 and HDAC3 enzymes are embryonic lethal
and knockout of HDAC2 leads to perinatal death (17). Stud-
ies of in vitro silencing of HDACs show HDAC1 and 3 siRNA
inhibit cell growth and HDAC3 siRNA causes histone hyper-
acetylation and apoptosis (34–36). These studies point to a crit-
ical role for class I HDACs 1–3 in cell growth. HDAC8 does
not have known co-repressors and its function remains under
investigation.

Aberrant expression of HDACs is implicated in the pathogene-
sis of malignancies, including solid tumors such as ovarian cancer
(35–38). Our group has published that class I HDACs are highly
expressed in ovarian cancers (36), and recent work shows elevated
class I HDAC expression is associated with poorer survival in cer-
tain subtypes of ovarian cancer (37). Because of the pleiotropic
pro-tumorigenic effects on cellular proliferation, apoptosis, and
DNA damage and aberrant expression of class I HDACs in ovar-
ian cancer, class I HDACi are potentially effective agents for the
treatment of ovarian cancer.

HDAC INHIBITORS AS ANTI-CANCER DRUGS
Histone deacetylase inhibitors are a structurally diverse set of
chemical compounds traditionally classified into four major
categories: hydroxamic acids (e.g., vorinostat formerly SAHA);
benzamides (e.g., MS-275); short aliphatic acids (e.g., valproic
acid, VPA); and cyclic peptides (e.g., romidepsin or depsipeptide
(FK228). Approximately 11 HDACi, including SAHA, MS-275,
VPA, and FK228, are in use clinically or are in clinical trials (15, 16,
29, 39, 40). Vorinostat and romidepsin are the only FDA-approved
HDACi and are indicated for the treatment of cutaneous T-cell
lymphoma (41–44). However, ongoing clinical trials of HDACi
in solid tumors, including ovarian cancer (Table 1) (45–48) are
underway.

Although some HDACi are thought to be non-selective
inhibitors, many including FK228 have selective bias toward class I
HDACs (49). Our group performed a high-throughput study of a
diverse group of HDACi in a panel of ovarian cancer cell lines rep-
resented in the NCI 60 panel. We demonstrated that the FK228 is
the most potent in reducing cell growth (50). FK228 induced cyto-
toxic effects, measured by induction of the DNA damage response
mark [phosphorylation of histone H2AX (pHAX)], inhibition of
cell proliferation and increased cell death. FK228 was isolated from
Chromobacterium violaceum no. 968, a rare Gram negative bac-
terium, and approved for the treatment of cutaneous and periph-
eral T-cell lymphomas (43, 44). The primary mechanism of action
of FK228 requires reduction of a characteristic disulfide bond that
creates a “warhead” thiol group. The thiol binds to zinc in the cat-
alytic center of both class I and class II HDACs and inhibits HDAC
enzymatic activity (51). Based on in vitro binding assays, FK228
preferentially inhibits class I HDACs over class II HDACs, with
potent biochemical activity against HDAC3 (51). We have gone
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Khabele HDAC inhibitors in ovarian cancer

Table 1 | Clinical trials of histone deacetylase inhibitors for the treatment of ovarian cancer in the United States.

Trial/type of study Treatment/population Outcomes

NCT00910000 phase IB/II unpublished Vorinostat, carboplatin, and gemcitabine plus vorinostat maintenance Terminated

Recurrent, platinum-sensitive epithelial ovarian, fallopian tube, or

peritoneal cancer

Unacceptable toxicity

NCT00976183 phase I/II Mendivil et al. (47) Paclitaxel, carboplatin, and vorinostat Terminated

Primary advanced stage ovarian cancer Unacceptable toxicity

3/18 (16.7%) – GI perforation

Some activity

7/18 (39%) CR

2/18 (11.2%) PR

9/18 (50%) ORR

NCT00993616 phase II Dizon et al. (45) Belinostat and carboplatin Terminated due to minimal activity

Recurrent or persistent platinum-resistant ovarian, fallopian tube, or

primary peritoneal cancer

Some activity
1/27 (3.7%) PR

12/27 (44.4%) SD

8/27 (29.6%) PD

5/27 (18.5%) NA

NCT00421889 phase I/II Dizon et al. (46) Belinostat, carboplatin, and paclitaxel Completed

Previously treated ovarian cancer No grade 4 toxicities

Some activity

3/35 (8.6%) CR

12/35 (34.2%) PR

15/35 (43%) ORR

NCT00132067 phase II Modesitt et al. (48) Vorinostat Completed

Recurrent or persistent ovarian or primary peritoneal cancer Well-tolerated

Minimal activity

1/27 (3.7%) PR

www.clinicaltrials.gov (accessed 4/23/2014).

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ORR, overall response rate.

on to show that class I biased HDACi with similar bicyclic dep-
sipeptide structures, thailandepsin A (TDP-A) and thailandepsin
B (TDP-B) discovered from Burkholderia thailandensis (52), are as
potent as FK228 in ovarian cancer cells (53).

Our group has shown HDACi have potent anti-tumor effects
in other ovarian cancer cells with relative resistance to cisplatin
(36). These findings suggest a role for HDACi in the treatment of
platinum-resistant ovarian tumors. For example, NCI/ADR-Res,
an ovarian cancer cell line that is resistant to common cyto-
toxic agents including cisplatin, is the most sensitive to SAHA
in the entire set of ovarian cancer cells represented in the NCI
60 panel (50). HDAC proteins play an important role in DNA
damage response and repair, and HDACi are known to reduce the
expression of HR associated genes such as BRCA1 and RAD51
(54–57). We have recently shown that SAHA inhibits both BRCA1
and RAD51 in response to DNA damage in ovarian cancer cells
(58). This implies a role for HDACi altering HR efficiency as a
mechanism for sensitizing ovarian cancer cells to DNA damag-
ing drugs. Whether targeting selective class I HDACs indirectly
increases DNA damage, impairs DNA repair, or both is an area of
active investigation and has potential therapeutic implications for
Type II high-grade serous ovarian cancers.

CLASS I HDACi AND DNA DAMAGING AGENTS
Despite being highly effective in vitro and generally well-tolerated
in vivo, clinical responses to HDACi in solid tumors, including
ovarian cancers have been disappointing compared to hemato-
logic malignancies (16, 48). Furthermore, evidence from clinical
trials and in vitro studies suggest that HDACi are more effective
when combined with other anti-tumor agents (16). Table 1 sum-
marizes completed HDACi clinical trials specifically for ovarian
cancer in the United States (45–48). In ovarian cancer, single agent
trials with HDACi have been disappointing. A Phase II study of
single agent vorinostat in platinum refractory recurrent or per-
sistent ovarian cancer showed minimal responses, although it
was well-tolerated (48). A Phase II trial of belinostat in women
with ovarian cancer, including platinum-resistant disease, showed
moderate responses with >50% of the patients with stable dis-
ease (59). Interestingly, the best responses were seen in patients
with platinum-resistant Type II ovarian cancers in that study. This
trend toward improved response in platinum-resistant disease was
also observed in a study of belinostat combined with carboplatin
and paclitaxel in recurrent ovarian cancer (46). However, in a
study specifically for recurrent or persistent ovarian cancer, the
combination of belinostat and carboplatin was terminated due
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to minimal activity (45). The diversity of responses to HDACi in
different cell types is not fully understood, but supports obser-
vations from our group and others that certain types of cells
(e.g., rapidly proliferating cells) are more sensitive than others
(e.g., “normal” epithelial cells) to these agents (18, 60). Challenges
remain in defining the most appropriate HDACi to combine with
other anti-tumor agents.

Histone deacetylase inhibitors have been shown be synergistic
with DNA damaging radiation (18, 61–65), suggesting a role for
HDACi with DNA damaging chemotherapeutic agents. Combin-
ing HDACi with chemotherapeutic drugs that specifically target
DNA, such as topoiomerase II inhibitors and cisplatin, enhance
the efficacy of these drugs in cancer cells (66–68). Cisplatin or
cis-diamminedichloroplatinum (II) is one of the first-line stan-
dard chemotherapy agents in the treatment of ovarian cancer
(9–12). Cisplatin forms covalent platinum-DNA adducts that lead
to double strand breaks, DNA damage, and eventual cell death
(69, 70). A multi-drug combination of the pan-HDACi belinostat
with a DNA methylation inhibitor, decitabine, enhances sensitiv-
ity to cisplatin in cisplatin-resistant ovarian cancer cells (71). The
potential mechanism of synergy with DNA damaging agents is
suggested by published results that selective inhibition of class I
HDACs, specifically HDAC3, leads to a defective response to DNA
damage, and aberrant histone deposition on chromatin (18, 66).
Conditional knock-down of HDAC3 decreases S phase and causes
inefficient repair of double strand DNA breaks induced by radi-
ation (18). Because HDAC3 knock-down suppresses cell viability
and contributes to DNA damage and disruption of DNA repair
(18, 36, 66, 72), we hypothesized that HDACi compounds with
HDAC3 bias will be synergistic with DNA damaging agents in
ovarian cancer cells and found that FK228, a class I HDACi that
potently inhibits HDAC3, enhances the effects of cisplatin in vitro
and in vivo (73).

TARGETING HDAC3 IN OVARIAN CANCER
Selective class I HDACi targeting HDAC3 is an attractive therapeu-
tic strategy. Our group and others have shown that targeting class
I HDACs, particularly HDAC3, inhibits cellular proliferation and
directly represses transcription of p21 (35, 36, 74, 75). In acute
leukemia, the HDAC3-dependent N-CoR complex is recruited
by the oncogenic fusion proteins (76–78). Conditional knock-
down of HDAC3 in the liver induces DNA damage, chromosomal
instability, and changes in metabolism (18, 20, 72). Inactivation
of HDAC3 is sufficient to trigger apoptosis in cycling, non-
quiescent murine embryonic fibroblasts, suggesting that HDAC3
could be a therapeutic target in highly proliferative cancer cells
(18). HDAC3 is also required for efficient DNA replication in
hematopoietic stem and progenitor cells, and required for the pas-
sage of hematopoietic stem/progenitor cells through the S phase,
for stem cell functions, and for lymphopoiesis (79). The HDAC3
selective inhibitor, RGFP966, causes impaired S phase progres-
sion, decreased cell growth, and increased DNA damage associated
apoptosis via disruptions in DNA replication in refractory cuta-
neous T-cell lymphoma (CTCL) (80). These results suggest that
HDAC3 and other class I HDACi that enhance DNA damage are
effective anti-cancer drugs, but should be used at the lowest doses
possible over short periods of time.

TARGETING HDAC3 IN THE OVARIAN TUMOR
MICROENVIRONMENT
Observations in ovarian cancer cells and other cancer cell types
indicate that selective targeting of HDAC3 may be an attrac-
tive therapeutic strategy. Our group and others have shown
that inhibiting class I HDACs, particularly HDAC3, inhibits cel-
lular growth and survival, and de-represses p21 transcription
leading to increased protein expression in cancer cell lines of
diverse origin (35, 36, 74, 75). Class I HDAC inhibition does
not induce similar anti-tumor effects in normal ovarian epithe-
lial cell lines (36), consistent with data showing normal, non-
transformed cells are spared cytotoxic effects from short-term
HDACi treatment (16, 81).

Several studies have indicated that HDAC3 may contribute to
inflammatory processes in macrophages during ovarian tumori-
genesis, although its role is complex and remains incompletely
understood. Ovarian tumorigenesis in the peritoneal cavity
involves a complex interplay of signaling and responses between
tumor cells and inflammatory cells such as macrophages, T-
cells, and dendritic cells (82, 83). The contribution of peri-
toneal macrophages to the extensive peritoneal tumor implants
and malignant ascites characteristic of ovarian cancer is well-
recognized (84–86). Thus, therapies designed to alter macrophage
function in the ovarian tumor microenvironment are a promis-
ing emerging concept reviewed elsewhere (87–89). Our group and
others have shown that macrophages are abundant in peritoneal
ascites fluid and that ovarian tumors have the ability to polar-
ize macrophages to display tumor-promoting characteristics in a
nuclear factor-kappaB (NF-κB)-dependent manner (84, 90), but
can be “re-educated” toward an anti-tumor phenotype (84) and
thus are a potential target for therapy.

Conditional HDAC3 knock-down in macrophages contributes
to the regulation of inflammatory gene expression and func-
tion and appears to activate pro-tumorigenic macrophage phe-
notypes (91, 92). On the other hand, a possible mechanism
for an anti-tumor function of HDAC3 in macrophages is direct
deacetylation of NF-κB (p65/relA), which is associated with over-
all termination of the NF-κB transcriptional response (93), but
specific activation of transcription of the anti-tumor macrophage
cytokine, interleukin-1 (IL-1) (94). Further evidence for the
context-dependent role played by HDAC3 in inflammation is
that HDAC3 knock-down in macrophages reduces expression of
almost half of lipopolysaccharide-induced inflammatory genes
(92), but also contributes to transcriptional repression of toll-like
receptor activation by deacetylation of p50 (95). These studies
indicate that systemic inhibition of HDAC3 may, at least in a
specific context, reduce the ability of peritoneal macrophages to
mount an anti-tumor response. Therefore, this may represent a
possible mechanism by which the efficacy of HDACi in clinical
trials is limited. More research is needed to more fully understand
HDAC functions in macrophages and inflammatory cells in the
peritoneal cavity.

FUTURE DIRECTIONS AND LIMITATIONS
The development of class selective HDACi is ongoing (96).
Novel combinations of HDACi with other targeted drugs such
as aurora kinase inhibitors are underway (97) and using specific
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HDACi as hybrid compounds with other anti-cancer drugs is a
novel approach (96). For example, targeting HDACs with PI3K
inhibitors (96) may have particular relevance for both Type I and
Type II ovarian tumors with alterations in the PIK3CA/AKT onco-
genic pathway. Finally, hybrid ester-HDACi that selectively trap
HDACi in monocytes and macrophages are in development for
inflammatory diseases (98) and could be used to target the tumor
microenvironment in ovarian cancer.

There are potential limitations to selective HDACi therapy. The
effects of class I HDACi on DNA damage and repair pathways
suggest that prolonged exposure to these drugs could lead to unac-
ceptable toxicities (47) and secondary malignancies (20). Class I
HDACs may also play an oncogenic role depending on the con-
text (20, 99, 100). Further, predictive and prognostic biomarkers
of response and toxicity, including potential immune-related tox-
icities and mechanisms of drug resistance are not known. Finally,
the type of combinatory regimen using class I HDACi, dose and
sequence of drugs are important considerations that are poorly
understood and worthy of further study.

CONCLUSION
The limited clinical benefit previously seen with HDACi in ovar-
ian cancer could be explained by a variety of factors including the:
(1) phenotypic and molecular features of the tumors; (2) strength
and selectivity of HDAC inhibition; and (3) type of combina-
tory treatment. Substantial pre-clinical evidence shows that class
I biased HDACi decrease cell proliferation and increase apopto-
sis, likely through enhanced DNA damage and decreased DNA
repair, in molecularly vulnerable ovarian cancer cells. Combina-
tion therapy with other epigenetic drugs such as DNA methyl
transferase inhibitors, DNA damaging agents (platinum drugs),
and small molecule inhibitors of oncogenic pathways such as
the PIK3CA/AKT and NF-κB signaling pathways are potential
strategic approaches. Targeting the tumor microenvironment with
HDAC3 selective inhibitors is another potentially innovative strat-
egy. A better understanding of the most susceptible ovarian cancer
subtypes to target and the most effective HDACi to use in ratio-
nal combinations with other cancer drugs has the potential to
drive novel applications of HDACi in ovarian cancer therapy.
Questions about the long-term toxicity of class I HDACi, particu-
larly HDAC3-biased compounds and specific drug combinations
remain rich areas for investigation. An ongoing debate in the field
is the specificity and selectivity of HDACi as anti-cancer agents.
If class I selective HDACi biased to HDAC3 can be designed to
improve efficacy in subtypes of ovarian cancer such as in HR defi-
cient ovarian tumors without significantly increasing toxicity, the
therapeutic impact could be high.
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