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The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor
selectivity into the replication potential of viruses would permit direct destruction of tumor
cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively
within the tumor environment. The immune response raised by the virus was not only con-
sidered to be necessary for the safety of the approach, but also something of a hindrance to
optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent
clinical success of several oncolytic viruses expressing selected cytokines has demon-
strated the potential for harnessing the immune response as an additional and beneficial
mechanism of therapeutic activity within the platform. Over the last few years, a variety of
novel approaches have been incorporated to try to enhance this immunotherapeutic activ-
ity. Several innovative and subtle approaches have moved far beyond the expression of a
single cytokine transgene, with the hope of optimizing anti-tumor immunity while having

minimal detrimental impact on viral oncolytic activity.
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BACKGROUND

Viral infections and cancer bear a variety of striking similarities,
as seen with the fact that several cancers are caused as a result
of chronic viral infection (1, 2) and the fact that the first onco-
genes were identified through their homology to viral genes (3,
4). Indeed, many of the hallmarks of cancer strongly resemble
the adaptations a virus induces in a susceptible cell during its
replication cycle (5). It is therefore unsurprising that some viral
virulence genes are redundant for replication in malignant cells or
the tumor microenvironment, meaning that their deletion results
in the production of vectors whose replication is attenuated in
normal, but not cancer cells (6). This finding was the basis for the
design and construction of the first oncolytic viral therapies (7,
8). As the name “Oncolytic” suggests, these were hypothesized to
function through the direct destruction of cancer cells, primarily
as a result of viral replication in infected cells, but also as a result
of immune recognition of these cells. Initial clinical testing of this
approach centered around strains of adenovirus (8—12), perhaps
more due to the historical use of non-replicating adenoviruses
as gene therapy vectors than because of any special attributes of
this backbone particularly appropriate for an oncolytic platform.
However, importantly these early clinical studies demonstrated
both safety and therapeutic responses (13—16). The observation
that the viral infection occurring primarily within the tumor was
cleared, leading to induction of anti-viral immunity, and implied
the agents were capable of at least transiently overcoming localized
immune suppression within the tumor.

The slow replication and limited systemic spread of the Ad5-
based vectors proved to be especial limitations (17, 18), however,
the excellent safety profile and indications of responses led inves-
tigators to examine other adenoviral serotypes and more potent
viral backbones as the basis for next generation oncolytics. In some

cases, combination with immunosuppression was investigated as a
means to enhance oncolytic activity through delaying clearance of
the therapy (19, 20). However, in general pre-clinical and clinical
testing of different viral backbones in combination with expression
of different therapeutic transgenes led to the observation that the
most effective approaches frequently incorporated rapidly repli-
cating viral backbones expressing cytokines as transgenes, notably
GM-CSF (2, 21-23). In addition, when immunocompetent pre-
clinical tumor models were available, it was frequently seen that
complete responses after viral therapy was coupled with induction
of anti-tumor immunity and the capacity to reject re-challenge
with the same tumor cell lines (24). As such considerable focus
has turned to development of approaches to enhance or optimize
this immunotherapeutic effect. However, there is clearly a fine bal-
ance to be considered as robust induction of the immune response
can lead to premature clearance of the therapy, meaning that the
oncolytic effects are lost and adaptive immunity is targeted against
the viral component only, with little or no cross-presentation of
tumor antigens.

One viral strain that has been developed as an alternative to ade-
novirus in forming the backbone of many oncolytic viral strains is
vaccinia virus (25). This enveloped DNA virus has a large genome,
with many virulence genes that target host cell cycle, apoptotic
pathways, or immune response, and whose deletion leads to viral
strains with demonstrated tumor-selective replication (26-28). In
addition, the use of this virus during the eradication of smallpox
means that its immune activating capacity is well understood. The
clinical use of a GM-CSF expressing oncolytic vaccinia virus has
also been instrumental in demonstrating the potential for enhanc-
ing the immune response induced by oncolytic viruses as a means
to enhance therapeutic activity (23, 29, 30). Oncolytic vaccinia
will therefore be used as the primary example to illustrate the
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potential for enhancing immune-mediated mechanisms in this
platform throughout the remainder of this review.

APPROACHES TO ENHANCE THE ANTI-TUMOR IMMUNE
RESPONSE INDUCED BY ONCOLYTIC VACCINIA

Several standard strategies have been routinely applied to enhance
the anti-tumor immune response induced through oncolytic viral
therapy, primarily focused on expression of either cytokines or co-
stimulatory molecules (31). Although several vaccinia and related
vectors expressing single cytokines have clearly demonstrated
therapeutic benefits in both animal models and in the clinic,
this approach typically suffers from several handicaps, including
reduced viral replication due to reduced initial infection of the
tumor or early clearance of the virus (32); in addition, the use of
a single cytokine means that typically only one step in the com-
plex kinetic process of innate to adaptive immune response can
be stimulated. The most clinically successful approach to date has
been the expression of GM-CSF (33), both from vaccinia virus
and from oncolytic HSV. The choice of GM-CSF was based on
early reports that expression of GM-CSF from mouse melanoma
cell lines resulted in failure of these cells to form tumors in syn-
geneic mice (34). It is likely that the reason for the success of
vectors expressing this cytokine is primarily based on the fact that
it has broad effects on induction of proliferation in many immune
cell subtypes, while having little or no direct anti-viral proper-
ties. However, more recently the role of GM-CSF expression in
increasing proliferation of some suppressive cells [notably mono-
cyte derived suppressor cells (MDSC)] (35) has been elucidated
meaning that some caution in the use of this cytokine might be
needed.

Several other cytokines, including IL-2, TNFE, and IFN have
been used in pre-clinical vaccinia-based models but have not
been successfully translated into a clinical setting, possibly due
to their capacity to also induce more directly anti-viral effects
(32, 36, 37). Because of this limited success with cytokines other
than GM-CSF alternative immune stimulating strategies has been
explored.

For example, the expression of antibodies represents a promis-
ing strategy. The relative success of monoclonal antibody therapy
and the recent emergence of antibodies targeting immune check-
point inhibitors or that mimic co-stimulators has demonstrated
the potential of this platform. The requirements for expression
and assembly of multiple large peptides had traditionally limited
the use of antibodies as transgenes, however, more recent devel-
opment of single peptide antibodies means this is likely to be a
fruitful approach moving forward and initial reports of vaccinia
strains expressing antibodies are promising (38).

An alternative strategy to enhancing the immune effects of
oncolytic viruses is to express chemokines from the vectors that
specifically attract T-cells into the tumor (39, 40). This approach
appears to have minimal negative impacts on viral replication and
oncolytic activity, yet enhances the immunotherapeutic effects.
One of the major hurdles found with the use of therapeutic tumor
vaccines has been the limited trafficking of tumor-specific T-cells
into the tumor itself, so the combination of chemokine expressing
oncolytic viruses with vaccination against tumor antigens may be
a promising strategy.

Immune Activation Immune Suppression

* Local Cytokine expression
* Adjuvant
* Route of cell death

Reducing suppressive cytokines
Targeting suppressive immune cells
Blocking immune checkpoint inhibitors

Local Effects

Systemic Effects

* Systemic Cytokine expression
* Chemokine expression
* Antigen expression

* Reducing humoral immune response

FIGURE 1 | Selective replication of an oncolytic virus within an
infected tumor cell might be engineered in multiple ways to optimize
the kinetics, type, and level of resultant immune response. The
approaches covered in this perspective are summarized here, along with
their range of activity (local acting within the tumor, or systemic activity)
and whether immune activation or blocking of immune suppression are
involved. Ideal combination approaches would be predicted to involve
components of different quadrants in the figure.

Several other alternatives to cytokine expression have been
explored in different oncolytic backbones as a means to enhance
the immunotherapeutic effects (Figure 1), including the follow-
ing: (i) Enhancing immunogenic cell death, it has been proposed
that the route of cancer cell death after therapy may be a criti-
cal mediator of the immune response. As a result, adjusting how
an oncolytic virus destroys the infected cell may promote a more
robust anti-tumor immune response (41). (ii) Targeted inhibition
of specific components of the immune response: as an alterna-
tive to specifically activating key pathways, key mediators of less
desirable immune response pathways may be targeted for removal
or depletion. One example is the use of TGFb decoy receptors to
remove this cytokine that has been implicated in metastasis and
tumor growth and angiogenesis (42). Alternatively, direct target-
ing of B-cells or other components of the humoral response may
limit production of anti-viral neutralizing antibody, a key limit-
ing factor in repeat dosing with the same therapeutic virus (43).
(iii) Role of adjuvant: the field of vaccine development has helped
define the importance of adjuvant in eliciting a robust immune
response. Although the expectation is that the viral vectors them-
selves will provide a source of potent adjuvant, this can and has
been enhanced through expression or manipulation of the virus,
such as through the incorporation of CpG rich motifs into the
DNA sequence (44), or through combination with CpG (45).

ALTERNATIVE STRATEGIES

In addition to the expression of immune stimulatory (or
inhibitory) transgenes from the viral vectors, a variety of other
options exist that can also have direct impact on the immune
responses induced by the viral vectors.

(i) Viral mutation: large DNA viruses such as vaccinia or HSV
encode multiple virulence genes whose role is to antagonize or
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deplete specific cytokines or to disrupt steps in the immune
response. Selective deletion of specific virulence genes can
therefore have two effects; deletion of these genes often results
in tumor targeting (through attenuation of viral replication in
non-tumor tissues) while also allowing additional induction of
specific components of the immune response to be activated
(28). In this way, the immune response can be manipulated
without seriously depleting viral oncolytic activity.

(ii) Timing of immune activation: the therapeutic activity of
oncolytic viral therapy can be considered to function in two
steps, with an initial directly oncolytic phase mediated by viral
lysis of tumor cells followed by an immunotherapeutic phase,
where the host immune response clears additional infected
tumor cells and ideally results in induction of an adaptive
immune response against tumor antigens (as a result of the
release of the tumor antigens along with viral PAMPs and
host cell DAMPs). It is therefore apparent that the expression
of immune activating transgenes would be most effective if
limited to this second phase. One approach to achieve this
is to apply exogenous regulation of transgene expression or
to control the function of the protein after it is translated
(32, 37). In this way, it may be possible to achieve unhin-
dered viral replication and so full oncolytic potential during
the initial period after viral delivery and tumor infection, while
subsequent activation of immune stimulatory transgene activ-
ity would enhance the level and type of immune response
produced at later times.
Targeting immune suppression: in addition to activating the
immune response, oncolytic viral vectors can also transiently
overcome immune suppression within the tumor. However,
this effect is likely only temporary or limited and some evi-
dence exists that additional targeting of these suppressive cells
may further enhance oncolytic viral activity (46). Because mul-
tiple suppressive immune cell types (including MDSC, M2
macrophages, and regulatory T-cells) often exist within the
tumor, it may be necessary to target all these in a concerted
fashion to ensure that a robust adaptive immune response is
produced.

Combination therapies: in addition, the development of multi-

ple novel and effective immunotherapies means that the scope

for combining oncolytic viral therapies with these other ther-
apies continues to increase. There are a variety of approaches

(such as combination with alternative adjuvants or anti-

immune checkpoint inhibitors) that would be expected to

produce significant synergistic benefit, and promising initial
pre-clinical data means that these will be explored in more
detail in the future.

(v) Oncolytic viral vaccines: the fact that oncolytic viral therapies
are capable of inducing an adaptive immune response against
tumor antigens is likely to be hugely beneficial in the clear-
ance of residual disease and metastases as well as in long term
immune surveillance to prevent relapse. However, it is also
likely that any adaptive immune response that is produced
after viral therapy will primarily target antigens expressed on
the bulk tumor cells. Because the cells that mediate relapse or
metastasis often express distinct antigens to those on the bulk
tumor cells within the primary tumor, it may be necessary to

(iif)

(iv)

induce additional immunity against antigens on these cells. It
has been demonstrated that the expression of these antigens
as peptides or whole proteins from the oncolytic virus can
permit additional protection against subsequent relapse (47).
It is therefore possible that expression of antigens from the
virus may be further used to target other stromal cells within
the tumor or to boost the immune response against tumor
antigens and away from viral antigens.

PERSPECTIVE

Although never becoming an approved therapy outside the Chi-
nese market the ONYX-015 (Sunway H-101) virus, the first
oncolytic virus to undergo extensive clinical testing, clearly
demonstrated therapeutic responses in at least a subset of patients
treated. Researchers in the field have spent the last 15 years try-
ing to enhance the activity and deliverability of these vectors
so as to achieve more reliable and significant responses in the
clinic. Although approaches to enhance the delivery of the vec-
tors have met only limited success, recent clinical results with
T-Vec and Pexa-Vec clearly show that significant improvements
have been made in the anti-tumor activity of the vectors, espe-
cially when intratumoral delivery is employed. This has apparently
been achieved through a combination of use of a faster replicating
backbone and expression of an immune stimulating transgene.
It is felt to be unlikely that significant additional advantage will
be achieved through further enhancing replication potential with-
out safety concerns being raised. The main avenue for further
enhancing therapeutic potential may therefore be through care-
ful enhancement of the interaction of the vectors with the host
immune response. In this respect, it may be possible to learn from
the advances made recently in the fields of vaccine development
and cancer immunotherapy. However, it is also clear that sim-
ply activating immune stimulation will be unlikely to result in
improved therapeutic activity, instead leading to reduced oncolytic
activity through rapid clearance of the virus, possible with reduced
induction of anti-tumor immunity. Instead, the most promising
approaches look to redirect or subtly manipulate the immune
response. This goal is complex and relies on inducing an increased
recognition of weak tumor antigens with less targeting of typi-
cally much stronger viral antigens; increased CTL induction, with
reduced humoral response; all while having minimal effects on
viral oncolytic activity. However, recent pre-clinical data indicate
that some major advances have been made in achieving these goals
and there is renewed hope that next generation clinical vectors will
significantly improve responses in a variety of cancer patients.
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