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MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis.To be able to perform their
myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5,TRBP, and
AGO2, must generate precise miRNAs. These genes have specific expression patterns,
protein-binding partners, and biochemical capabilities in different cancers. Our preliminary
analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer
revealed significant alterations in these miRNA machinery genes. Here, we review their
biological structures and functions with an eye toward understanding how they could serve
as cancer biomarkers.
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INTRODUCTION
MicroRNAs (miRNAs) are non-coding RNAs ~22 nt long that
bind to target mRNAs, resulting in mRNA degradation or inhi-
bition of mRNA expression (1, 2), and play a key role in post-
transcriptional gene regulation in up to 30–60% of all human
genes (3). miRNA targets mRNA by specific base-pairing inter-
actions between the seed region of the miRNA and the 5′-
untranslated regions of the mRNA (4–6). miRNAs can be grouped
into families on the basis of their seed sequences, and members
of one family usually effect the same mRNAs. A small number of
miRNAs outside the seed sequences have also been reported (7, 8).

MicroRNAs can be produced from long RNA transcripts. Pri-
mary miRNAs (pri-miRNAs), which are 1–2 kb long and contain
one or more 70-nt hairpin precursor miRNAs (pre-miRNAs), are
excised to pre-miRNAs by ribonuclease III (RNase III) and DiGe-
orge critical region 8 (DGCR8) in the cell nucleus (9–11). The
Drosha–DGCR8 complex, known as a microprocessor, is essen-
tial for miRNA maturation. Drosha, as the catalytic subunit, has
been shown to cleave pri-miRNA-like hairpins harbored within
the 5′-untranslated region of the mRNA encoding the DGCR8
protein (12, 13). Drosha is a member of the RNase III family
and can convert pri-miRNAs into pre-miRNAs (11), which are

Abbreviations: AGO2, argonaute 2; CRC, colorectal cancer; DGCR8, diGeorge
critical region 8; dsRBD, double-stranded RNA-binding domain; dsRNA, double-
stranded RNA; GC, gastric cancer; miRNA, microRNA; MSI-H, high microsatellite
instability; PACT, PKR activator; PKR, protein kinase R; pre-miRNA, precursor
miRNA; pri-miRNA, primary miRNA; RISC, RNA-induced silencing complex;
RNase III, ribonuclease III; SCC,squamous cell carcinoma; TRBP,TAR RNA-binding
protein; XPO5, exportin-5.

exported from the nucleus into the cytoplasm by an exportin-5
(XPO5)/Ran–GTP complex (14–16). In the cytoplasm, the endori-
bonuclease Dicer complex catalyzes these pre-RNAs to form miR-
NAs (17). The mature miRNAs are loaded into an argonaute 2
(AGO2) protein, which associates with a TAR RNA-binding pro-
tein (TRBP) and forms an RNA-induced silencing complex (RISC)
(18, 19), which plays a crucial role in the repression or degradation
of mRNAs.

miRNA MACHINERY GENES
The miRNA machinery genes include Drosha, DGCR8, Dicer1,
XPO5, TRBP, and AGO2, which synthesize proteins to regulate
the processing of miRNAs and influence different fields in vivo.
Drosha, a nuclear RNase III enzyme, has two RNase III catalytic
sites with a double-stranded RNA-binding domain (dsRBD) at the
C terminus and a proline-rich domain and arginine/serine-rich
domains at the N terminus (11). Drosha recognizes the stem-loop
structure and cleaves both arms of the stem-loop through the tan-
dem RNase III domains. The RNase III family of enzymes, which
are found in all eubacteria and eukaryotes (20), is divided into
three classes based on their structure. Of these classes, Drosha class
II and Dicer class III have crucial effects on miRNA processing. The
long pri-miRNA, which is typically generated by RNA polymerase
II, contains a short stem-loop structure (11). DGCR8 can stabi-
lize the Drosha protein through protein–protein interaction (12)
and is an essential miRNA processing factor that includes an N-
terminal region for nuclear localization, a heme-binding domain,
two dsRBDs, and a C-terminal tail (21, 22). DGCR8 binds to
the base of the long primary transcript pri-miRNA hairpin, posi-
tioning Drosha to cleave the pri-miRNA stem at a distance of 11
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base pairs from the junction between the double-stranded RNA
(dsRNA) stem and the flanking single-stranded RNA regions (23).

XPO5 is a nuclear receptor that transports pre-miRNA from
the nucleus to the cytoplasm (24, 25). Once in the cytoplasm,
pre-miRNA is cleaved by Dicer in complex with another dsRNA-
binding protein, TRBP (19, 25, 26). As a key protein in the cleaving
process of pri-miRNA, Dicer has two RNase III domains, a less-
conserved ATPase/DExD helicase domain and a Piwi–Argonaute–
Zwille (PAZ ) domain (27, 28). The key regions for miRNA matura-
tion, these domains have different effects. The RNase IIIA domain
of Dicer1 is essential for generating small RNAs embedded in the
3′ stem of exogenous hairpin-like RNAs (29). Inactivation of this
domain results in complete loss of 3p-derived mature miRNAs
but only partial reduction in 5p-derived mature miRNAs (30). In
contrast, inactivation of the RNase IIIB domain by mutation of
D1709 results in complete loss of 5p-derived mature miRNAs but
only partial reduction in 3p-derived mature miRNAs. Mutation
of the PAZ domain in Dicer results in global reduction of miRNA
processing (30).

Argonaute proteins are core components of RISCs and are
highly conserved between species. Many organisms encode mul-
tiple members of this protein family, which have essential roles in
RNA-mediated gene silencing (31). AGO2 protein contains four
major domains, N-terminal, PAZ domain, MID domain, and PIWI
domain (32, 33), as well as two structured linker domains, L1 and
L2 (34). The PAZ domain, like Dicer, binds to the 3′ end of guide

RNA (35). The MID domain of the eukaryotic AGO protein QDE-
2 adopts a Rossmann-like fold and recognizes the 50-nt terminal
of a guide RNA in a manner similar to its prokaryotic counter-
parts, for which the 50-nt-binding site shares common residues
with a second, adjacent ligand-binding site (36).

TAR RNA-binding protein is a dsRNA-binding protein that
includes two dsRBDs and a C4 domain (37). The two dsRBDs
together express a much higher affinity for binding dsRNA than
either one alone, confirming that the two domains cooperate for
dsRNA binding (38, 39). However, a KR-helix motif in dsRBD2
gives it a stronger dsRNA-binding efficacy than dsRBD1 has (38).
The C-terminal domain in TRBP binds to the tumor suppressor
Merlin, the RNase III Dicer, and PKR activator (PACT ) to create
the Medipal domain (40). The C4 domain has a major influence
on the reactions of TRBP–PACT and TRBP–Dicer.

Figure 1 clarifies the molecular mechanisms underlying the
miRNA processing machinery and the three-dimensional struc-
tures of the relevant proteins. Two RNase III domains, IIIA and IIIB
are, common to Drosha and Dicer1. The PAZ domain is common
to Dicer1 and AGO2 (23).

FUNCTIONS OF miRNA MACHINERY GENES
Because of their core functions in miRNA processing, the genes
Drosha, DGCR8, Dicer1, XPO5, AGO2, and TRBP are important
in several aspects. Drosha can recognize and cleave the stem-loop
structures in mRNAs, leading to their dysfunction, which occurs

FIGURE 1 | Structure of microRNA machinery genes and miRNA biosynthesis.
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mostly in stem or progenitor cell populations (41–44). Due to
the fact that the transcription factor Neurogenin 2 has a conserved
hairpin-like pri-miRNAs do, Drosha can regulate the expression of
this transcription factor (41). Drosha knockout mice are infertile
due to oligoteratozoospermia or azoospermia, which suggests that
Drosha-mediated miRNA production is important in male fertility
(45). Drosha can affect the proliferation of human mesenchy-
mal stem cells by regulating rRNA processing (46). Inhibition of
Drosha also affects rRNA processing in HeLa cells (47).

DGCR8 is also a part of a microprocessor, the Drosha–DGCR8
complex, with an important function in miRNA maturation. This
complex cleaves the hairpin structures in DGCR8 mRNA (12).
Deficiency of DGCR8 results in altered short-term plasticity in
the prefrontal cortex, affects dendritic spines and complexity, and
alters brain miRNA biogenesis (48, 49). Moreover, inactivation of
DGRC8 in cardiac neural crest cells results in malformations and
increased apoptosis (50). In addition, the loss of DGCR8 in vascu-
lar smooth muscle cells results in liver hemorrhage, dilated blood
vessels, and disarrayed vascular architecture in murine models,
implying that the DGCR8 gene plays an important role in vascu-
lar development by regulating the apoptosis and differentiation of
these cells (51).

As an RNase III endonuclease, Dicer is a core enzyme which
cleaves pre-miRNAs into 21- to 25-nt species in miRNA pro-
cessing. Dicer has many important roles in the morphogenesis
of developing tissues. For example, it plays an essential role in
neuron polarity and neuronal development (52) and represses
neuronal genes during endocrine cell maturation (53). Loss of
Dicer results in gross abnormalities in cell number and function
in the cortex and hippocampus (54), and deletion of Dicer in
the early pancreatic lineage in Pdx1–Cre mouse models results in
early pancreatic bud development and pancreas agenesis (55). On
the other hand, Dicer is required for maintaining adult pancreas,
and morphologic abnormalities in Dicer1-hypomorphic mice can
be detected after 4 weeks of age (56). Deregulation of Dicer1 in
β-cells leads to progressive reduction in insulin secretion, glu-
cose tolerance, and development of diabetes and impaired islet
architecture (57, 58). Moreover, loss of Dicer results in significant
reductions of testis mass and sperm number in germ cell knockout
mouse as well as impaired meiotic progression (59). Finally, inac-
tivation of Dicer in developing mouse lymphocytes can impair
cell proliferation and survival and alter the repertoires of antigen
receptors (60).

Mature RISC consists of a single-stranded small RNA bound to
an AGO protein. AGO proteins can bind small interfering RNAs as
well as miRNAs and mediate the repression of specific target RNAs
either by degrading RNA or by inhibiting translation. Members of
the AGO protein family have been implicated in both transcrip-
tional and post-transcriptional gene silencing (31, 61). As a highly
specialized member of the AGO family,AGO2 has an essential non-
redundant Slicer-independent function within the mammalian
miRNA pathway. AGO2 is also a key regulator of B lymphoid
and erythroid development and function. However, deficiency in
AGO2 impairs miRNA biogenesis from pre-miRNAs and reduces
miRNA expression levels (62). On the other hand, AGO protein-
associated small RNAs repress mitogen-induced transcripts, and
stabilized and stored mature miRNAs can be activated to regulate

the mitogenic responses (63). Interestingly, AGO2 in dopamine 2
receptor-expressing neurons regulates cocaine addiction (64), and
nuclear AGO2 has been reported to regulate voltage-gated potas-
sium channels in adipose tissue-derived stromal cells with crucial
functions in the self-renewal and cell de-aging processes (65). Fur-
thermore, the interaction between the epidermal growth factor
receptor gene (EGFR), a novel upstream regulator of the RISC-
loading complex, and AGO2 increases under hypoxia stress, which
leads to elevated AGO2-Y393 phosphorylation and inhibition of
the transition of pre-miRNAs into mature miRNAs (66).

As a steroid receptor RNA activator-binding nuclear receptor
coregulator, TRBP targets steroid-responsive promoters and reg-
ulates nuclear receptor activity and downstream gene expression
(67). TRBP contributes to HIV-1 gene expression by inhibiting the
activation of the dsRNA-dependent protein kinase R (PKR) (68).
Knockdown of TRBP can reduce the accumulation of hepatitis
C virus RNA (69) and TRBP has been proposed as a target for
antiviral therapies (68, 70, 71). The structures of TRBP and the
PKR activator (PACT ) are highly homologous (72). TRBP can
control the PACT activation of PKR and the expression of the
HIV-1 gene (73). The interaction between TRBP and PACT may
influence other cellular processes as well. TRBP can bind to the
small-molecule enoxacin and express tumor suppressors in human
cell cultures and mouse cancer models (74).

XPO5 protein directly binds and mediates the nuclear export
of dsRNA, including pre-miRNAs, viral hairpin RNAs, and tRNAs
(16, 75). Inhibition of XPO5 results in down-regulation of Dicer
(76), global miRNA elevation disorder, and delayed G1/S transi-
tion (77), indicating that XPO5 is a critical component in miRNA
biogenesis, regulates global miRNA expression, and is associ-
ated with cell-cycle control. Because aberrant expression of XPO5
increases the risk of cancer (78), it is a potential target for drug
intervention.

miRNA MACHINERY GENES IN CANCER
Alterations in the miRNA machinery play important roles in the
carcinogenesis of a variety of tumors (79). Preliminary analysis
of data from The Cancer Genome Atlas consortium of multi-
ple types of cancer through cBioPortal (80, 81) has shown a
significant incidence of alterations in miRNA machinery genes
(Table 1), especially the AGO2 gene, which has a high incidence of
gene alterations across cancer types, including breast invasive car-
cinoma (23.30%), colon and rectum adenocarcinoma (12.3%),
bladder urothelial carcinoma (20.8%), and prostate adenocar-
cinoma (20.7%). This evidence supports prior reports linking
miRNA-related alterations to cancers. The incidence of alterations
mutation, copy number variation, and/or deregulated mRNA
expression for these cancer types was 80.6, 95.4, 96.0, and 80.5%,
respectively.

Since the incidence of alteration of the AGO2 gene was highest
in breast invasive carcinoma, we analyzed the miRNA machinery
genes in breast invasive carcinoma datasets to identify patterns of
mutual genetic alterations and driver genes. A strong tendency of
mutual exclusivity was noted for genetic alterations in the miRNA
machinery gene TRBP with the driver genes PIK3R1 (p = 0.03)
and KMT2C (p = 0.0019) (Table 2). We also noted several inci-
dences of co-occurrences in Table 2. Our analysis suggested that
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Table 1 |The Cancer Genome Atlas consortium data on the incidence of genetic alterationsa in microRNA machinery genesb and driver genesc,

by cancer type.

Gene

symbol

Breast invasive

carcinoma

(n = 463)

Colon and rectum

adenocarcinoma

(n = 195)

Bladder urothelial

carcinoma

(n = 125)

Prostate

adenocarcinoma

(n = 82)

n % n % n % n %

AGO2 108 23.3 24 12.3 26 20.8 17 20.7

APC 40 8.6 153 78.5 10 8 6 7.3

CCND1 99 21.4 9 4.6 21 17 0 0

CCNE1 42 9.1 11 5.6 29 23.2 8 9.8

CDKN2A 61 13.2 14 7.2 56 44.8 6 7.3

CHD1 30 6.5 15 7.7 12 9.6 11 13.4

CTCF 41 8.9 17 8.7 11 8.8 7 8.5

DEFB135 15 3.2 6 3.1 12 9.6 8 9.8

DGCR8 23 5 9 4.6 13 10.4 2 2.4

Dicer1 32 6.9 14 7.2 15 12 3 3.7

DNASE1 31 6.7 6 3 8 6.4 4 4.9

Drosha 9 1.9 29 14.9 42 33.6 6 7.3

EGFR 30 6.5 23 11.8 25 20 4 4.9

ERCC3 33 7.1 20 10 18 14.4 8 9.8

FRG1 41 8.9 10 5 6 4.8 9 11

GATA3 96 20.7 13 6.7 21 16.8 4 4.9

HIST1H2BA 24 5.2 5 2.6 6 4.8 2 2.4

KMT2C 64 13.8 22 11.3 33 26.4 11 13.4

KRAS 33 7.1 84 43.1 15 12 10 12.2

KRTAP6-2 1 0.2 3 1.5 4 3.2 0 0

LURAP1L 6 1.3 14 7.2 9 7.2 13 15.9

MAP3K1 65 14 10 5.1 14 11.2 7 8.5

MUC4 40 8.6 12 6.2 19 15 20 24.4

NKX3-1 12 2.6 2 1 19 15 20 24.4

OR2M4 26 5.6 9 4.6 6 4.8 6 7

OR51V1 6 1.3 7 3.6 1 0.8 1 1.2

OR6N1 56 12.1 9 4.6 16 12.8 4 4.9

PIK3R1 36 7.8 16 8.2 7 5.6 11 13.4

PPARG 20 4.3 9 4.6 26 20.8 6 7.3

PTEN 54 11.7 20 10.3 13 10.4 30 36.6

SOX4 40 8.6 9 4.6 31 24.8 7 8.5

RB1 51 11 20 10.3 32 25.6 17 20.7

TERC 11 2.4 14 7.2 8 6.4 9 11

TP53 186 40.2 108 55.4 70 56 18 22

TPX2 25 5.4 71 36.4 24 19.2 10 12.2

TRBP 40 8.6 16 8.2 9 7.2 1 1.2

XPO5 46 9.9 21 10.8 20 16 7 8.5

ZNF285 4 0.9 7 4 18 14.4 6 7.3

aGenetic alterations comprise of mutations and/or CNV and/or mRNA expression deregulation.
bmiRNA machinery genes are in bold font.
cDriver genes are those with the highest incidence of alterations in a given dataset.

alterations in miRNA machinery genes interact with driver genes
in at least a subset of tumors. Considering the regulatory role of
miRNAs, the underlying mechanisms and cellular consequences
of these interactions may be critical for understanding cancer
pathology.

miRNA MACHINERY GENES AS BIOMARKERS FOR CANCERS
Although the mechanism of microprocessor activity has been
intensively investigated and dysregulation of miRNA machinery
genes plays a pivotal role in the initiation and progression of malig-
nancies, it remains largely unknown how miRNA machinery genes
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Table 2 | Patterns of mutual exclusivity and co-occurrence of driver

genes and microRNA machinery gene alteration inThe Cancer

Genome Atlas consortium data for the breast invasive carcinoma

dataset (N = 463).

Occurrence pattern miRNA machinery gene Driver genea p Value

MUTUALLY EXCLUSIVE OCCURRENCE

AGO2 CTCF 0.005

TRBP KMT2C 0.0019*

PIK3R1 0.03*

CO-OCCURRENCE

AGO2 PTEN 0.0047

TP53 0.00

XPO5 TP53 0.0002

GATA3 0.0001

DICER1 MAP3K1 0.007

CTCF 0.01

aDriver genes are those with the highest incidence of alterations in a given

dataset. *Strong tendency toward mutual exclusivity 0 < odds ratio < 0.1. TCGA

data obtained through cBioPortal (80, 81).

are regulated and whether they can serve as biomarkers for can-
cers. Abnormal expression of miRNA machinery genes has been
found in a variety of human tumors (Table 3). The expression
levels of Drosha, DGCR8, Dicer, XPO5, AGO2, and TRBP have all
been associated with several cancers.

The expression level of Drosha is up-regulated in basal cell car-
cinoma and squamous cell carcinoma (SCC) (82, 83), and elevated
levels of Drosha are observed in smooth muscle neoplasms com-
pared with smooth muscle, indicating that this enzyme is involved
in smooth muscle neoplasms (85). Down-regulation of Drosha is
associated with patient outcome in ovarian cancer (85), outcomes
and risk groups in neuroblastoma (86), occurs in endometrial can-
cer (87), correlates with nasopharyngeal carcinoma and the patient
outcomes (88), is associated with the specific subgroups of breast
cancer (89), and is associated with metastasis, invasion, and poor
prognosis in gallbladder adenocarcinoma (90).

DGCR8 expression levels are over-expressed in basal cell car-
cinoma (110), SCC (110), colorectal cancer (CRC) (91), gas-
trointestinal cancer (92), and ovarian cancer (93). Knockdown of
DGCR8 in ovarian cancer cells disturbs their proliferation, migra-
tion, and invasion and increases their sensitivity to the chemother-
apeutic drug cisplatin (93), which suggests that an elevated level
of DGCR8 is associated with carcinogenesis.

Dicer is down-regulated in many tumors, such as transi-
tional cell carcinoma of the urinary bladder (94), neuroblastoma
(86), nasopharyngeal carcinoma (88), endometrial cancer (87),
breast cancer (102), lung cancer (101, 111), gastric cancer (GC)
(112), ovarian cancer (113), and gallbladder adenocarcinoma
(90). Repression of Dicer is associated with poor prognosis for
patients with lung cancer (101), ovarian cancer (114), chronic
lymphocytic leukemia (115), or colorectal CRC (116), and it pro-
motes cell proliferation in A2780 and SKOV3 ovarian cancer cells
(117). Conversely, compared with normal tissue, the expression
of Dicer is higher in cutaneous SCC (82), salivary gland pleo-
morphic adenoma (118), acute myeloid leukemia (119), smooth

muscle neoplasm (85), and prostate cancer (100). Overexpression
of Dicer has been shown to lead to poor survival in patients with
soft tissue sarcoma (84). Loss of Dicer expression suppresses the
growth and oncogenicity of human prostate cancer cell lines but
enhances migratory capacity in some prostate cancer cell lines
(120). Dicer is increased in human prostate cancer specimens, but
lower Dicer expression predicts faster cancer recurrence (120).
Complete ablation and hemizygous loss of Dicer reduced tumor
growth. Hemizygous loss also resulted in an invasive phenotype
and causes seminal vesicle obstruction, which indicated that the
regulation of Dicer depends on dosage and context (120).

The expression of AGO2 is up-regulated in GC (103), epithelial
skin cancer (110), prostate cancer (100), and hepatocellular car-
cinoma (104). AGO2 binds to the tumor metastasis factor focal
adhesion kinase promoter and triggers its transcription, which
suggests a new function of AGO2 in tumor progression (104).
Repression of AGO2 protein has been found in human lung ade-
nocarcinomas (105) and in melanoma, for which the mRNA level
of AGO2 did not change (106). Overexpression of AGO2 has been
shown to inhibit cancer cell proliferation and migration in mice
models (105). The stability of AGO2 protein is essential, as is the
frame shift mutation of the AGO2 gene in GC and CRC with high
microsatellite instability (MSI-H), which suggests that these alter-
ations are risk factors for GC and CRC (97). Single-nucleotide
polymorphisms of AGO2 have been associated with the outcome
of breast cancer patients (107).

Compared with in lymph nodes, TRBP is over-expressed in
prostate cancer (116). Similarly, TRBP is over-expressed in diffuse
large B-cell lymphoma and is associated with a poor chemotherapy
response (108). Both TRBP mRNA and TRBP protein levels are
higher in adrenocortical carcinomas than in adenomas or adrenal
cortices (109). Knockdown of TRBP decreases cell proliferation
and induces cell apoptosis in diffuse large B-cell lymphoma cells
(108) and adrenocortical carcinomas cells (109). However, the
expression levels of TRBP are not significantly different between
patients with epithelial skin cancer and persons who do not (110).
Melo et al. found that the presence of inactivating mutations in
TRBP gene in human cancer cell lines and primary tumors with
MSI-H impaired miRNA processing and enhanced cellular trans-
formation and the loss of TRBP led to a secondary defect in Dicer1
activity. These results further confirmed the role of loss of function
events in the regulation of miRNA processing machinery during
tumorigenesis (121).

Dysfunction of XPO5 can also result in carcinogenesis. The
expression level of XPO5 is up-regulated in urothelial carcinoma
of the bladder (95) and breast cancer (96) and is positively cor-
related with tumor development and invasion (95). The XPO5
mutant rs11077 increases the risk of renal cell carcinoma (79), is
associated with chemotherapy response and survival of patients
with advanced non-small-cell lung cancer (24), and is associated
with the outcomes of patients with multiple myeloma undergo-
ing autologous stem cell transplantation (99). The discoveries of a
mutation in a CRC patient (97) and two CRC cell lines, HCT-15
and DLD-1 (98), with MSI-H imply that the XPO5-inactivating
mutant results in pre-miRNA accumulating in the nucleus. The
restoration of XPO5 repairs the impaired export and expresses
tumor suppressor features (98).
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Table 3 | Expression levels of microRNA machinery genes in human tumors.

miRNA machinery gene Alteration type Cancer type (reference)

Drosha Up-regulation BCC (82), SCC (82, 83), smooth muscle neoplasm (84)

Down-regulation Ovarian cancer (85), neuroblastoma (86), endometrial cancer (87), NPC (88), breast cancer (89),

gallbladder adenocarcinoma (90)

DGCR8 Up-regulation BCC (91), SCC (91), CRC (92), gastrointestinal cancer (93), ovarian cancer (94)

XPO5 Up-regulation Urothelial carcinoma (95), breast cancer (96)

Mutant Non-small-cell lung cancer (19), renal cell carcinoma (79), CRC (97, 98), multiple myeloma (99)

Dicer Up-regulation SCC (67), prostate cancer (100), smooth muscle neoplasm (84)

Down-regulation Neuroblastoma (86), breast cancer (101), endometrial cancer (87), NPC (88), transitional cell

carcinoma (102), gallbladder adenocarcinoma (90)

AGO2 Up-regulation Prostate cancer (100), epithelial skin cancer (91), GC (103), hepatocellular carcinoma (104)

Down-regulation Lung adenocarcinoma (105), melanoma (106)

Mutant GC (97), CRC (97), breast cancer (107)

TRBP Up-regulation Prostate cancer (100), diffuse large B-cell lymphoma (108), adrenocortical carcinoma (109)

Mutant CRC cells (105), endometrial cancer cells (105)

BCC, basal cell carcinoma; GC, gastric cancer; NPC, nasopharyngeal carcinoma; SCC, squamous cell carcinoma.

Additional analysis of the expression levels of these miRNA
machinery genes and alterations and their interactions with their
driver genes in tumors could discriminate cancer patients from
healthy controls and be associated with the outcomes of cancer
patients.

FUTURE PERSPECTIVES
Along with conducting intensive studies of tumor-associated miR-
NAs and miRNA machinery genes, which play crucial roles in
tumorigenesis, scientists are focusing on the miRNA machin-
ery genes Drosha, DGCR8, XPO5, Dicer, AGO2, and TRBP for
their potential as cancer biomarkers. The mechanisms involved in
miRNA maturation still need to be explored, and new functions
of some known genes in miRNA maturation need be uncovered,
such as the EGFR gene was induced miRNAs mature as a regulator
of AGO2 (71) and ADAR1 formed a complex with Dicer through
direct interaction and regulated miRNA processing (122). The dys-
regulation of miRNA machinery genes (mutation, up-regulation,
or down-regulation) can result in oncogenicity and poor patient
outcomes. The functions of miRNA machinery genes will be dif-
ficult to comprehend because the same gene can have different
functions in different types of cancers, and these functions may
be not only dosage-dependent but also tissue-dependent (118).
Finally, scientists need to explore the different roles of miRNA
machinery genes in the physiology and pathology of tumorige-
nesis. Understanding these roles will help us to use miRNA to
develop cancer biomarkers, experimental tools, and antitumor
therapy.
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