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There is great promise that ongoing advances in the delivery of therapeutics to the central
nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-
biology will provide new, more effective therapies. Brain tumors that form from brain cells,
as opposed to those that come from other parts of the body, rarely metastasize outside
of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in
brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the
most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with
the most aggressive treatments and often with devastating neurological consequences.
Current treatments include maximal safe surgical removal or biopsy followed by radiation
and chemotherapy to address the residual tumor mass and invading tumor cells. However,
delivering effective and sustained treatments to these invading cells without damaging
healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine
and viral and cell-based therapies. New treatment strategies, particularly those directed
against the invasive component of this devastating CNS disease, are sorely needed. In
this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and
explore three critical barriers to improving therapeutic delivery to invasive brain tumors,
specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular
space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and
instability in association with the treatment efficacy barrier, and (3) identify promising new
therapeutic delivery approaches that have the potential to address these barriers and create
sustained, meaningful efficacy against GBM.

Keywords: drug delivery, brain cancer, glioblastoma, nanotechnology, immunotherapy, advanced therapeutics,
blood brain barrier, nanomedicine

CHALLENGES TO THERAPY FOR INFILTRATING BRAIN
TUMORS – DEFINING THE PROBLEM
Brain cancer includes a diverse set of intracranial neoplasms and is
the leading cause of cancer-related deaths in patients younger than
35 years (1, 2). Half of all primary brain tumors arise from cells
within the brain (intrinsic lesions) while the remainder originate
in the meninges or nerves (extrinsic lesions). The majority of pri-
mary intrinsic tumors arise from glial cells, hence the broad classi-
fication of these tumors as “gliomas.” The World Health Organiza-
tion (WHO) has organized gliomas into a four-tiered histological
grading scheme, where WHO Grade I (i.e., pilocytic astrocytoma)
represents the more slow growing variant and WHO Grade IV
[i.e., glioblastoma (GBM) multiforme] is the most malignant form
characterized by cellular atypia, high mitotic index, neovascular-
ization, and tissue necrosis. Malignant glioma (MG) traditionally
encompasses WHO Grade III and IV lesions, since these tumors
have a more aggressive growth pattern and are associated with a
poor prognosis. Interestingly, MG is locally aggressive within the

central nervous system (CNS), but very rarely metastasizes to other
locations. The invasive tumor cells can be found far from the main
tumor mass even in the more histologically benign forms (3). The
importance of this characteristic is supported by the finding that
tumor recurrence, even after apparent complete surgical resection
by visual inspection and/or magnetic resonance imaging (MRI),
causes significant neurological damage and eventual death from
this disease (4).

Understanding the critical importance of residual invasive
tumor cells, a neurosurgeon named Walter Dandy began removing
the entire involved cerebral hemisphere in patients with sus-
pected glioma (5). However, even with this aggressive surgical
approach, his patients went on to succumb to tumor recurrence.
Matsukado and colleagues analyzed the post-mortem brains of
patients with gliomas and found tumor cells in the contralat-
eral hemispheres in 50% of these patients (6). Hence, even with
advanced surgical technologies, including stereotactic localization,
intra-operative and functional MRI, real-time brain mapping, and
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fluorescence-guided surgery, the vexing problem of residual inva-
sive cells within functional brain tissue still remains – surgery alone
is unlikely to cure this disease.

The history of post-operative adjuvant therapies for glioma
is one filled with attempts to deliver drugs to invading cancer
cells while sparing the adjacent brain tissue. Drug therapies used
or designed for this purpose are hindered by three significant
brain- and tumor-related physio-anatomic barriers: (Figure 1):
(1) the neuro-vascular unit (NVU) [related to the blood brain
barrier (BBB)], which regulates the trafficking of substances
between the blood stream and the CNS, (2) the extra-cellular
space (ECS) (related to the brain tissue/tumor penetration bar-
rier), which comprises 15–20% of the total brain volume and
affects the flow of nutrients, metabolites, cytokines, neurotrans-
mitters, and numerous other molecules within tumors and brain
tissue, and (3) genetic heterogeneity and instability (related to
the treatment efficacy barrier), which enables the development of
treatment-resistant cells and redundant pathogenic mechanisms
including immunologic escape, angiogenesis, hyperproliferation,
invasion, and drug resistance.

THE NEURO-VASCULAR UNIT AND BLOOD BRAIN BARRIER
The BBB is a unique biologic interface that separates the CNS from
the rest of the body. Given the crucial role of the CNS in overall
body function and health, the NVU has evolved to tightly regu-
late the exchange of most substances, including microbial, cellular,
and metabolic elements. The NVU consists of a continuous layer of
specialized endothelial cells linked together by tight junctions; this
layer is supported by adhesions and interactions with basement
membranes, brain pericytes, astrocytes, and neurons (Figure 1).
While some small (<400 Da), relatively lipophilic molecules, can
freely diffuse across the BBB, studies suggest that more than 90%
of small molecules and nearly all large molecules are unable to pas-
sively cross this barrier (7–9). In one study exploring drugs used
in the treatment of CNS diseases, the Comprehensive Medicinal
Chemistry database of over 7000 available pharmaceuticals was
queried and it was found that few of these drugs effectively cross
the BBB (7).

In addition to size and physico-chemical restrictions, numer-
ous active transporters exist to either increase or decrease the flux
of substances across the BBB interface (10). Examples include

FIGURE 1 | Emerging insights into barriers to effective brain
therapeutics. Drug therapies used or designed for the treatment of
invading glioma cells are hindered by three significant CNS and
tumor-related physio-anatomic barriers: (1) the neuro-vascular unit (NVU)
[related to the blood brain barrier (BBB)], which regulates the trafficking of
substances between the blood stream and the brain, (2) the extra-cellular
space (ECS) [related to the brain tissue/tumor penetration barrier], which
comprises 15–20% of the total brain volume and affects the flow of

nutrients, metabolites, cytokines, neurotransmitters, and numerous other
molecules within tumors and brain tissue (the ECS components are not
depicted to simplify the image), and (3) genetic heterogeneity and
instability [related to the treatment effectiveness barrier], which enables
the development of treatment resistant cells and redundant pathogenic
mechanisms including immunologic escape, angiogenesis,
hyperproliferation, invasion, and drug resistance. *Copyright Ian Suk
2014 – Johns Hopkins University.
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glucose transporters (i.e., GLUT1) and molecular exporters (i.e.,
P-glycoproteins). Active molecular transporters add an additional
complexity to the BBB on top of the stringent requirements for
passive diffusion.

In certain disease processes, such as tumors, inflammation, and
infection, the structure of the BBB is altered, leading to extrava-
sation of a more varied group of substances into the associated
brain tissue (11–13). The administration of intravenous“contrast”
agents, which passively accumulate in these areas but not in unaf-
fected regions, takes advantage of a disrupted BBB to aid in the
diagnosis of some CNS conditions. In addition, the enhanced per-
meability and retention (EPR) effect (14) has been described for
nanoparticulate delivery systems, where nanoparticle (NP) accu-
mulation in neoplastic tissue is increased, likely due to increased
movement of particles through wider fenestrations in the imma-
ture or malformed blood vessels, and NP clearance is decreased
due to incomplete pseudo-lymphatic drainage pathways (15, 16).
While the BBB is compromised in many gliomas, BBB break-
down is often heterogeneous throughout the tumor and generally
remains intact in brain regions where infiltrating cells are found
(17). Therefore, the BBB remains a key hurdle in the treatment
of infiltrating gliomas. Strategies for crossing the BBB will be
discussed later, and include: enhancing BBB permeability, using
alternative routes such as intranasal, intrathecal, or local deliv-
ery, and employing targeting/shuttle systems to take advantage of
endogenous transporters.

THE BRAIN EXTRA-CELLULAR SPACE AND BRAIN PENETRATION
BARRIER
While the BBB has long been considered the major barrier for ther-
apeutic delivery within the CNS, more recently poor distribution
of agents within the brain and/or tumor tissue itself has emerged
as a major delivery challenge (18, 19). The ECS in brain tissue
represents the major pathway for movement of many signaling
molecules and metabolites, as well as therapeutic and diagnostic
substances (20).

If a substance crosses the brain-related barriers into the
parenchyma or is administered locally within the brain, it next
encounters the space between cells called the “extracellular” or
“interstitial” space. Movement in the ECS is governed by diffu-
sion and bulk flow. Diffusion is the passive, random movement
of substances that can occur either in relation to a concentration
gradient, where there is a positive net flux of the substance within
a medium toward regions of lower concentration, or without a
concentration gradient where there is no net flux. Bulk flow is
the movement of substances due to an energy or pressure gra-
dient driving the motion of fluid and material through a space.
This directional movement in the brain and tumor ECS is dri-
ven in part by the flow of interstitial fluid from higher to lower
pressure as well as the significant contribution of arterial/brain
pulsations to this fluid flow (21, 22). Critical to the discussion
of intrinsic brain tumors are the interstitial pressure gradients
commonly found within these tumors. Abnormally permeable
tumor vasculature leads to fluid leakage from the intravascular
space into the ECS, leading to the higher interstitial pressures
found within tumors compared to the surrounding brain (23–
25). The eventual distribution and retention of a given material

in the brain is, therefore, related to its movement via diffusion
and bulk flow, in combination with the relative rates of clear-
ance, including degradation and partitioning into other spaces.
Substance removal can occur by means of cell-mediated phago-
cytosis or uptake, enzymatic and/or chemical degradation, and
passive or active transport into the blood, cerebrospinal fluid
(CSF), or cells. In addition, the brain has been shown to have
a “pseudo-lymphatic,” more recently termed “glia lymphatic or
glymphatic,” drainage system, where cerebral extra-cellular fluids
exchange with CSF and are removed either through the arachnoid
villi into venous blood or via para-vascular and para-neural routes
into lymph fluid (16, 26).

The brain ECS contains a complex network of lipids, poly-
saccharides, and proteins with electro-statically charged as well
as hydrophobic regions. ECS volume shifts with changes in cere-
bral metabolic activity and blood flow (20, 21). Importantly, the
ECS may be significantly altered in and around brain tumors, fur-
ther increasing the challenge of movement within the ECS (27,
28). Vargova and colleagues found that the ECS volume frac-
tion and complexity (also termed, “tortuosity”) both increase
with tumor grade (27). Their study suggests that, contrary to
the common conception of MG as a mainly hypercellular lesion,
higher grade glial tumors also have a larger, more complex extra-
cellular component, which is likely to contribute significantly to
the patho-physiology of the disease. This idea is supported by
numerous studies describing the link between the extra-cellular
matrix structure and tumor invasion, recurrence, and patient sur-
vival (29–31). Herolde-Mende and colleagues correlated glioma
grade and patient survival with the amount of a key ECS com-
ponent (tenascin C) in MGs (31). Interestingly, tenascin pro-
teins have been shown to enhance tumor cell proliferation and
migration, and promote angiogenesis in gliomas (32–34). Son-
theimer et al. showed that primary brain tumors exploit ion
channels and transporters that serve to support homeostatic func-
tions in normal brain tissue, enabling glioma cells to rapidly
adjust their size and shape to climb through the small, sticky
pores within extra-cellular brain spaces (35). Together, these
data demonstrate the important link between the ECS and MG
patho-physiology.

The physico-chemical properties, including mesh spacing, of
the brain extra-cellular matrix are keys factors in the movement of
materials within the brain. Previous studies have detailed the com-
plex nature of the brain ECS, including electro-statically charged
and hydrophobic areas, channel and dead space regions, and a vir-
tual briar patch of matrix components including proteoglycans,
glycosaminoglycans, and hyaluronic acid structures (20, 36–39).
More closely defining the size limits and surface property charac-
teristics required for movement within the brain ECS has greatly
aided the establishment of design criteria for therapeutic and diag-
nostic delivery systems aimed at movement within the brain ECS
(40). Effective ECS penetration by drug delivery systems will be
important to enable dispersion of therapeutics or diagnostic agents
and/or to allow cell- or structure-specific targeting in the CNS.
Regardless of how the drug is delivered (oral, intravascular, CSF-
mediated, or direct interstitial delivery), penetration of therapeutic
agents to distant residual cells is crucial to the eventual efficacy of
a treatment.
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GENETIC HETEROGENEITY AND INSTABILITY AND TREATMENT
EFFICACY BARRIER
When detailing the critical physiologic and anatomic consider-
ations for therapeutic delivery to infiltrating brain tumors, it
becomes important to consider the complex, moving target these
tumors represent. It is likely that what we consider histopathologic
“MG”actually comprises a spectrum of molecularly heterogeneous
diseases. Moreover, recent work has detailed the heterogeneity that
exists within the tumors individual patients. Specifically, large-
scale multi-platform profiling studies have revealed that there are
roughly four subtypes of MG that are defined by differences in
transcriptional signatures (41–43). Additionally, complementary
copy number analysis and next generation sequencing approaches
have pointed to the distinct molecular features that define each
of these subtypes (44). The genetic subgroups include the classi-
cal [epidermal growth factor receptor (EGFR)-driven], proneural
[platelet derived growth factor (PDGF)-driven], mesenchymal
[neurofibromatous type I (NF1)-driven], and neural categories.
With the proneural group, extensive work over the last 5 years has
demonstrated that IDH1-mutant tumors exhibit strikingly dis-
tinct biological and clinical features (45–47). Thus, these studies
have begun to describe the heterogeneity that exists within the MG
histopathologic umbrella.

It is also likely that significant complexity exists within each
individual tumor. Stommel et al. (48) showed that at least three
receptor tyrosine kinases (RTKs) appear to be activated coop-
eratively within individual MG, suggesting that targeted RTK
monotherapy will not be effective in treating tumors with multiple
concomitant RTK drivers (48). The commonly expressed epider-
mal growth factor receptor variant III (EGFRvIII) variant of the
EGFR receptor, which is an extra-cellular truncation of the wild-
type receptor, is also known to have a heterogeneous distribution
(49). A subset of this intratumoral complexity can be explained
by clonal RTK genomic co-amplification. Roughly 10% of GBMs
harbor amplifications of multiple RTKs such that tumors can be
comprised of discrete cell populations each harboring amplifica-
tion of a distinct RTK (50, 51). These data point to the idea that
each tumor may be comprised of an admixture of distinct diseases
and underline the challenges of targeting specificity.

An increasing number of studies have detailed the diverse
gene expression profiles found in human gliomas and the numer-
ous pathologic mechanisms involved, including immune escape,
angiogenesis, hyperproliferation, invasion, and drug resistance
(Figure 1) (29, 41, 43, 44, 46, 47, 52–57). Most of these stud-
ies compare the transcriptome or chromosomal changes found
in different grades of glial tumors, which has led to an emerg-
ing genetic classification scheme (44, 52). In addition to genetic
diversity, it is becoming clear that when selective pressure is placed
on MG, the high propensity for genetic mutation and redun-
dant pathogenic mechanisms enable the rapid emergence of clones
that are resistant to the applied pressure (58). Genetic instability
and pathogenic redundancy are evidenced by the numerous DNA
repair and methylation mechanisms that are commonly mutated
in primary brain cancers, including the well-studied genes encod-
ing p53 and O6-methylguanine methyltransferase (MGMT) (46,
52, 58–61). An important example of the ramifications of genetic
instability of glial tumors was observed in the Phase II trial of

the EGFRvIII peptide vaccination. In this study, a significant per-
centage of patients elicited a specific antibody response to the
EGFRvIII antigen, but at the time of tumor recurrence, 82% of the
tumors had lost EGFRvIII expression (62). Hence, whether the
“selective pressure” is a tumor-specific antibody, antigen-specific
cytotoxic T-cell, chemotherapeutic drug, or selective small mol-
ecule inhibitor, resistant subpopulations of MG cells emerge to
produce tumor recurrence particularly when targeting a single
antigen or molecule.

Together the unique genetic sub-classifications and the inherent
genetic instability of MG cells create the potential for vast clonal
diversity. In addition, studies suggest there are also loco-regional
differences in the cellular genetics, likely related to environmental
changes experienced by the tumor cells in distinct tumor regions
(63). This has led some to suggest that glioma cells may be viewed
as two regional subtypes: (1) stationary proliferative cells gener-
ally found within the main tumor mass, and (2) migratory invasive
cells located in more distant brain parenchyma. Importantly, these
two cell populations have been shown to have quite different
genetic profiles and active cellular pathways, and therefore may
require distinct therapeutic targets and approaches (63).

In other cancers where genetic diversity and instability con-
tribute significantly to disease pathogenesis, treatments that offer
continuous, combined effects have proven to produce the most
durable benefits (64–68). Sporadic or episodic treatments have
been shown to allow the evolution of treatment resistance and
lead to earlier disease progression when compared to sustained
treatment strategies (69–71). Although MG has undergone some
of the most extensive molecular classification across all cancer
types, we have not yet been able to target particular driver muta-
tions with the same level of success as has been observed in other
settings such as in BRAF-mutant melanoma, EGFR-mutant lung
cancer, or HER2-amplified breast cancer. A greater understanding
of intratumoral genomic heterogeneity and instability potential
will be critical to harnessing our molecular understanding of these
diseases.

CLINICAL TRIALS AND THE STANDARD OF CARE:
SUCCESSES, FAILURES, AND LESSONS LEARNED
Clinical research in treatments for MG has a rich history, with
reports of hundreds of clinical trials of various types and
approaches being published (72, 73). The vast number of research
studies exploring treatment modalities for MG makes review and
interpretation complex. However, insights can be gained by exam-
ining the evolution of the standard of care, with an emphasis on
some of the key successes and failures over this time (Figure 2).
Numerous early studies, including those dating back to the 1960s,
were well-designed with appropriate controls, providing sound,
evidence-based guidelines.

One of the first key discoveries came from the University of
Minnesota in 1961 by Drs. Galicich, French, and Melby, who
described the use of systemic corticosteroids (dexamethasone) to
reduce peri-tumoral cerebral edema in patients with brain tumors
(74). While this treatment was not evaluated on the basis of halt-
ing tumor progression or improving patient survival, it improved
many of the neurological symptoms (weakness, aphasia, headache,
and others) attributed to MG both before and after surgery
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FIGURE 2 | Improvements in median survival over time for patients
undergoing various treatments for malignant glioma. Since the 1960s
when corticosteroids were introduced for tumor-associated brain edema,
there has been more than a quadrupling of the median survival for these
patients (���). More recently, combination chemotherapy regimens have
been suggested to increase this median survival upwards of 20 months.

(75). The major downside of this therapy was the side-effects of
long-term (>2 weeks) steroid use including psychiatric changes,
immunosuppression, osteopenia, skin remodeling, fat redistrib-
ution, and peptic ulcers. However, the profound improvements
seen with this anti-inflammatory therapy continue to place corti-
costeroids in a central role in the management of tumor-associated
edema for patients with MG. Not to be overlooked, the immuno-
suppressive and BBB modulating effects of dexamethasone (76–
78) are also important in considering systemically administered
or immunologic treatment strategies for MG patients in need of
anti-edema therapy.

Also during the 1960s, radiation therapy (RT) in the form of
whole-brain radiation began to emerge as an efficacious adjuvant
therapy for MG (57). As with other cancers, the non-specific tar-
geting of rapidly dividing cells by RT increased survival for many
patients with MG (58, 59); RT typically doubled survival from
about 6 to approximately 12 months. Whole-brain RT (WBRT)
soon became the standard of care and characterized the control
arm for future treatment studies (60). However, the maximum
WBRT dose prescribed is limited by the radiation tolerance of
critical CNS structures, such as the frontal lobes, optic appara-
tus, and brainstem. Alternative fractionation schemes and tech-
niques, including dose escalation, hyper- and hypo-fractionation,
brachytherapy, charged particles, and radiosensitizing drugs, have
been explored, but none have consistently demonstrated improve-
ment in survival. Eventually a regional, fractionated radiation
approach was found to be as effective as WBRT, providing a high
dose to a more focused region while minimizing toxicity (61, 62).
Currently, most patients with MG receive intensity modulated
radiation therapy (IMRT) fractionated in daily doses of 2 Gy given
5 days per week for 6 weeks, for a total radiation dose of 60 Gy (5).

With the roles of steroids and RT firmly in place, studies of
chemotherapeutic drugs known as alkylating agents dominated

the major clinical trials through the 1990s. In particular, car-
mustine (BCNU) and more recently, temozolomide (TMZ, oral
formulation: Temodar), have been the focus of many chemother-
apy studies for gliomas. A 2002 meta-analysis suggested that sys-
temic administration of nitrosoureas, like BCNU, added approx-
imately 2 months to the median survival for patients with high
grade glioma (79). Despite this modest improvement, systemi-
cally administered BCNU was adopted into the standard of care at
many centers through the mid-1990s.

In 1996, an implantable BCNU-loaded biodegradable polymer
(Gliadel®), was approved by the FDA for the treatment of recur-
rent MG (Grade IV) (80). These drug-loaded interstitial wafers
were designed to line the surgical resection cavity and deliver
chemotherapy directly to residual tumor cells following MG
surgery. Interstitial chemotherapy (IC) treatment consists of up
to eight dime-size wafers made of a poly-anhydride biodegradable
polymer impregnated with BCNU, providing sustained release of
the drug over a 2–3-week period. IC therapy has shown the poten-
tial for local delivery to improve efficacy while reducing systemic
side-effects, such as pulmonary fibrosis and myelosuppression,
in the case of BCNU (81, 82). By 2004, Gliadel® wafers were
approved for all patients with primary and recurrent MG based
on data from randomized controlled trials (80, 82, 83). This FDA
approval marked a transition toward incorporating unique deliv-
ery strategies for MG and a broader recognition of the importance
of mitigating the BBB in successful MG treatment approaches.

Since then, numerous studies and trials have explored local
delivery approaches to take advantage of the unique drug deliv-
ery opportunity at the time of surgery. These have included
regional and antibody-targeted brachytherapy, drug-loaded poly-
mer and formulation strategies, and catheter-based infusions, with
and without convection enhancement. To date, none of these
approaches have shown a significant improvement in patient sur-
vival beyond standard therapies. A notable study, the PRECISE
Trial, investigated the catheter-based, convection-enhanced deliv-
ery (CED) of an interleukin 13–Pseudomonas exotoxin fusion
protein (IL-13–PE) compared to Gliadel in patients with recurrent
MG. The IL-13–PE construct was designed to target glioma cells
via the IL-13 receptor, and then deliver the potent bacterial toxin
(PE) (84). Patients underwent tumor resection and were random-
ized to receive either two to four interparenchymal catheters with
infusion over 4 days, or chemotherapy wafers (Gliadel) implanted
at the time of surgery. Median survival did not differ significantly
between the two groups (36.4 versus 35.3 weeks, p = 0.48) (85).

The PRECISE trial has been evaluated with regard to the lim-
itations to effective therapy described above. First, the authors
concluded that a major cause of limited efficacy was likely poor
drug distribution or inaccurate catheter positioning based on
post hoc analysis (86). This rationale highlights the importance of
penetration within the brain in order to achieve an effective drug
distribution, regardless of the pressure gradient (bulk flow) driving
this process. Interestingly, limited and variable movement has been
a consistent problem for numerous drugs and agents being stud-
ied with CED in the brain (87–90), likely due to physico-chemical
interaction, partitioning effects, and/or degradation. Second, the
potential for combination anti-tumor effects using the immuno-
adjuvant properties of the IL-13 pathway and the potent toxicity
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profile of the Pseudomonas exotoxin created the potential for
a powerful, multi-modal therapy (84). The one delivery-related
component missing may have been the sustained action needed
for a durable effect and, therefore, the need for infusions over
4 days. In the end, treatment modalities that address one, but not
the other of these therapeutic limitations, will likely have marginal
therapeutic efficacy.

Following the randomized studies on RT, systemic BCNU, and
local BCNU (Gliadel wafers), a landmark study by Stupp et al.
completed in 2005 established the current adjuvant therapy reg-
imen for patients with MG (91). In this study, patients treated
with surgery plus RT alone were compared to patients treated
with this regimen plus the oral chemotherapy, TMZ. TMZ was
given together with post-operative RT for 6 weeks, followed by
intermittent doses over the following 6 months. Median survival
with RT plus TMZ was significantly longer than with RT alone
(14.6 versus 12.1 months). Perhaps more impressive, the 2-year
survival for the control group was 10% compared to 26% in
the TMZ group. These findings have created a paradigm shift
in the clinical management of MG patients. The current, non-
experimental treatment options for patients with MG shown to
improve survival include: surgery, RT, oral chemotherapy (TMZ),
and implantable chemotherapy (Gliadel).

In 2009, the FDA made a provisional approval of bevacizumab
(Avastin) for patients with progressive MG failing standard ther-
apy. The approval was based on the results of well-designed studies
showing a 20–25% radiographic response rate, but unclear sur-
vival benefit following bevacizumab therapy (92, 93). Stemming
from the work of Judah Folkman and others in the 1980s, who
detailed the mechanisms and importance of angiogenesis in cancer
(94, 95), bevacizumab targets vascular endothelial growth factor
(VEGF) using a humanized monoclonal antibody. Specific block-
ade of VEGF effectively decreases the growth of new blood vessels
into growing tumors in pre-clinical studies, a key feature of MG
(96). Bevacizumab is an IV infusion and, thus, is subject to the
limitations imposed by both the BBB and BPB. As a monoclonal
antibody, the adhesive characteristics (97), and the size (~10 nm),
of this molecule may strongly hinder both the transport across the
BBB in more normal brain areas with infiltrating tumor cells, as
well as movement through the ECS and eventual intraparenchy-
mal distribution. More recently, direct interarterial (IA) delivery
of bevacizumab with local BBB disruption has been investigated to
overcome these limitations (98, 99), however, the survival benefit
of this approach is pending.

In clinical practice, bevacizumab appears to markedly reduce
cerebral edema and likely modulates the BBB, but has an unclear
effect on the patho-biology of MG (100–102). In two randomized,
placebo-controlled clinical trials assessing if the addition of beva-
cizumab to standard chemoradiation therapies would improve
survival in patients with newly diagnosed GBM, bevacizumab
was found to improve progression-free but not overall survival
(103, 104). Bevacizumab is emerging as a steroid-sparing agent
for MG patients with significant tumor-associated edema suffer-
ing from the side-effects of long-term steroid use. Of note, there
is concern that anti-VEGF treatment may transiently improve
the radiographic appearance, but may veil or even worsen the
underlying disease. While there is not direct evidence that isolated

VEGF inhibition leads to upregulation or activation of more
pathogenetic tumor pathways, the reports of rapid disease progres-
sion following bevacizumab monotherapy (100, 101) highlight
this possibility and the need to focus on combination treatments
regimens, as discussed earlier.

Together these successes and failures along the path to the
current treatment standards reveal some key considerations in
designing effective delivery strategies and clinical trials for MG.
First, novel trial designs will need to be considered that allow
concurrent evaluation of agent combinations, in the context of
current therapies known to modulate the BBB and immune sys-
tem (steroids, radiation, bevacizumab). Second, agents that have
shown powerful effects against tumor cells in vitro, will likely
need to be coupled with thoughtful delivery strategies to increase
chances of achieving in vivo efficacy – especially given the size dif-
ference between most pre-clinical models (mice, rats) and humans.
In summary, important delivery considerations include: effective
transport across the BBB, enabling enhanced movement through
brain and tumor tissue to achieve adequate drug distribution in
the regions of infiltrating tumor cells, and providing sustained,
multi-modal actions against that specific patient’s tumor cells.

EXAMPLES AND OPPORTUNITIES FOR NEW THERAPEUTIC
STRATEGIES
PROSPECTS FOR SYSTEMIC DELIVERY
Early studies exploring systemic delivery of drugs and drug-loaded
NPs aimed to capitalize on passive accumulation of these agents
in the tumor due to the EPR effect. The EPR effect suggests that
drugs and particles may accumulate in the tumor core due to
leaky blood vessel and in some cases, long circulation times (e.g.,
some particles and antibodies), but helps little in brain regions
where neovascularization and tissue remodeling have yet to begin
(105, 106). Favel et al. studied systemically administered liposo-
mal doxorubicin in a Phase II trial of MG patients and observed
this treatment led to disease stabilization in 54% and suggested
prolonged survival compared to historical controls (107). Other
studies have suggested that NP formulations of some drugs may
aid in the delivery across the BBB (108, 109), possibly via LDL-
receptor or other endocytic pathways. Yet, to increase the portion
of the total IV load making it to the tumor, additional strategies
have been proposed to navigate across the BBB.

INTRAVASCULAR DELIVERY WITH BBB DISRUPTION
One strategy for systemic drug delivery to brain tumors involves
bypassing the BBB via mechanical or chemical disruption
(Figure 3). A promising approach uses magnetic resonance
(MR)-guided focused ultrasound (MRgFUS) with intravenous
microbubbles (MB) to locally and specifically disrupt the BBB
and improve the accumulation of drug and/or NPs from blood
into the sonicated region (110). The sonication parameters can be
tuned to provide both reversible (drug/particulate delivery alone)
or irreversible (drug/particulate delivery plus tissue damage) BBB
opening in a conformal region defined by the MRI data. Thera-
peutic agents can be loaded into particles with and without direct
conjugation to or encapsulation within the MB (111–113). This
minimally invasive, non-surgical approach may also be useful for
unresectable and recurrent/residual brain tumors not amenable to
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FIGURE 3 | New approaches to brain tumor therapies. Some
possibilities for this include enhancing drug permeability across the blood
brain barrier/neurovascular unit, including temporary disruption of this
interface using chemical (mannitol) and physical (ultrasound) means. The
distribution of therapies may be enhanced using catheter-based convection
enhanced approaches. Biodegradable polymer wafer, particle, and
microchip reservoir systems are being explored further for timed and/or
sustained release of drugs, as well as targeting tumor-specific structures.
*Copyright Ian Suk 2012 – Johns Hopkins University.

surgery. Clinical trials are currently being planned for MG using
the MRgFUS with drug-loaded NP approach.

Blood brain barrier disruption may also be achieved using
osmotic agents (114) (e.g.,mannitol),pro-inflammatory cytokines
(e.g., IL-17) (115, 116), or blood vessel modulators (e.g., RMP-7)
(117). A Phase II trial comparing the combination of BBB dis-
ruption using RMP-7 and the chemotherapy carboplatin to the
chemotherapy alone, showed minimal improvement in the time
to progression or survival in patients with MG (118). While these
are promising approaches to circumventing the BBB, once across,
the drugs and/or particles would still need to penetrate and dis-
tribute within the brain parenchyma, and ideally have sustained
action within tumor tissue, to have a meaningful effect.

INTRAVASCULAR DELIVERY WITH BBB SHUTTLING OR TARGETING
The goal of many BBB transport studies has been identifying
a specific receptor or endothelial surface component to enable
high-efficiency, non-degradative transcytosis of drugs and delivery
vehicles from the blood into the CNS. The concept of the “mole-
cular Trojan horse” has been suggested for disguising therapeutic
moieties with endogenous molecules known to initiate receptor-
mediated transcytosis (119). Initially, promising candidates for
this included the transferrin (Tf) receptor (120) and lipoprotein
receptor-related protein-1 (LRP-1) (121) as well as specialized par-
ticle surface coatings such as polysorbate 80 (109). While tagging
drugs and delivery vehicles with ligands or monoclonal antibodies
for these cell membrane proteins showed some promising results
(120, 122, 123), the fraction of the total IV load that reaches the
brain is still low (124, 125). Early-phase clinical trials are under-
way for systemic delivery of Tf and LRP-1 conjugates for brain
tumors, but efficacy results are pending. One particularly exciting

approach has been to decrease the affinity of the targeting moiety
for its ligand, which then can increase the BBB transcytosis and
release of therapeutic entities into the brain (123).

BIOLOGIC STRATEGIES
The promise of genetically re-programing key pathways gone awry
in cancer cells and tumor micro-environment, as well as engineer-
ing microbes to seek and destroy these cells, has led to the develop-
ment of numerous viral- and bacterial-based treatment systems.
Multi-modal effects may also be possible using microbial-based
delivery strategies since, theoretically, they can be engineered to
deliver numerous therapeutic agents. The potential for prolonged
survival of transfected cells and sustained transgene expression are
also possible benefits of this approach.

Many viruses have been investigated for therapeutic delivery to,
or direct destruction of, brain tumors. Notable examples include
herpes simplex virus (HSV) (126), vesicular stomatitis virus (VSV)
(127), retrovirus (RV) (128), adenovirus (AV) (129), and adeno-
associated virus (AAV) (130). Each of these can be selected for
specific tropism, replication properties, or surface capsid char-
acteristics, thereby promoting cell targeting, virion distribution,
or intracellular effects. A good example of this was described in
the study by Ozduman et al. where a replication competent, MG-
adapted VZV strain was selected and found to bind, enter, and
kill MG cells in vivo (127). Limitations to this approach include
the potential for immunogenicity, leading to an adaptive immune
response to the virus and subsequent inflammation and cerebral
edema that can be deadly. In addition, this host response can
limit repeat dosing. Further limitations include the ability to pre-
cisely control viral replication and/or transgene production. In
part due to these potential problems, few Phase III clinical trials
using viral-based gene therapy have been performed.

In 2000, Rainov and colleagues reported the results of a
multi-center Phase III randomized, controlled trial of fibroblast-
transfected, RV-mediated delivery of herpes simplex virus thymi-
dine kinase (HSV-tk) in patients with untreated MG. They found
no difference in median survival between the two treatment
groups: standard therapy (surgery plus radiation) versus standard
therapy with adjuvant gene therapy delivered via direct intra-
parenchymal injection during surgery (128). While this study
demonstrated the feasibility of this local, cell-based, gene ther-
apy approach, the authors suggested the lack of efficacy was due to
poor distribution of the transfected, non-migratory fibroblast cells
and subsequently limited delivery of the HSV-tk gene product to
the tumor cells (128). Movement of the virus or the end-effector
(HSV-tk), whether a transfected cell or transgene product, is more
complicated in this case, involving both active movement and pas-
sive diffusion of the therapeutic components. Of note, all of the
viruses mentioned above except for AAV, are larger than 100 nm
(significantly bigger than the reported size limit), therefore dif-
fusion through the brain parenchyma is expected to be limited.
Active movement of virions transported within intrinsic cells or
via transfected cells through the brain will also alter the distribu-
tion of these delivery agents. The analysis from the Rainov study
authors, based on the strong pre-clinical data showing excellent
efficacy (131), suggests that distribution is still a crucial limiting
factor that must be addressed for viral and cell-based therapies in
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humans. Lang and colleagues have offered a potential solution to
this problem by using mesenchymal stem cells to deliver oncolytic
viruses systemically. Pre-clinical evidence suggests this may be a
promising delivery modality (132, 133).

Another interesting microbial delivery strategy involves using
anaerobic bacterial spores. IV-injected Clostridium novyi spores
have been shown to germinate within the avascular, hypoxic
regions of tumors and destroy surrounding viable tumor cells
(134). In addition, these spores appear to stimulate a potent anti-
tumor immune response, which has the potential to eliminate
infiltrating cells in normoxic tissue (135). Clinical trials are being
planned around this technology. Clearly, the possibility of gener-
ating a sustained, specific anti-tumor immune response would go
a long way to addressing the delivery limitations as the immune
cells would be able to actively seek the target cells, and destroy cells
based on the antigenic differences. This concept will be discussed
further in the next section.

CELL-BASED APPROACHES
Given the therapeutic potential for eliciting a potent anti-tumor
immune response, another attractive delivery strategy has been
to stimulate autologous antigen-presenting cells (APCs) to acti-
vate cytotoxic and helper T-cells to recognize and eliminate tumor
cells in the CNS. APCs can be harvested from the patient’s periph-
eral blood, pulsed with tumor lysate stimulated with cytokines,
or transfected with a desired transgene (136, 137). In two Phase
I trials using tumor lysate-pulsed autologous peripheral blood
dendritic cells for patients with MG, there were no adverse reac-
tions and about half of the patients demonstrated specific adaptive
immune responses to the tumor antigens (137, 138). In the Phase II
study, a correlation was found between vaccine-responders, those
who developed tumor-specific cytotoxic T-cell responses post-
vaccination, and time to progression and survival (139). Ongoing
work in this area, including three phase III clinical trials, is focused
on identifying the specific components that enhance the anti-MG
immune response by modulating the tumor micro-environment
and limiting immune tolerance (140–142).

Another cellular strategy has been to capitalize on the obser-
vation that autologous stem cells, derived from embryonic or
mesenchymal cell lineages, appear to target to and accumulate in
brain tumors (143–145). Although no clinical trials have been per-
formed in this area to date, these cell-based delivery strategies offer
unique possibilities. Stem and immune cells have the innate abil-
ity to move within the body and tissues. Active trafficking across
endothelial surfaces and within the ECS of tissues are hallmarks
of immune cells, thereby enabling recruitment to the specific sites,
be it infection, inflammation, tissue repair, or tumor modulation.
Genetically engineered cells or activated cytotoxic immune cells,
offer the potential for multiple anti-tumor effects mediated by
cytokines and pro-apoptotic agents (146–150).

INTRA-CEREBRO-SPINAL FLUID DELIVERY
Following intra-CSF administration, the concentration of many
drugs and molecules in the brain parenchyma has been found to
be negligible (151). For this reason, treatment of intrinsic CNS
tumors with chemotherapy administered into the CSF has not
yet been proven effective. However, using the intra-cerebro-spinal

fluid (ICSF) route of administration for drug delivery to the
brain has proven successful in other conditions where CNS tis-
sue penetration is less critical, such as meningeal carcinomatosis,
spasticity, chronic pain, and lymphomatous meningitis. Intrathe-
cal baclofen is used to treat spasticity (152), intrathecal opioids are
used to treat chronic pain (153), and intrathecal chemotherapy
for meningeal carcinomatosis (154) and lymphoma (155). Impor-
tantly, in most cases, the intrathecal/intraventricular approach has
delivered the drugs close to ventricular surfaces. The 150 ml aver-
age volume of CSF in the human CNS is completely turned over
every 6–8 h, and exits the brain mainly into the blood. More-
over, ICSF drug delivery to the brain results in high drug expo-
sure at the ependymal surface of the brain, which can cause a
subependymal inflammatory reaction and tissue damage (155).
A paradox of ICSF drug administration is that in many cases,
the drug distributes to the blood much better than it does to the
brain due to this rapid circulation and clearance pathway (10).
As such, an ICSF injection is more similar to a slow IV injec-
tion rather than a direct intraparenchymal injection for many
drugs (151).

INTRANASAL DELIVERY
Intranasal administration of various medications and drug-loaded
NPs has been studied and suggested as a means of near-direct
delivery to the CNS via olfactory neurons within the nasal mucosa
(121). Hormones (e.g., vasopressin, calcitonin) delivered via nasal
sprays are perhaps the best-studied and widely used intranasal
agents aimed at CNS effects. A recent observational trial of
the chemotherapeutic, perillyl alcohol, delivered intranasally in
patients with recurrent MGs showed minimal toxicity but no direct
evidence of CNS drug levels or anti-tumor activity (156). While
this approach may bypass the limitations of the BBB and be useful
for agents that exert effects at low dosages, controlling larger drug
or particle doses and distribution represents a major limitation in
the treatment of larger or more specific brain regions, as would be
the case for many brain tumors.

EXAMPLES AND OPPORTUNITIES USING DIRECT, LOCAL DELIVERY
Direct local delivery, particularly at the time of surgery for tumor
biopsy or removal, offers a unique access opportunity to bypass
one of the three delivery barriers, the BBB. Two major strate-
gies have been used for direct CNS delivery in the clinical arena:
drug-loaded biodegradable polymer systems and catheter-based
CED (Figure 3). In addition, non-surgical approaches for sys-
temic delivery across the BBB, either by enhanced permeability or
improved trafficking, offer the benefits of non-invasive, systemic
administration with the potential that a larger portion of the total
dose will reach the desired target. In all, these strategies offer the
capability to increase the maximum tolerated dose of a drug by
avoiding systemic side-effects, and improving drug distribution in
the brain and peri-tumoral region.

With the first description of controlled-release polymers for
delivery of macromolecules in 1976 (157), a new field and industry
developed around the concept of local drug delivery for various
human conditions (158). The evolution of this technology led
to the need for biodegradable, implantable systems that would
provide the desired therapeutic effect without the requirement of
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removal. The biodegradable poly-anhydride polymers, including
poly[bis(p-carboxyphenoxy)propane-co-sebacic acid] eventually
used in Gliadel®, helped to solve this problem and created a plat-
form for clinical translation (159). Therapeutic agents could be
encapsulated within or formulated with these polymers to provide
the desired drug loading and release kinetics. The encapsula-
tion of drugs into polymeric delivery systems offers numerous
potential advantages over the delivery of free drug alone. These
include: protection from clearance and degradation mechanisms,
tuning of the drug loading and sustained release profile, and
improved efficacy and reduced toxicity of a given amount of
the drug (160). Further advances in polymer technology have
come in the development of new materials (e.g., fatty-acid dimer–
sebacic acid (FAD–SA) and poly (lactic co-glycolic acid) (PLGA)
with unique physico-chemical properties that enable encapsula-
tion of a broad spectrum of compounds and macromolecules
(161, 162).

The next clinical evolution in therapeutic delivery for brain
tumors involved an expandable balloon catheter that is placed in
the resection cavity at the time of tumor debulking [GliaSite®
Radiation Therapy System (RTS), Cytyc Surgical Products, Palo
Alto, CA, USA]. Approximately 2–4 weeks after surgery, the bal-
loon is filled with a radioactive aqueous solution [Iotrex (sodium
3-(125 I)-iodo-4-hydroxybenzene sulfonate)] for a predetermined
amount of time, during which a therapeutic dose of radiation is
delivered to the margin of the surgical cavity. After completion of
the calculated dwell time, the solution is removed and the balloon
catheter is retrieved transcutaneously. While this approach has
been shown to be feasible and safe (163), a clear survival advantage
has not been shown (164, 165).

The next step included CED through implanted intracere-
bral catheters, which offers the potential advantage of better
drug distribution to distant invading cancer cells compared to
other strategies aided only by passive diffusion. Challenges to this
approach have included side-effects caused by backflow along the
catheter often due to high interstitial pressure, drug leakage in
non-desired regions, inclusion of contrast visualization agents,
and poor/unequal distribution of delivered agents. Combining
CED with drug-loaded particle systems has been investigated
to overcome these problems. Allard et al. described the ideal
CED nanocarrier as about 20–50 nm in size, with a global neu-
tral or negative charge, and shielded by a steric coating made of
PEG or dextran (87). Our recent study suggests that even larger
particles may be used, if appropriately coated to minimize adhesive
interactions (40).

PARTICLE-BASED SYSTEMS
Microspheres and NPs of various forms and compositions have
proven useful in formulating diagnostic and therapeutic agents
for local, as well as systemic delivery to brain tumors (166, 167).
One of the unique aspects of biomaterials-based strategies is the
flexibility to pair the drug with an appropriate formulation mate-
rial to achieve the desired drug loading and/or release kinetics. In
addition, small semi-conductor and metal particles [a.k.a. quan-
tum dots (QDs)] offer unique optical and electronic properties for
multi-spectral imaging as well as the potential to introduce ther-
mal effects within tumors and cells. QDs are an example of the

versatility of these particle platforms for designing multifunctional
imaging and therapeutic delivery systems (168–170).

In several recent publications, relevant pre-clinical and clinical
trials, as well as laboratory studies using particle-based therapeu-
tics for CNS disease and brain tumors were reviewed (87, 171, 172).
The characteristics important for movement of these particulate
systems in the brain include size (~100 nm) and surface chemistry
(steric coating of PEG or dextrans), have been highlighted (40, 87).
Researchers are beginning to use these criteria to design various
particle systems for brain cancer treatment, including liposomes
(107, 173, 174), poly(lactic) acid (PLA) NPs and poly(lactic-co-
glycolic acid) (PLGA) NPs (175), and dendrimer NP’s (176) to
name a few. One of the best-studied drugs with NP formulation
for MG is doxorubicin (DX). DX is a chemotherapeutic agent that
intercalates into cellular DNA, leading to cell death. Systemic use
of DX is limited by cardiac and liver toxicity, hence the need for
additional formulations and delivery strategies. A Phase I/II trial of
liposomal DX in MG patients suggested disease stabilization with
minimal treatment-related toxicity (107). While no clear candi-
dates have emerged to advance to the level of a Phase III clinical
trial, other liposomal systems have shown some promise (107).

A central feature of particle engineering is that the surface
coating can be modified to optimize transport and/or targeting
properties. This makes it feasible to design particles that can access
and potentially target to infiltrating cancer cells through tissue
penetration within the ECS. To realize this goal, the maximum
size and ideal surface characteristics for particulate delivery sys-
tems needs to be closely defined; recent work by our group using
high resolution microscopy with multiple particle tracking tech-
niques has further delineated these parameters (40). NPs as large
as 114 nm in diameter diffused within the human and rat brain tis-
sue, but only if they were densely coated with poly(ethylene glycol)
(PEG). Based on the movement of these particles, we estimated
that human brain tissue ECS has some pores larger than 200 nm
and that more than one-quarter of all pores are at least 100 nm.

The ability to engineer larger drug-loaded particles with
maximal safe drug loading and optimized release kinetics make
this biomaterials approach one of the more promising opportu-
nities for effective drug delivery. Combining multiple therapeutic
agents in each particle, or combining multiple types of particles
loaded with different agents (drugs, plasmids, inhibitory oligonu-
cleotides, etc.) are also possibilities for addressing the need for
combination therapy.

MICRORESERVOIR DRUG-LOADED ARRAYS
Biodegradable polymers have been used to fabricate drug-loaded
microreservoir arrays (MicroChips®) that release drugs from
numerous small reservoirs in an actively controlled fashion
(Figure 3) (177). The timing of release is based on the rupture
of nitride membranes covering the drug reservoirs, controlled by
a computer-based, wireless programing device. This pharmacy-
on-a-chip approach has shown efficacy against pre-clinical in vivo
brain tumor models using timed release of BCNU and TMZ
chemotherapies (178, 179). The first human testing of this device
has been performed, demonstrating safety and physiologically rel-
evant, pulsatile release of parathyroid hormone for the treatment
of osteoporosis (180). While still preliminary, these studies suggest
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a promising role for this technology in designing local, sustained
release treatments that can be adapted in a multi-modal fashion
over time.

CONCLUSION
Important delivery considerations for effective therapies for MG
include: effective transport across the BBB, enabling enhanced
movement through brain and tumor tissue to achieve adequate
drug distribution in the regions of infiltrating tumor cells, and
providing sustained, multi-modal actions against that specific sub-
class of tumor cells. By considering these key barriers, and focusing
on the residual infiltrating cancer cells, major improvements in the
outcomes for MG patients may be realized. Advances in therapeu-
tic delivery methods raise hope that the increasing understanding
of brain tumor patho-biology, including genetics and epigenetics,
will lead to promising new therapies for this devastating disease.
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