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Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-
surface glycosylation patterns. There is evidence that changes in glycolipids and protein
glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) inter-
feres with cellular adhesion, and correlates with NB progression and poor prognosis, as
well as the expression of sialyltransferase STX, the key enzyme responsible for PSA syn-
thesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells,
can modulate normal cells present in the tumor microenvironment, favoring angiogenesis
and immunological escape. Different glycosyltransferases are emerging as tumor markers
and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as
an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and
GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes
our current knowledge on NB glycobiology, highlighting the molecular basis by which car-
bohydrates and protein–carbohydrate interactions impact on biological behavior and patient
clinical outcome.

Keywords: neuroblastoma, glycosylation, gangliosides, polysialic acid, galectin-1, glycosyltransferases,
immunotherapy

INTRODUCTION
Neuroblastoma (NB), the most common type of solid extra-
cranial tumor in children, accounts for nearly 15% of pediatric
cancer-related deaths (1). It is a very complex disease, extremely
heterogeneous (2), able to regress spontaneously, even without
therapy, but frequently displaying very aggressive behavior, refrac-
tory to current intensive multimodal therapy. Although over the
past decade advances in NB staging through identification of
molecular events responsible for different clinical behavior have
improved risk stratification, not enough is known about how the
features of this disease relate to its underlying biology and how
this can be exploited to improve clinical outcome (3).

Clinical presentation of NB depends on primary tumor local-
ization, most of them occur within the abdomen. Approximately
half of the patients present localized forms of the disease, but
dissemination occurs through lymphatic and hematogenous path-
ways, and about 35% have regional lymph node spread at the
time of diagnosis. Bone, bone marrow, and liver are the most
common sites of hematogenous spread. Most NB are undiffer-
entiated tumors, which is an important issue in outcome pre-
diction (4). The most common focal genetic lesion in NB is
MYCN (V-myc myelocytomatosis viral-related oncogene) ampli-
fication, which occurs in approximately 22% of the cases and has
been largely associated with poor outcome (2). However, among
patients with MYCN -amplified low-stage NB, the outcome was
significantly better for patients with hyperdiploid tumors when
compared to those with diploid tumors (5), suggesting that tumor-
cell ploidy could potentially improve risk classification. Another

genetic disorder frequently found in NB is allelic loss of 11q.
Although it seems mutually exclusive with MYCN amplification,
it is frequently associated to other genetic abnormalities and poor
clinical outcome (6). Pediatric oncologists classically distinguished
between two risk-groups: (1) The low-risk group, consisting of
non-MYCN -amplified localized tumors or the metastatic form
in children younger than 18 months [survival rate of up to 90%,
(7)]. (2) The high-risk group, comprising all MYCN -amplified
NB, regardless of stage and age of the child, plus non-MYCN -
amplified disseminated NB for children older than 18 months,
usually very aggressive tumors that more frequently lead to death
(8). However, relapse for low-risk patients constitutes a current
concern (9), hence the International Neuroblastoma Risk Group
Staging System (INRGSS) has recently established a new classi-
fication based on clinical criteria and image-defined risk factors
(10). It distinguishes localized stages L1 and L2, and stages M
and MS as disseminated forms. Based on this classification, age
at diagnosis, histology and grade of tumor differentiation, MYCN
status, presence/absence of 11q aberrations, and tumor-cell ploidy,
NB patients can be sorted into very low-, low-, intermediate-,
and high-risk groups according to percentage of 5 years disease-
free survival (11). This classification will require validation in
prospective clinical studies and solving some limitations as pri-
mary tumor dimensions using anatomic imaging, definitions of
metastatic site, response not measurable by anatomical imaging
(bone and bone marrow), as well as metastatic disease assessment
using 123I-MIBG imaging and quantification of bone marrow
disease (12).

www.frontiersin.org May 2014 | Volume 4 | Article 114 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00114/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00114/abstract
http://www.frontiersin.org/people/u/148150
http://www.frontiersin.org/people/u/110222
mailto:eosinaga@fmed.edu.uy
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berois and Osinaga Glycobiology of neuroblastoma

GANGLIOSIDES
Tumor cells, particularly tumors of neuroectodermal cell origin,
express high levels of gangliosides (13). Besides their expression
on tumor-cell membranes, gangliosides are also shed in the tumor
microenvironment and eventually circulate in the patients’ blood-
stream. These molecules are recognized to have multiple effects; for
example, acting as cell-surface receptors and markers, participat-
ing in intercellular communication, and modulating cell signaling,
cell cycling, and cell motility (14, 15). They have been implicated in
the biology of various cellular processes, and linked to the behav-
ior of many types of tumors (16). In NB, ganglioside composition
is linked to biological and clinical behavior.

Gangliosides consist of a carbohydrate chain, containing one
or several sialic acid residues, and a lipid portion (ceramide back-
bone), which anchors the ganglioside molecule to the cell mem-
brane (17). Ganglioside biosynthesis occurs in a sequential order
of glycosylations via two major pathways designated as “a” (GM2,
GM1a, and GD1a) and “b” (GD3, GD2, GD1b, GT1b, and GQ1b),
from a common precursor (GM3) (Figure 1). Each ganglioside
is structurally more complex than its precursor molecule, and
the stepwise addition of monosaccharide or sialic acid residues in
the Golgi apparatus is catalyzed by the same specific membrane-
bound glycosyltransferases in both pathways (18) (Figure 1).
Gangliosides can also be grouped into structurally simple (SG)
and complex (CG) molecules. The enzyme GM1a/GD1b syn-
thase (UDP-Gal:betaGlcNAc-beta-1,3-galactosyltransferase) con-
verts its substrates, the simple gangliosides GM2 and GD2, into
the corresponding initial complex ganglioside products, GM1a
and GD1b (Figure 1). The key role played by this enzyme
in human NB was confirmed by inducing high expression of
GM1a/GD1b synthase in IMR-32 cells, which normally contain
predominantly simple gangliosides, observing a rise of complex
ganglioside expression, associated with reduced levels of simple
gangliosides (19).

Ganglioside metabolism differs between NB tumors with differ-
ent malignant potential, and may ultimately affect clinical behavior
and patient outcome. It was observed that high levels of ganglio-
sides of the “b” pathway (GD3, GD2, GD1b, GT1b, GQ1b) are
predominant in infant NB compared to the same disease in older
children (20). Evidence supports a role of some tumor ganglio-
sides as prognostic indicators in NB. It is very interesting that
low (≤35%) or absent expression of gangliosides of the complex
“b” (CbG) pathway (GD1b, GT1b, and GQ1b) correlates with an
aggressive biological phenotype in human NB tumors (21). This
observation is consistent with reports in which a decreased or
absent expression of two CbG subspecies, GD1b and GT1b, was
linked to reduced survival in NB patients (22, 23). High expres-
sion of complex gangliosides, both complex“a”gangliosides (CaG)
and CbG, has been shown to inhibit aggressive tumor-cell behavior
in vitro (e.g., cellular proliferation and migration) and to enhance
differentiation (24, 25). In this context, complex gangliosides have
been proposed as useful biomarkers to predict clinical outcome,
to stratify patients with NB for purposes of tailoring anti-cancer
treatment, or to monitor effectiveness of treatment.

Retinoic acid is successfully used in maintenance therapy of
disseminated NB (26). Treatment with this pharmacological agent
induces a dramatic shift from synthesis of simple gangliosides

FIGURE 1 | Schematic representation of the major ganglioside
biosynthesis pathways.

toward predominant expression of structurally complex “a” and
“b” pathway ganglioside molecules in some NB cell lines (27).
Predominant expression of complex gangliosides can be consid-
ered a biochemical marker of increasing neuronal differentiation.
The retinoic acid-induced rise of CbG expression in NB cells
represents a transition into a ganglioside pattern associated with
clinically less-aggressive NB tumors. These authors demonstrated
that treatment with retinoic acid markedly enhances the activity
of GD1b/GM1a synthase, resulting in increased expression of the
complex gangliosides in NB cell lines.

When compared with normal brain tissue, NB tumors were
found to overexpress the disialoganglioside GD2 (“b” pathway)
(28). GD2 is a surface glycolipid antigen normally found on
neurons, peripheral nerve fibers, and skin melanocytes. In NB,
GD2 is expressed homogeneously and abundantly in virtually all
neuroblasts and facilitates the attachment of tumor cells to the
extracellular matrix (29, 30). Because of the widespread expression
of GD2 in NB tissue, contrasting with the more benign tumors
ganglioneuroma and ganglioneuroblastoma, GD2 is a sensitive
diagnostic marker which can help to discriminate NB from other
related tumors (28, 31). Expression of GD2 is an indicator of the
presence of NB, and high levels of circulating GD2 have been cor-
related with a more rapid disease progression among patients in
advanced stages of the disease (32). However, patient outcome was
independent of GD2 expression in tumor tissues (21), suggesting
that GD2 is useful for diagnostic purposes but not for prognostic
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ones. Surface GD2 antigen is an important molecular target for
NB therapy and specific monoclonal antibodies have emerged as
a major therapeutic development for high-risk NB patients (see
below).

Gangliosides overexpressed and actively shedded by tumor cells
can modulate the function of normal cells present in the tumor
microenvironment (33). Several studies have demonstrated mod-
ulation of growth factor signaling pathways through the epidermal
growth factor (EGF), fibroblast growth factor (FGF), platelet-
derived growth factor (PDGF), Trk family, and insulin receptors
(15,34,35). It was also found that the enrichment of human umbil-
ical vein endothelial cell (HUVEC) membranes with purified
GD1a ganglioside results in amplified VEGF-induced signaling
and the associated cellular responses of proliferation and migra-
tion, important for angiogenesis (36). In addition, tumor ganglio-
sides induce robust murine tumor angiogenesis in vivo (37). Also,
tumor-derived gangliosides may promote tumor development by
suppressing immune cell function and promoting immune eva-
sion mechanisms (38). Early studies found that gangliosides, pre-
dominantly GD2, isolated from the human NB cell line LAN5,
inhibit murine cellular immune responses in vivo (39, 40). The
mechanisms by which gangliosides suppress tumor immunity,
although not fully understood, involve the regulation of different
immune cells. Tumor-derived gangliosides can inhibit tumor-
specific cellular cytotoxicity, suppressing the lytic activity of CD8+
T-cells (41), as well as NK cell-mediated cytotoxicity in a Siglec-
7-dependent manner (42). Dendritic cell (DC) development and
function is critical in the initiation phase of any antigen-specific
immune response against tumors. There is an important body of
evidence indicating that NB-derived gangliosides regulate devel-
opment of tumor immunity through the inhibition of DC function
(43). Shurin et al. demonstrated that NB gangliosides inhibit the
generation of functionally active DCs, playing a role in tumor-
induced immunosuppression (44). NB gangliosides may induce
inhibition of DC function causing CD40 signaling deficiency (45)
and alterations in TLR signaling (46). Gangliosides promote DC
population development characterized by decreased CD86 expres-
sion (costimulatory signal), and decreased interleukin-12 and
interleukin-6 production. When these cells are used as antigen-
presenting cells, CD4 T-cells are primed to proliferate normally,
but have a defect in T helper (Th) effector cell development. This
defect in Th effector cell responses is associated with the develop-
ment of regulatory T-cell activity that can suppress the activation
of previously primed Th effector cells in a contact-dependent
manner (47). In total, these data suggest that ganglioside-exposed
DC promote regulatory T-cell activity that may have long-lasting
effects on the development of tumor-specific immune responses.

N - AND O-PROTEIN GLYCOSYLATION
N -linked glycosylation is a highly regulated post-translational
modification, which is involved in several biological processes
such as protein folding and conformation, oligomerization, cell–
cell interactions, and targeting proteins to sub- or extracellular
locations. It was found that intercellular adhesion molecule-2
(ICAM-2) completely suppressed disseminated tumor develop-
ment in vivo in a murine model of metastatic NB (48). The
authors also observed that ICAM-2 suppressed NB cell motility

and growth in soft agar in vitro. These effects on NB cells depended
on the interaction of ICAM-2 with the cytoskeletal linker pro-
tein α-actinin. ICAM-2 has six N -linked glycosylation sites at
asparagines 47, 82, 105, 153, 178, and 187. The substitution, using
site-directed mutagenesis, of asparagine by alanine at glycosyla-
tion sites, was found to reduce N -glycosylated ICAM-2, displaying
a significantly attenuated ability to suppress metastatic proper-
ties of NB cells (49). Anaplastic lymphoma kinase (ALK) has
been identified as a major NB predisposing gene, and activating
mutations have also been identified in a subset of sporadic NB
tumors (50). ALK protein expression is significantly up-regulated
in advanced/metastatic NB, and overexpression of either mutated
or wild-type ALK, defines poor prognosis patients (51). Inhibition
of ALK activity in NB cell lines has already been approached by
using specific small molecules (51, 52). ALK has 16 highly con-
served putative sites of N -linked glycosylation in the extracellular
domain. It was demonstrated that inhibition of N -linked glyco-
sylation impairs ALK phosphorylation and disrupts downstream
pro-survival signaling, as well as cell viability, in NB cell lines
harboring mutated or amplified ALK (53), suggesting that inhibi-
tion of this post-translational modification could be a promising
therapeutic approach.

Cell-surface mucins are glycoproteins carrying large numbers
of O-linked oligosaccharides. The most abundant form of O-
linked glycosylation in higher eukaryotes, termed “mucin-type,”
is initiated by the covalent linkage of an α-N -acetylgalactosamine
residue (GalNAc) to the hydroxyl group of Ser/Thr residues,
catalyzed by UDP-GalNAc:polypeptide-N -acetyl-galactosaminyl-
transferases (GalNAc-T). GalNAc-T is a complex family of up
to 20 isoenzymes characterized to date (54). Altered O-glycan
profile is a hallmark of carcinomas, which expresses truncated
O-glycosylated tumor-associated antigens such as Tn, sialyl-Tn,
and TF (55). In contrast, the complete absence of these antigens
was reported in NB (13, 56). However, some evidence suggests
that O-glycosylation pathways could play an important role in
NB biology. Our research group has demonstrated that GalNAc-
T9 and GalNAc-T13 might be useful tumor markers associated
with low or high tumor aggressiveness, respectively (57, 58) (see
below). In addition, the better outcome of NB patients is also
predicted by β1,3-N -acetylglucosaminyltransferase-3 (B3GNT3)
expression, the enzyme responsible for extended core 1 O-glycan
(T antigen) oligosaccharide synthesis (59) (see below).

POLYSIALIC ACID
Polysialic acid (PSA) is a developmentally regulated linear
homopolymer of α-2-8-linked sialic acid (up to 200 residues long)
located on the outer chains of N -linked oligosaccharides (60, 61).
This unique glycosylation is attached mainly to the neural cell-
adhesion molecule (NCAM) (62), which is expressed on cells of
neuroectodermal origin and plays a pivotal role in neural tis-
sue development and regeneration. It is well documented that
the presence of the highly negatively charged PSA on NCAM
reduces NCAM-mediated adhesion processes as well as NCAM-
independent cell interactions, such as cadherin-mediated cell-
adhesion (63, 64). There are several isoforms of NCAM due to dif-
ferent sizes, three of which can carry PSA: NCAM-180 and NCAM-
140 (integral membrane isoforms), and NCAM-120 (isoform
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anchored to the plasma membrane via a glycosyl phosphoinositol)
(65, 66). The mRNA encoding the 120 kDa protein species was the
most abundant isoform found in the adult brain, ganglioneuromas
and ganglioneuroblastomas, but the mRNA encoding the 180 kDa
species was predominant in NB (67). The polysialylated form of
NCAM (PSA-NCAM) is widely expressed in embryos, especially
in the brain, where it augments cellular motility and assists neu-
ron outgrowth (68). Conversely, PSA-NCAM is not present in the
adult brain, other than in areas requiring synaptic regrowth, such
as the hippocampus and olfactory bulb (69, 70).

Although PSA is virtually absent in most adult tissues, it is re-
expressed during the progression of some malignant tumors, such
as NB, rhabdomyosarcoma, non-small cell lung cancer (NSCLC),
and small cell lung cancer (SCLC) (71–75). High PSA-NCAM
levels have been correlated with malignant potential and poor
prognosis of SCLC, NB, glioblastoma, medulloblastoma, and rhab-
domyosarcoma (73, 76–81). PSA promotes tumor-cell migra-
tion in vitro and affects tumor-cell differentiation by attenuating
NCAM signaling (82). It has been reported that PSA increases
the motility of SCLC cells and allows cancer cells to detach from
the primary tumor, thus favoring the formation of metastatic foci
(76). Regarding NB, PSA has a direct impact on tumor-cell growth.
The presence of PSA-NCAM has been shown to increase prolif-
erative cell activity in vitro (83). PSA plays an important role as
regulator of NB cell migration. It was demonstrated that the migra-
tory effect is NCAM-dependent, but independent of FGF receptor
activity (84). Removal of PSA from the cell-surface led to reduced
proliferation and neuronal differentiation (82). In vivo studies
indicate that PSA-NCAM reduces the adhesiveness of tumor cells
and promotes dissemination, and its expression is also closely asso-
ciated with tumor invasion and metastasis (85). In this work, five
human NB cell lines (three of which PSA-NCAM-expressing) were
xenografted into SCID mice. Disseminated lung micrometastases
developed from the three PSA-expressing xenografts, but not from
the negative-expressing tumors. In clinical tissues, PSA-NCAM
expression is indicative of undifferentiated NB, correlating with
aggressive advanced disease (79, 86, 87). Its expression also corre-
lates with N-MYC amplification (86) and its serum detection is a
disease marker (78).

Two polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST)
have been shown to synthesize PSA independently. While ST8SiaII
is expressed predominantly during embryonic development,
ST8SiaIV is the major polysialyltransferase in the adult brain (88).
Polysialylation is a protein-specific reaction in which the poly-
sialyltransferases initially recognize a protein sequence prior to
effecting glycan modifications (89, 90). STX appears to specifically
polysialylate NCAM, whereas PST may additionally polysialylate
other glycoproteins (91). STX is the prominent enzyme in tumor
cells (73, 92, 93). In a panel of NB cell lines, co-expression of PST
and STX was observed, but STX levels were significantly higher
than PST in most of them (94). In NB tumors, STX expression is
consistently high (93) (see below). The fact that PSA promotes a
more aggressive behavior in cancer cells and that STX (absent from
the adult brain) is the dominant polysialyltransferase in tumors
which express PSA, strongly suggests that STX could be a good
therapeutic target to inhibit tumor invasion and metastasis (95).
The cytidine monophosphate (CMP) is a compound capable of

reducing STX-mediated polysialylation of NCAM (96). In addi-
tion, migration of IMR-32 NB cells decreased after application of
the sialic acid precursor ManNProp, which interferes with poly-
sialylation (97). However, despite the inhibitory effects of CMP
and N -acyl mannosamines on PSA synthesis, they are unlikely
therapeutic agents due to their unfavorable physicochemical prop-
erties. They are hydrophilic carbohydrate derivatives which lack
the ability to efficiently penetrate cell membranes. Inhibitors with
properties that facilitate cell penetration to the Golgi apparatus
(the location of the STX) and possess robust drug metabolism
and pharmacokinetic properties are still to be discovered (95).

GALECTIN-1 IS ASSOCIATED WITH NB AGGRESSIVENESS
Lectin–glycan interactions play a fundamental role regulating
mechanisms implicated in tumor immune escape (98). Galectins
are a family of carbohydrate-binding proteins that share a carbo-
hydrate recognition domain for β-galactosides and are involved
in cell adhesion, migration, differentiation, angiogenesis, prolifer-
ation, mRNA splicing, and apoptosis (99). Their function takes
place both extracellularly, by interacting with cell-surface and
extracellular matrix glycoproteins and glycolipids, as well as intra-
cellularly, by interacting with cytoplasmic and nuclear proteins
to modulate signaling pathways. Current research indicates that
galectins play an important role in cancer; they contribute to
neoplastic transformation, tumor-cell survival, angiogenesis, and
tumor metastasis (100). In NB, galectin-1 (Gal-1) has emerged
as an interesting target. It regulates complex signaling pathways
involved in tumor–host interaction (101) and angiogenesis (102).
Tumor secretion of Gal-1 contributes to the immunosuppressive
potential of a wide range of tumors by limiting T-cell survival
and impairing DC function (103–105). NB tumors, particularly
those with poor prognosis, express high levels of Gal-1 (106).
The neurotrophin receptor TrkB is also expressed in NB with
poor prognosis, conferring invasive and metastatic potential to
the tumor cells as well as enhancing therapy resistance. Blocking
Gal-1 function strongly reduced the migratory and invasive capac-
ities of TrkB expressing NB cells (106). Soluble Gal-1 was found
to be actively secreted by different NB cell lines (107). The authors
found that cancer-derived Gal-1 modulates T-cell and DC, result-
ing in increased tumor growth and metastasis. Interestingly, Gal-1
blockage efficiently inhibits primary tumor growth and metastasis,
strongly suggesting that Gal-1 could be a therapeutic target in NB.
Similarly, inhibition of Gal-1 function resulted in tumor rejection
in other animal models (108, 109).

GLYCOSYLTRANSFERASES AS TUMOR MARKERS IN NB
PATIENTS
Clinical outcome for high-risk NB patients remains poor in spite
of multimodal treatment including chemoradiotherapy, surgery,
and stem cell transplantation. Because osteomedullary recurrences
are frequent in patients with NB, the development of sensitive
and specific methods to detect rare tumor cells in bone mar-
row or peripheral blood is important, both for risk assessment
at diagnosis and for evaluating response to therapy. Conventional
cytology, traditionally used for occult disseminated disease detec-
tion, has limited sensitivity and was improved by immunological
strategies (110). However, the effectiveness of cell-surface antigen
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detection largely depends on epitope exposure and accessibility
to antibodies, so techniques based on amplified mRNA detection
have demonstrated a higher sensitivity for this purpose (111).

As stated above, cancer hallmark aberrant glycosylation is asso-
ciated with differential expression of antigens as well as some
enzymes, such as glycosyltransferases and glycosidases. In the
personalized approach to cancer diagnosis and treatment, these
enzymes are proving to have clinical relevance as cancer bio-
markers for different tumors (112). In this study, we show results
reported for NB patients (Table 1). GD2 synthase (β1,4-N -
acetylgalactosaminyltransferase, EC 2.4.1.92), the key enzyme for
GD2 synthesis, has been largely evaluated, both by immunolog-
ical approaches as well as by nucleic acid techniques. The first
monoclonal antibodies specific for this enzyme, which date from
more than two decades ago, demonstrated a high specificity and
sensibility of 0.01% for neuroblast detection in bone marrow sam-
ples (113). However, mRNA techniques (RT-PCR analysis) may
further improve detection of rare NB cells, and highly sensitive
and specific methods that measure GD2 synthase mRNA have
been reported (111, 114). Cheung et al. communicated its clin-
ical utility in evaluating adjuvant therapy in NB patients (115),
although it seems less specific as a prognostic marker at diagnosis.
In a comparative and prospective study of a consecutive patient
cohort, Träger et al. analyzed the clinical significance of tyrosine
hydroxylase (TH), dopa decarboxylase (DDC), and GD2 synthase
transcripts (116). They found that high expression of TH and
DDC, both in peripheral blood and bone marrow corresponds to
metastatic NB at diagnosis, residual disease, and poor outcome,
while GD2 is less specific at the mRNA level for NB detection. In
the same way, the International Neuroblastoma Risk Group Task
Force, in an effort to achieve a consensus on standard operating
procedures in order to improve and standardize management of
children with NB, agreed on the detection of rare neuroblasts in
bone marrow, peripheral blood, and peripheral blood stem cells
by immunocytochemistry using GD2 and by QRT-PCR for TH
mRNA (117).

However, despite the increased sensitivity of those methods, it
is clear that not all patients with disseminated disease are detected,
reflecting limitations in the procedures. This could be due to
analysis of a small volume of sample and also to limitations as
a consequence of tumor heterogeneity, which could possibly be
solved by multi-marker assays. Therefore, research for novel spe-
cific markers is warranted and investigators are working in this
direction. Cheung et al. hypothesize that sialyltransferase STX
(ST8SiaII), the key enzyme for PSA synthesis, can potentially be
a sensitive marker for metastatic NB (93). As stated above, PSA
is critical for cellular adhesion, neuronal migration, and tumor
metastasis, and it is highly expressed in many human cancers,
including NB. Since the enzyme STX has restricted expression in
postnatal tissues, including spleen and leukocytes, and because of
its up-regulation during dedifferentiation in a number of human
cancers, it could be a potential marker for metastatic tumor cells in
blood or bone marrow. The authors optimized a quantitative RT-
PCR in order to evaluate STX expression in tumor samples, cell
lines, and bone marrow from a cohort of high-risk NB patients
enrolled in a post-induction immunotherapy protocol utilizing
anti-GD2 antibody 3F8. Patient follow-up demonstrated that STX
positivity and its transcript level were highly prognostic for PFS
(p < 0.0005) (93). However, like TH and GD2 synthase, the utility
of STX as a single marker is constrained by the inherent het-
erogeneity of human NB, so its utility is expected to improve if
combined into a marker panel.

N -acetylglucosaminyltransferase V (GnT-V) is one of the
most relevant glycosyltransferases associated to tumor invasion
and metastasis. Previous studies demonstrated that an increased
amount of β1,6-branched oligosaccharides, formed by the action
of GnT-V, is correlated with metastatic potential (118). This
enzyme has been associated to tumor progression in human breast
and colon neoplasia (119), and could be a prognostic marker in
human colorectal carcinoma (120, 121). However, for lung can-
cer, Dosaka-Akita et al. reported that the lower expression of
GnT-V is associated with shorter survival and poor prognosis

Table 1 | Glycosyltransferases as neuroblastoma (NB) tumor markers.

Enzyme Method/sample Clinical significance Reference

β1,4-N -acetylgalactosaminyltransferase (GD2 synthase) ICC/bone marrow Molecular marker of metastatic NB (113)

RT-PCR ECL/bone marrow Molecular marker of metastatic NB (114)

RT-PCR ECL/bone marrow Molecular marker of metastatic NB (111)

qRT-PCR/bone marrow Marker for minimal residual disease (115)

qRT-PCR/bone marrow-PB Prognostic marker (poor outcome) (116)

Sialyltransferase STX (ST8SiaII) qRT-PCR/bone marrow Molecular marker of metastatic NB (93)

N -acetylglucosaminyltransferase V (GnT-V) qRT-PCR/primary tumor Prognostic marker (better outcome) (123)

UDP-polypeptide GalNAc-transferase 13 (GalNAc-T13 – GALNT13) RT-PCR/bone marrow Molecular marker of metastatic NB (58)

UDP-polypeptide GalNAc-transferase 9 (GalNAc-T9 – GALNT9) RT-PCR/primary tumor Prognostic marker (better outcome) (57)

β1,3-N -acetylglucosaminyltransferase-3 (B3GNT3) IHC/primary tumor Prognostic marker (better outcome) (59)

β1,4-N -acetylgalactosaminyltransferase 3 (B4GALNT3) IHC/primary tumor Prognostic marker (better outcome) (142)

IHC/primary tumor Prognostic marker (poor outcome) (143)

ICC, immunocytochemistry; RT-PCR, reverse transcriptase-polymerase chain reaction; ECL, electrochemiluminescence; PB, peripheral blood.
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(122). Regarding NB, assessing GnT-V mRNA expression by real-
time PCR, a significant correlation was observed between higher
expression levels and a favorable prognosis in a cohort of 126
patients (123). GnT-V-knockdown in NB cells showed a tendency
to escape from retinoic acid-induced apoptosis, supporting the
notion that a higher expression of GnT-V is correlated with a
favorable prognosis of NB patients.

Novel techniques in marker discovery, such as genome-wide
gene expression array analyses, have been successfully applied to
NB, leading to identification of useful markers for minimal resid-
ual disease diagnosis (124) and prognostic markers (125, 126).
Using the same strategy, we studied the transcriptome profiles
of malignant neuroblasts established from the human MYCN -
amplified IGR-N-91 model (127). Comparative gene expression
profiles obtained with Agilent oligo microarrays, between primary
tumor versus bone marrow metastatic cell lines, revealed a set
of 107 differentially expressed genes in the metastatic neurob-
lasts (58). Up-regulated genes were involved in chemoresistance,
cell motility, and neuronal structure/signaling, and surprisingly,
the most strongly up-regulated gene was GALNT13, followed by
ABCB1, whose higher expression has been previously described
(127, 128) and highlights the fact that acquired drug resistance is
an important cause of NB treatment failure. GALNT13 encodes
the UDP-GalNAc:polypeptide GalNAc-transferase-13 (GalNAc-
T13), described as specifically expressed in neuronal tissue (129),
belonging to the enzyme family which catalyzes the first step
of mucin-type O-glycosylation (54). Our analysis of GALNT13
mRNA transcripts in various NB cell lines, as well as in favor-
able and high-risk neuroblastic tumors, showed that GALNT13 is
highly expressed in more aggressive neuroblasts but is not corre-
lated with MYCN amplification and/or expression. Looking for
a potential marker for NB disseminated cells, bone marrow sam-
ples harvested at diagnosis of NB patients with different stages
of the disease were analyzed for GALNT13 expression, and com-
pared to other proposed markers (TH, GD2 synthase, DDC, and
conventional cytology). Overall survival by Kaplan–Meier analy-
sis demonstrated the best correlation with a poor clinical outcome
for GALNT13 expression (58). We then proposed GalNAc-T13
as a new informative marker for the molecular diagnosis of BM
involvement and the follow-up of minimal residual disease in NB
patients. However, to elucidate the biological role of GALNT13 in
NB, further work is needed to analyze the molecular mechanisms
that regulate this gene’s expression and to identify the enzyme
acceptor substrates potentially involved in metastatic activity of
these cells.

Performing a GALNTs expression profile in several NB cell lines,
we observed that a few enzymes showed an opposite expression
pattern in some of them. GALNT9, described by Toba et al. as
restricted to the brain (130), was found expressed in neuroblasts
derived from the primary tumor in the experimental model IGR-
N-91,but not in neuroblasts derived from bone marrow metastases
(57). The expression profile in different NB cell lines was restricted
to substrate adherent (S)-type ones, exhibiting weaker tumori-
genesis, invasiveness, and metastatic properties (131), while it
was always negative in more aggressive neuronal (N)-type cell
lines. When a tumor cohort from 122 NB patients was analyzed,
GALNT9 expression was associated with high overall survival,

independently of the standard risk-stratification covariates, and it
was significantly associated with disease-free survival for patients
currently classified as low risk (57). GALNT9 expression is prob-
ably a marker for more mature stages of neuroblastic tumor cells,
which are associated with less aggressivity. This isoenzyme belongs
to a subfamily among GALNT genes, together with GALNT8,
GALNT18, and GALNT19, and exhibits significant sequence dif-
ferences from the other members of the GALNT family, and
also a low activity in a small number of peptides (54). This fact,
together with the opposite expression of GALNT13, up-regulated
in more aggressive neuroblasts, lead to the hypothesis that these
enzymes could have biological relevance in NB behavior. They
could be candidates for a panel of tumor markers to be included
in large prospective cooperative multi-center studies, performed
according to the INRG standard operating procedures (117).

Another interesting glycosyltransferase, β1,3-N -acetylglucos
aminyltransferase-3 (B3GNT3), is a member of the β3GlcNAc-
T family, composed of at least eight isoenzymes, and responsible
for adding GlcNAc to core 1 (T antigen) in a β1,3 linkage, forming
extended core 1 oligosaccharides (132). This enzyme is expressed
in lymphocytes and neutrophils, and could contribute to the
expression of core 1-derived O-glycans,which play an essential role
in E-selectin adhesion (133). It has been demonstrated, in a colon
cancer experimental model, that E- and P-selectin are essential
protagonists in cell–cell adhesion by means of glycosylated ligands
in tumor cell-surface, which are responsible for lung metastatic
development (134). Gakhar et al. suggested a similar mechanism
as responsible for the attachment of glycoproteins on the surface of
prostate cancer circulating tumor cells, acting as functional ligands
for E-selectin expressed on endothelial cells (135). However, con-
trary to what one might expect, in NB, B3GNT3 expression has
been correlated with favorable clinical outcome (59). Increased
B3GNT3 expression in NB tumor tissues correlated well with the
histological grade of differentiation, while undifferentiated tumors
remain more frequently negative. Univariate and multivariate
analyses revealed that positive B3GNT3 expression in tumor tis-
sues predicted a better survival of NB patients, independently of
other prognostic markers (59). In the same work, cell line exper-
iments expressing and knocking down the enzyme demonstrated
that B3GNT3 expression significantly correlated with suppression
of core 1 expression, as well as malignant phenotypes including
migration and invasion.

β1,4-N -acetylgalactosaminyltransferase III (B4GALNT3)
cloned by Sato et al., has been described as expressed in stom-
ach, colon, and testis (136). This enzyme can transfer GalNAc
residues to non-reducing terminal GlcNAc-β leading the synthesis
of GalNAcβ1–4GlcNAc (also known as LacdiNAc or LDN), which
is a unique terminal structure in the outer chain moieties of human
N -glycans (137), and also in O-linked oligosaccharide structures
(138). The largest amount of B4GALNT3 transcripts were found
in gastric tissues, followed by colon, testis, and adrenal glands
(136). Gastric expression of B4GALNT3 was found regulated by
cellular differentiation (139). In the human colon, Huang et al.
reported that B4GALNT3 is up-regulated in primary tumors com-
paring with the normal mucosa (140). They performed in vitro and
in vivo experiments showing that overexpression of this enzyme
increases malignant phenotype of colon cancer cells, and these
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phenotypic changes are associated with enhanced integrin and
mitogen-activated protein kinase (MAPK) signaling, suggesting
that B4GALNT3 may play a crucial role in promoting malignant
behavior of colon cancer (140). However, the same research team
has recently published that B4GALNT3 overexpression in colorec-
tal cancer cells suppressed cell migration, invasion, and adhesion,
while B4GALNT3 knockdown enhanced malignant cell pheno-
types promoting cell migration and invasion (141). Surprisingly,
a similar situation was found for NB. Firstly, Hsu et al. commu-
nicated that B4GALNT3 expression positively correlates with the
differentiation status of NB, predicting a favorable prognosis for
patients and suppressing the malignant phenotype in cell lines
experiments via decreasing β1-integrin signaling (142). However,
opposite results were reported 2 years later by the same group and
for the same cohort of patients, showing B4GALNT3 expression in
NB tumors correlating with advanced clinical stage, unfavorable
histology, and lower survival rate (143). In face of this controversy,
the role of B4GALNT3 in NB is not clear, and further work is nec-
essary to elucidate the real clinical significance of the enzyme in
tumor behavior and subjacent molecular mechanisms.

GD2, A GOOD TARGET FOR NB IMMUNOTHERAPY
The choice of NB treatment depends on patient risk group
stratification. While some carefully selected cases with favor-
able features could benefit from observation alone (144), usually
high-risk patients are subject to multimodal aggressive thera-
peutic plans (including surgery, chemotherapy, radiotherapy, and
immunotherapy) (145). Clinical outcome for high-risk groups
remains poor due to frequent recurrence of osteomedullary dis-
ease. The identification of newer tumor targets and immunother-
apy strategies may generate novel therapeutic approaches which
could combine to improve survival and cure rates. Rational
approaches to target ALK and MYCN, which arise from the two
most common and potentially significant genetic alterations in
NB, are emerging and we must expect that some therapeutic
options will become available in the near future (146).

Immunotherapy is intended to redirect the immune system
to target tumors and tumor-associated antigens, leading to the
elimination of malignant cells. Multiple forms of immunother-
apy are being used in clinics, including monoclonal antibodies
targeting tumor cell-surface antigens or disrupting the normal
checkpoints that inhibit anti-tumor immune responses, cytokines
that modify innate or adaptive immunity, tumor vaccines, as well
as adoptive cellular therapies (147–151). There is increasing data
regarding more efficient immunotherapeutic protocols designed
based on cancer-associated glycan structures (152). NB provides
an attractive target for immunotherapy as it expresses certain gly-
can antigens not widely detected in non-embryonic tissues, such
as GD2 and O-acetyl GD2 (153). In fact, the National Cancer
Institute pilot program for the prioritization of the most impor-
tant cancer antigens ranks GD2 as 12 out of 75 potential targets
for cancer therapy (154). Anti-GD2 antibodies have been actively
tested over the past two decades in clinical trials for NB, and have
emerged as a major therapeutic development for high-risk cases,
with proven safety and efficacy (155, 156). In particular, four anti-
GD2 antibodies (3F8, hu3F8, ch14.18, and hu14.18) have been
extensively tested in clinics (157). The murine IgG3 monoclonal

antibody (MAb) 3F8 was the first well-characterized anti-GD2
antibody (158). Its efficacy in treating NB was initially described
in 1987 in the report of a Phase 1 trial which included patients with
refractory high-risk NB (159). MAb 3F8 mediates highly efficient
antibody-dependent cell-mediated cytotoxicity (ADCC) of NB in
the presence of human natural killer (NK) cells and granulocytes
in vitro (160–162). Moreover, it induces complement-mediated
cytotoxicity (CMC), because NB cells lack decay-accelerating fac-
tor CD55 (163) and homologous restriction factor CD59 (164).
IL-2 and GM-CSF were shown to enhance ADCC in vitro by acti-
vating cytotoxic NK cells and neutrophils (160, 165, 166). When
combined with the cytokine GM-CSF and 13-cis-retinoic acid,
3F8 induced >60% long-term survival among high-risk patients
with metastatic disease, treated at first remission (167). MAb 3F8
was recently humanized (hu3F8) (168) and is currently in Phase I
trials (157). MAb 14.G2a is an IgG2a class switch variant of MAb
14.18, originally isolated as an IgG3 isotype (169). 14.G2a showed
higher in vitro and in vivo ADCC than 14.18 and was subsequently
modified for clinical development. MAb 14.G2a was chimerized
to form ch14.18 and humanized to form hu14.18 (named after the
original mouse 14.18 IgG3 isotype) (170). A phase III random-
ized trial showed that ch14.18, when combined with GM-CSF and
interleukin-2, in high-risk NB patients, was associated with sig-
nificantly improved survival compared to standard therapy after a
2-year follow-up period (171).

Several approaches have been developed to enhance anti-
tumor efficacy of anti-GD2 monoclonal antibodies and fragments:
immunocytokines (172), immunotoxins (173), antibody drug
conjugates (174), radiolabeled antibodies (175), targeted nanopar-
ticles (176), T-cell engaging bispecific antibodies, and chimeric
antigen receptors (CARs) (157). Although the CAR technology is
still at an early stage, clinical trials have already shown significant
anti-tumor activity in NB patients. In this approach, antibody and
cell-based immunotherapy of cancer has converged in the devel-
opment of engineered T-cells which express the antigen binding
site of a MAb (commonly an antibody-derived single-chain frag-
ment) coupled with the intracellular signaling portion of the T-cell
receptor (TCR) (177, 178). A key advantage is that CARs target
native, rather than processed antigens; consequently, their func-
tion is not hampered by HLA downregulation, frequently observed
in human cancer (179). CAR-T-cells targeting cancer-associated
ganglioside antigens such as GD2 (180) or GD3 (181) have been
developed. A chimeric GD2-specific receptor on T lymphocytes
exhibited in vitro anti-melanoma activity and increased survival
of mice xenografted with a human melanoma cell line (182). Cyto-
toxic T lymphocytes (CTLs) expressing a chimeric GD2-specific
receptor were generated using the Epstein-Barr virus (183). Infu-
sion of these genetically modified cells (CAR-CTL anti-GD2) was
associated with tumor regression or necrosis in half of the tested
patients (183). After that, Louis et al. reported complete remission
of 3 out of 11 patients with active disease treated with CAR-CTL
anti-GD2 infusions, on a long-term clinical and immunologic
follow-up (184).

CONCLUDING REMARKS
Different molecules involved in NB glycobiology play key roles
in tumor growth and are potential targets for anti-tumor therapy
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Berois and Osinaga Glycobiology of neuroblastoma

FIGURE 2 | Schematic representation of NB glycobiology impact on
tumor growth and anti-tumor therapy. Treatment with retinoic acid
markedly enhances the activity of GD1b/GM1a synthase, resulting in
increased expression of complex gangliosides, associated with
less-aggressive tumors. NB gangliosides promote dendritic cell (DC) to
develop with decreased costimulatory signals and IL-12 production.
These DC promote differentiation of Th0 cells toward regulatory T-cells
(Treg). Gal-1 secreted by NB also contributes to the immunosuppressive
tumor microenvironment, limiting T-cell survival and impairing DC
function. Both, gangliosides and Gal-1 contribute to tumor angiogenesis.

The presence of polysialic acid (PSA) on NCAM reduces NCAM-mediated
adhesion processes promoting NB cell migration. The fact that STX is the
dominant polysialyltransferase for PSA biosynthesis in NB suggests that
this enzyme could be a good therapeutic target. GD2 is a relevant
antigen for NB immunotherapy. Anti-tumor activity of anti-GD2
antibodies is mediated by antibody-dependent cell-mediated cytotoxicity
(ADCC) in the presence of human natural killer (NK) cells and
granulocytes, as well as by complement-mediated cytotoxicity (CMC).
Anti-GD2 chimeric antigen receptor T-cells (CAR-T-cells) activity could
induce NB tumor regression.

(Figure 2). It is well-established that gangliosides and PSA-NCAM
impact in the aggressiveness of NB cells as well as in the patients’
clinical outcome. Some evidence suggests that enzymes which
catalyze O-glycan biosynthesis could play a role regulating NB
behavior, but the molecular basis of these observations remain
to be established. Some aspects of NB glycobiology do not only
affect the tumor-cell phenotype (e.g., proliferation, differentiation,
and adhesion), but also contribute to local microenvironment and
immune response control. For example, NB-derived gangliosides
inhibit the generation of functionally active DCs, leading to an
increase of Treg cells inside the tumor, which suppress effective
anti-tumor responses. In the same way, Gal-1 secretion by NB
cells stimulates tumor growth by inducing local immunosuppres-
sive activities and angiogenesis. This is relevant because Gal-1 has
been characterized as a promising target for therapy in cancer
models, using synthetic and natural inhibitors. Virtually all NB
cells express ganglioside GD2. This is a relevant antigen for anti-
tumor immunotherapy strategies because it is highly expressed
in NB cell-surface, and the blood–brain barrier limits the side
effects due to normal expression in neuronal cells. Anti-GD2
antibody (ch14.18) combined with IL-2 and GM-CSF represent
the latest major therapeutic advance for high-risk NB in the last
decade. This immunotherapy was demonstrated to be safe as well
as a key component to achieve cure or long-term remission in
patients with residual disease. In addition, recent clinical success

has underscored the potential of NB immunotherapy based on
the adoptive cell transfer of engineered T lymphocytes (CAR-
CTL anti-GD2) in order to mediate strong and durable clinical
responses. Several approaches may further enhance anti-tumor
activity and persistence of circulating CAR-modified cells. Safe
transfer of CAR-based immunotherapy into clinical practice could
represent a potential alternative to conventional treatment options
for NB patients.
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