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Radiation dose in the setting of chemo-radiation for locally advanced non-small cell lung
cancer (NSCLC) has been historically limited by the risk of normal tissue toxicity and this has
been hypothesized to correlate with the poor results in regard to local tumor recurrences.
Dose escalation, as a means to improve local control, with concurrent chemotherapy has
been shown to be feasible with three-dimensional conformal radiotherapy in early phase
studies with good clinical outcome. However, the potential superiority of moderate dose
escalation to 74 Gy has not been shown in phase III randomized studies. In this review,
the limitations in target volume definition in previous studies; and the factors that may be
critical to safe dose escalation in the treatment of locally advanced NSCLC, such as respira-
tory motion management, image guidance, intensity modulation, FDG–positron emission
tomography incorporation in the treatment planning process, and adaptive radiotherapy,
are discussed. These factors, along with novel treatment approaches that have emerged
in recent years, are proposed to warrant further investigation in future trials in a more
comprehensive and integrated fashion.

Keywords: image guidance, intensity-modulated radiotherapy, NSCLC, adaptive radiotherapy, proton therapy

INTRODUCTION
Concurrent chemo-radiation is the standard of care in the man-
agement of non-small cell lung cancer (NSCLC) after its supe-
riority over radiotherapy alone or sequential chemo-radiation
has been demonstrated in multiple phase III randomized trials
(1–5). In a meta-analysis of 1205 patients with locally advanced
NSCLC from six randomized studies, concurrent chemo-radiation
decreased loco-regional progression by 6.1% at 5 years when com-
pared with sequential chemo-radiation (28.9 vs. 35.0%, p= 0.01)
(6). This resulted in an improvement in overall survival of 4.5% at
5 years (15.1 vs. 10.6%, p= 0.004) and as suggested by the authors
of this study, survival may be directly related to loco-regional
control. The risk of regional failure, i.e., in the mediastinum, is
relatively low after chemo-radiation to a dose of approximately
60 Gy with conventional fractionation (5, 7); in contrast, the rate
of local failure remains relatively high. As such, it seems reason-
able to propose that techniques to improve primary tumor control
through dose escalation may be one strategy to improve treatment
outcome in locally advanced NSCLC.

Dose escalation in the treatment of stage I–III NSCLC has
been shown to be feasible in multiple institutional and early phase
prospective studies (8–11). Among them, the radiation dose has
been found to be a significant predictor of local control and
survival by many (8–10). Based on the clinical outcome from a

University of Michigan study, 84.5 Gy was found to be required
to achieve a local progression free survival (LPFS) of 50% at
30 months in patients with NSCLC (12). Further radiobiological
modeling has suggested that a biologically effective dose (BED) of
over 100 Gy10 is required to achieve a LPFS of ≥80% at 30 months
in the treatment of NSCLC (13). This has been validated clinically
in the treatment of early stage NSCLC with stereotactic ablative
radiotherapy (SABR), which is also referred to as stereotactic body
radiation therapy (SBRT) (14–16). In locally advanced NSCLC,
every 1 Gy10 in dose escalation was found to be associated with a
4% increase in survival and a 3% increase in loco-regional control
in past chemo-radiation trials conducted by the Radiation Ther-
apy Oncology Group (RTOG) (17). When combined with weekly
carboplatin and paclitaxel, a maximally tolerated dose (MTD)
of 74 Gy delivered with three-dimensional (3D) technique was
found in a phase I/II RTOG study, RTOG 0117 (18). Inoperable
patients with stage I–III NSCLC were included in this study, and a
median survival of 21.6 months was observed in stage III patients.
In a similar phase II study, a median survival of 24.3 months
in stage III NSCLC patients was observed after induction car-
boplatin/paclitaxel followed by concurrent carboplatin/paclitaxel
and radiation to 74 Gy (19).

Based on early clinical evidence, a phase III randomized dose
escalation trial (RTOG 0617) was conducted by the RTOG. In
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this study, patients were randomized to chemo-radiation to 60
vs. 74 Gy, and with or without Cetuximab (four arms) (20).
Despite the anticipated improvement in clinical outcome with
dose escalation, it actually resulted in inferior median survival
(19.5 vs. 28.7 months, p= 0.0007) and an increase in local fail-
ure at 18 months (34.3 vs. 25.1%, p= 0.0319). In addition, dose
escalation also resulted in an increase in grade 3 esophagitis (20.9
vs. 7.0%, p= 0.0003). The causes of poorer outcome in the 74-Gy
arms remain to be discerned. However, several factors may poten-
tially contribute to this finding, such as, larger-than-necessary
planning target volume (PTV) in patients receiving 3D conformal
radiotherapy (3D-CRT), which potentially leads to increased nor-
mal tissue toxicity; suboptimal target volume delineation when
18F-fluorodeoxyglucose (FDG) positron emission tomography
(PET) information is not incorporated in the treatment planning
process; failure to account for tumor shrinkage during the course
of radiotherapy; and delayed tumor cell repopulation associated
with prolonged overall treatment time. These can potentially be
minimized with image-guided, intensity-modulated radiotherapy
(IG-IMRT),and adaptive radiotherapy (ART),which may improve
the efficacy of dose escalation in the treatment of locally advanced
NSCLC in future clinical trials.

TARGET VOLUME IN RELATION TO CLINICAL OUTCOME AND
TOXICITIES
In the treatment of locally advanced NSCLC with chemo-
radiation, large tumor margins are often used to account for
respiratory motion and set up uncertainties in the era of conven-
tional and 3D radiotherapy (Table 1). With the addition of elective
nodal irradiation (ENI), an even larger volume of normal tissue is
included within the treated volume. As shown in Table 1, multiple
clinical trials investigating the efficacy of sequential and concur-
rent chemo-radiation frequently used margins of 1.5–2 cm for the
primary tumor. ENI was often carried out in these studies with
inclusion of the bilateral hilum, mediastinum, and the ipsilateral
supra-clavicular fossa in the initial radiation field, which extended
4–5 cm below the carina (3–5, 21–23). In these studies, dose to the
gross disease has been limited to approximately 60 Gy with poor
clinical outcome and fatal treatment related toxicities reported.
Concurrent chemo-radiation prior to RTOG 0617 often led to
a local control of 60–83%, while the median survival with con-
current chemo-radiation often increased to >15 months (3–5).
Among them, seven late fatal pulmonary toxicities were observed
in RTOG 9410, which demonstrated no significant improvement
in local control and only marginal improvement in median sur-
vival with concurrent chemo-radiation over sequential chemo-
radiation (5). These findings suggest that the large tumor volumes
treated in the past not only precludes dose escalation to the pri-
mary tumor, but also increase the risk of severe treatment related
toxicity.

Elective nodal irradiation, which for the most part involves
treating areas of mediastinum that do not exhibit tumor as deter-
mined by imaging, has been shown to be unnecessary in the era of
3D-CRT. For example, a study by Rosenzweig et al. only identified a
6.1% elective nodal failure among 524 NSCLC patients who under-
went radiotherapy to a mean dose of 66 Gy after a median follow up
of 41 months (24). In a randomized prospective study byYuan et al.

no statistically significant difference in the rate of elective nodal
failure at 5 years following ENI (4%) and involved field irradiation
(7%) was observed in stage III NSCLC patients who received con-
current chemo-radiation (25). However, involved field irradiation
led to a reduction in radiation pneumonitis (RP) (mainly grade
2–3) from 29 to 17% (p= 0.044), and dose escalation from 60–
64 to 68–74 Gy. This dose escalation led to statistically significant
improvement in local control (55 vs. 38%, p= 0.016) and median
survival (20.0 vs. 15.0 months, p= 0.048). With omission of ENI,
dose escalation to 74 Gy with 3D techniques was found to be fea-
sible in RTOG 0117 and CALGB 30105 (18, 19). However, a high
rate of severe toxicity was still observed (Table 1). In this regard,
the increased toxicity associated with dose escalation was corrob-
orated by findings in RTOG 0617. This may be associated with the
limitations of 3D techniques as 3D-CRT without image guidance
was allowed in RTOG 0617, which often resulted in sizable gross
tumor volume (GTV) to PTV expansion margins (26). Based on
these studies, it is proposed that increasing expansion size may
also increase the risk of severe treatment related toxicity in the
high dose arm of RTOG 0617, which could potentially contribute
to the observed decrease in patient survival.

STRATEGIES TO IMPROVE TARGET VOLUME DEFINITION
THROUGH ADAPTIVE IMAGE-GUIDED IMRT
RESPIRATORY MOTION AND IMRT
The high incidence of loco-regional failures in NSCLC following
radiotherapy may be associated with a high rate of tumor local-
ization error during treatment (27). Such geometric errors may
be minimized when respiratory motion is taken into considera-
tion. Lung tumor motion associated with respiration has been well
illustrated in multiple studies. In this regard, Seppenwoolde et al.
showed that lower lobe tumors, not attached to any rigid thoracic
structures, had increased cranial–caudal motion, as compared to
upper lobe tumors or tumors attached to rigid structures dur-
ing treatment (12± 6 vs. 2± 2 mm, p= 0.005) (28). In addition,
anterior–posterior tumor motion of >5 mm could be observed
in tumors located in the anterior or middle thorax and tumor
motion was further complicated by hysteresis. In another study
by Liu et al., cranial–caudal motion of >5 mm and ≥1 cm can be
observed in 30 and 10% of patients with stage III NSCLC, which
is associated with diaphragmatic movement of 1.53 cm on average
(29). In a report by the AAPM task group 76, several strategies
have been recommended to account for and control respiratory
motion, which may be distinct for each individual patient (30).

One commonly used strategy to account for respiratory motion
in the treatment of locally advanced NSCLC is 4D CT based treat-
ment planning. Through 4D CT based planning, the range of
tumor motion and changes in tumor volume through the entire
breathing cycle can be more appropriately and reliably accounted
for (29, 31–33). Also, it can potentially decrease the volume of nor-
mal tissue included in the PTV and this might be one technique to
safely allow for dose escalation to the primary tumor (31). As such,
it seems reasonable to suggest that improved accuracy in tumor
localization throughout the respiratory cycle could improve tumor
control probability (TCP) as “geometric tumor miss” is reduced.
In this regard, the maximum intensity projections (MIP) recon-
structed from a 4D data set, which reflects the brightest object
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Table 1 |Target volume, toxicity, and clinical outcome in selected phase III randomized trials and phase I/II dose escalation trials combining

chemotherapy and radiation for locally advanced NSCLC.

References Radiotherapy

technique

Tumor margin/

target volume

expansion

ENI Radiation

dose

Severe RT related

toxicity

Local control Median survival

(months)

PHASE III

Dillman et al. (21) 2D 1.5 cm Yes 60 Gy 1% (esophagitis,

pneumonitis) in each arm

OR: ChemoRT

56%

RT 43%

(p=0.092)

ChemoRT 13.7

(p=0.034)

RT 9.6

Sause et al. (22) 2D 2 cm Yes 60,

69.6 Gy (bid)

Two radiation related

deaths on ChemoRT and

hyperfrx arms (1 on each

arm)

RT 11.4

ChemoRT 13.2

(p=0.04)

Hyperfrx RT 12

Le Chevalier et al. (23) 2D 1–1.5 cm Yes 65 Gy Eight treatment related

fatal toxicities

At 1 year:

RT 17%

ChemoRT 15%

RT 10

ChemoRT 12

(p=0.02)

Furuse et al. (3) 2D 1.5 cm Yes 56 Gy No >grade 3 esophagitis,

1 grade 4 pulmonary

toxicity on each arm

OR: concurrent

84.0%

Sequential 66.4%

(p=0.0002)

Concurrent 16.5

(p=0.03998)

Sequential 13.3

Zatloukal et al. (4) 3D 1.5–2 cm Yes 60 Gy Severe acute esophagitis

(p=0.009):

sequential 4%

Concurrent 18%

Local only

(p=NS):

sequential 42%

Concurrent 60%

Sequential 12.9

Concurrent 16.6

Curran et al. (5) 2D 2–2.5 cm Yes 63; 69.6 Gy

(bid)

Acute esophagitis

(p < 0.001):

sequential 4%

Concurrent 22%

Concurrent hyperfrx 45%

Late severe pulmonary

toxicities: no difference

between three arms

(13–17%)

Seven late fatal

pulmonary toxicities

observed in this study

Sequential 61%

Concurrent 70%

Concurrent

hyperfrx 71%

(p=NS)

Sequential 14.6

Concurrent 17.0

Concurrent

hyperfrx 15.6

Nyman et al. (7) 3D CTV: 1.5–2 cm No 64.6 Gy (bid);

60 Gy

Severe esophagitis:

concurrent hyperfrx 20%

Concurrent, daily 8%

Concurrent, weekly 19%

Severe pneumonitis:

concurrent hyperfrx 0

Concurrent, daily 3%

Concurrent, weekly 3%

Concurrent

Hyperfrx 78%

Concurrent, daily

78%

Concurrent,

weekly 83%

Concurrent

Hyperfrx 17.69

Concurrent, daily

17.68

Concurrent,

weekly 20.63

Bradley et al. (20) 3D/IMRT CTV: 0.5–1 cm;

ITV (no 4D):

0.5–1 cm

PTV: 0.5–1 cm

No 60 Gy;

74 Gy

Increased grade 5 toxicity

observed with 74 Gy

18-month local

failure: 60 Gy

25.1%

74 Gy 34.3%

(p=0.0319)

60 Gy 28.7

74 Gy 19.5

(Continued)
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Table 1 | Continued

References Radiotherapy

technique

Tumor margin/

target volume

expansion

ENI Radiation

dose

Severe RT related

toxicity

Local control Median survival

(months)

PHASE I, II

Bradley et al. (18) 3D GTV–PTV:

1–1.5 cm

No 74 Gy Grade 5 acute toxicity

4%

Late grade 3–4 toxicities

20%

21.6 (stage III)

Socinski et al. (19) 3D CTV 0.5–2 cm;

PTV: 1 cm

No 74 Gy Grade 3 acute

esophagitis 16%

Grade 3–5 pulmonary

toxicity 16%

54% 24.3

NSCLC: non-small cell lung cancer; ENI: elective nodal irradiation; 2D: two-dimensional; 3D: three-dimensional; IMRT: intensity modulated radiotherapy; Hyperfrx:

hyperfractionated; bid: twice daily; RT: radiotherapy; ChemoRT: chemo-radiation; OR: objective response.

along each ray on the projection image, may be used for the gener-
ation of the internal target volume (ITV) (34) that includes tumor
motion into the radiation planning process. However, the outer
excursion of respiratory motion may be underestimated by MIP
in more advanced tumors and in the setting of irregular breath-
ing patterns by approximately 20% as reported in previous studies
(35–37). Thus, the ITV should be generated based on all available
4D CT data.

The utility of 4D CT combined with thoracic IMRT in the
treatment of locally advanced NSCLC with chemo-radiation was
shown to lower treatment related toxicity and improve patient sur-
vival when compared to 3D-CRT in a study from MD Anderson
Cancer Center (38). This may be associated with dosimetric advan-
tages of IMRT over 3D-CRT in dose conformity and the sparing
of normal organs at risk (OARs) (39–41). As shown by Lievens
et al., IMRT can result in significant reduction in the dose to the
normal lungs and the spinal cord when compared to 3D-CRT (41).
This led to the safe escalation of the prescribed dose (66 Gy in 33
daily fractions) by 8.6–14.2 Gy. Therefore, IMRT may be a strategy
for dose escalation in the treatment of locally advanced NSCLC
in selected patients through its ability to control radiation dose
to critical OARs. This is also suggested by a quality of life (QoL)
analysis of RTOG 0617, which demonstrated that the use of IMRT
in the setting of dose escalation may improve patients’ QoL, which
has been correlated with overall survival (42). Dose escalation with
the use of IMRT alone remains to be further investigated in future
studies.

IMAGE GUIDANCE WITH CONE-BEAM CT (CBCT)
Intensity modulated radiotherapy can be used to achieve highly
conformal dose distribution with sharp dose gradients and careful
daily tumor localization should ensure accurate dose delivery with
maximal reduction of treatment margins used for target volume
delineation (43–45). This is especially important for dose escala-
tion as radiotherapy often requires 6 weeks or greater to complete
in the setting of chemo-radiation for locally advanced NSCLC.
In this regard, various image guidance strategies have been pro-
posed and are in clinical use currently (30, 46). Tumor volume,

its geometric relation to surrounding OARs, and any anatomical
changes during a course of radiotherapy are best imaged with vol-
umetric imaging techniques such as kV or MV cone-beam CT
(CBCT). KV CBCT often provides superior soft tissue resolution
with compared with MV CBCT due to the prevalence of photoelec-
tric absorption interactions associated with lower beam energies
(47). However, MV CBCT may be more helpful in the imaging of
regions with high density materials, which produce artifacts in kV
CT images (46, 47). As shown by Bissonnette et al., kV CBCT can
reduce the set up margin for geometric uncertainties to 3 mm for
locally advanced NSCLC patients (48). Such small margin can be
safely used under daily image guidance, which reduce set up errors
of≥5 mm from 20–43 to 6% when compared with less-than-daily
image guidance (49). Thus, daily image guidance is critical for
the safe maximal reduction of set up margins when IGRT, or IG-
IMRT is delivered; which will also maximize the possibility of safe
dose escalation to the highest dose possible. When compared to
other forms of image guidance, kV CBCT was found to be asso-
ciated with more reliable tumor localization and smaller set up
errors (50, 51) and this advantage appears to be most prominent
with image registration based on soft tissue in addition to rigid
bony registration (51, 52). However, tissue resolution and motion
artifacts continue to be a concern for the use of CBCT in the
setting of locally advanced NSCLC. These issues may be mini-
mized by 4D CBCT, which remains to be further investigated in
the clinical setting (53). One caveat for the clinical adaptation of
image-guided IMRT is that there is always a risk for underesti-
mating the range of tumor motion at the time of CT simulation
due to the random occurrence of irregular breathing patterns (e.g.,
random deep inspiration) during the actual delivery of a course
of conventionally fractionated radiotherapy. This may potentially
lead to the under-dosing of the gross tumor in selected situations
of dose painting as very sharp dose gradients are generated at the
edge of the tumor targets with intensity modulation. Respiration
motion management strategies, such as forced shallow breathing
with abdominal compression, may reduce the risk for such geo-
metric misses by limiting diaphragmatic motion to within 5 mm
during daily treatment.
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THE ROLE OF FDG–PET IN TARGET VOLUME DELINEATION
FDG–PET/CT has been increasingly incorporated into the treat-
ment planning process to further increase the accuracy of target
volume delineation in recent years. FDG–PET imaging is achieved
through the detection of a pair of γ rays (511 keV each) that are
produced in positron annihilation, which are emitted in 180° to
each other (54). FDG–PET is associated with superior sensitivity
and specificity (83 and 91%) for tumor detection when compared
to CT (64 and 74%) (55). Therefore, PET may provide information
for target volume delineation that may be otherwise not available
with CT alone.

When compared with CT based treatment planning, PET reg-
istered to the planning CT was shown to alter tumor staging in
31% of the patients with stage I–III NSCLC by Bradley et al.
(56). In this study, the addition of FDG–PET information resulted
in alterations of the treatment volumes in 58% of the patients
who were planned for 3D-CRT. Such alterations resulted from
the identification of additional regional or parenchymal disease;
and the improved tumor definition in the setting of atelectasis,
which decreases the unnecessary inclusion of normal lung tissue
in the GTV and these findings were corroborated in other stud-
ies (57, 58). Also, increased PTV volume, due to the additional
nodal disease found with FDG–PET, does not necessarily increase
the normal tissue complication probability; while PET data may
improve the chance of local control by reducing the likelihood
of geometric misses (57). Therefore, the inclusion of FDG–PET
information in the treatment planning improves the accuracy of
tumor volume delineation, which is critical in the optimization of
TCP through IG-IMRT. In addition, PET may lead to nodal GTV
reduction and lower doses to the OARs for stage III NSCLC when
compared with treatment planning with CT alone, possibly lead-
ing to significant iso-toxic dose escalation (59, 60). Based on the
evidence illustrated above, FDG–PET inclusion in the treatment
planning process may be required in future dose escalation trials
for locally advanced NSCLC.

ADAPTIVE IMAGE-GUIDED IMRT
Tumor shrinkage through a course of conventionally fractionated
radiotherapy has been well characterized in multiple studies (61–
64). In one study, a median GTV reduction of 24.7% after 30 Gy,
and 44.3% after 50 Gy was observed in 22 patients with stage I–
III NSCLC (78% stage III, 68% squamous cell carcinoma, and
68% underwent concurrent chemo-radiation) (63). In an analy-
sis of 4D CT data collected before and during radiotherapy of
at least 6 weeks from patients with stage I–III NSCLC, tumor
shrinkage of ≥40% by the end of radiotherapy was observed
in 50% of the patients (mainly stage III) (64). Also, increased
tumor motion in the cranio-caudal direction increased in half of
the patients as tumors shrunk. The observed changes may have
an impact on PTV dose coverage and OAR sparing in the treat-
ment of locally advanced NSCLC (62, 65). Therefore, re-planning
or ART based on changes observed through daily image guid-
ance is warranted in the treatment of locally advanced NSCLC,
which may further maximize safe dose escalation to the gross dis-
ease. This may be especially important for IG-IMRT due to the
sharp dose gradient generated and small margins for geometric
uncertainties used.

Altered fractionation has been previously shown to improve
local control and overall survival in the treatment of locally
advanced NSCLC (66). This is also supported by the observed clin-
ical outcome following hypo-fractionated radiotherapy for early
stage NSCLC (16, 67). Altered fractionation is especially appealing
in the setting of dose escalation, as prolonged course of radiother-
apy can lead to increased geometric uncertainties, and impairment
of local control due to accelerated tumor cell repopulation, which
may partially explain the results observed in RTOG 0617 (13, 65).
This is also supported by previous RTOG studies on concurrent
chemo-radiation, which demonstrated a 2% increase in the risk
of death for each day in the prolongation of therapy (68). A dose-
per-fraction escalation strategy has been previously proposed to
overcome the negative impact of tumor cell repopulation encoun-
tered when the total tumor dose is escalated with conventional
fractionation. As modeled by Welsh et al., the TCP can be increased
to >80% with this strategy in approximately 5 weeks, which would
require 100 Gy to be delivered over 10 weeks with conventional
fractionation (69).

Early phase and retrospective studies on altered fractionation
for radiotherapy alone or combined with chemotherapy in the
treatment of stage III NSCLC have shown the feasibility of this
strategy (70–78). This is especially true for chemo-radiation deliv-
ered with IGRT (74–78). As shown in Table 2, excellent median
survival and local control have been frequently observed when
hypofractionated, image-guided IMRT was delivered with con-
current chemotherapy. However, severe RP may occur with this
approach if low dose irradiation of the normal lungs was not care-
fully constrained (74, 75). This was shown by Song et al., who
observed four RP related deaths following image-guided IMRT
delivered with helical tomotherapy (HT) (75). In this study, the
rate of ≥grade 3 RP increased from 0 to 35%, when the volume of
the contralateral lung receiving 5 Gy (V5) was increased to above
60% (p= 0.010). This is corroborated in a study by Kim et al.,
which identified the ipsilateral V5, V10, V15, and the contralateral
V5 to be significant predictors of RP following HT based IGRT
(79). This observation may be partially due to the fan-beam nature
of IMRT delivery with HT, which leads to increased low dose irra-
diation of the normal tissue (80). However, the importance of
normal lung sparing from low dose irradiation was observed fol-
lowing linac based IMRT as well, suggesting this to be independent
from methods of radiation delivery (81).

One strategy to reduce treatment related toxicities associated
with hypo-fractionated radiotherapy may be simultaneously inte-
grated boost (SIB) to the gross tumor through FDG–PET based
dose painting and the utility of adaptive IG-IMRT. This is sug-
gested in a dosimetric study of 13 patients with stage III NSCLC
(82). In this study, IMRT was shown to reduce the mean lung
dose; furthermore, adaptive IMRT with SIB was shown to be
superior to 3D-CRT or IMRT alone in dose escalation for larger
GTVs, and was able to achieve maximal iso-toxic dose escalation
of 17.1± 10.1%, which increased TCP by 17.2% on average. This
is consistent with image-guided IMRT with the SIB technique that
has been previously shown to be feasible by Song et al. (75), and
the utilization of adaptive IG-IMRT with SIB in the treatment of
locally advanced NSCLC warrants further investigation in future
dose escalation trials.
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Table 2 | Chemo-IGRT for locally advanced NSCLC.

Reference RT technique Dose Clinical outcome Toxicity

Bral et al. (75) HT PTV 70.5 Gy/30

fractions

MS:

Stage IIIA vs. III B (21 vs.

12 months, p=0.03).

2-year LPFS: 50%

Late lung toxicity

Grade 2 23%

Grade 3 16%

Two deaths due to grade 5 RP

Song et al. (76) SIB with HT GTV: 60–70.4 Gy

(2–2.4 Gy/fraction)

PTV: 50–64 Gy

(1.8–2 Gy/fraction)

Stage III

2 year LC 62% (78% with C-Ch)

MS not reached 2 year OS 59%

(75% with C-Ch)

Only 1 in-field failure was observed

Acute: 14% with grade 3

esophagitis

Late: 11% with grade 5 treatment

related pneumonitis

V5 of contralateral lung is a

significant predictor of severe RP

(p=0.029)

Osti et al. (77) 3D-CRT under kV

CBCT image guidance

PTV 60 Gy/20

fractions

Local failure: 37%

MS (stage III): 13 months

No patient with >grade 3 treatment

related toxicities

Bearz et al. (78) HT 60 Gy/25 fractions ORR: 84%

MS: 24 monthsa

No RP reported

No >grade 3 esophagitis

Donato et al. (79) HT 67.5–68.4 Gy/30

fractions

Progression in 26%

MS 24.1 months (C-Ch)

Acute grade 3 RP 10%

Late grade 3 RP 5%

No >grade 3 toxicity observed

aInduction+ concurrent chemotherapy; SIB, simultaneously integrated boost; HT, helical tomotherapy; 3D-CRT, 3D conformal radiotherapy; C-Ch, concurrent

chemotherapy; LC, local control; OS, overall survival; MS, median survival; LPFS, local progression free survival; RP, radiation pneumonitis.

NOVEL USE OF A STEREOTACTIC BOOST AND PROTON
THERAPY
Tumor shrinkage after a course of conventionally fractionated
radiotherapy may allow for the delivery of a stereotactic boost
to the primary tumor in selected patients. In a study by Feddock
et al., 10 Gy× 2 fractions, or 6.5 Gy× 3 fractions were delivered
following chemo-radiation to a median dose of 59.4 Gy in the
treatment of stage II–III NSCLC (83). Although well tolerated in
patients with peripheral primary tumors, two deaths due to fatal
pulmonary hemorrhage occurred in patients with central lesions.
Six local recurrences were observed among 35 patients after a
median follow up of 13 months, which corresponds to an actu-
arial local control of 82.9%. These preliminary results suggest the
feasibility of this treatment approach in selected patients, however,
patient selection and the most optimal dose fractionation schedule
to be used in this setting remains to be further investigated.

Proton therapy has been increasingly investigated in the treat-
ment of lung cancer in recent years due to its advantage in normal
tissue sparing over photon therapy (84). In the interaction with
tissue, protons enter with lower dose than photon, and deposit
the majority of their energy at a certain depth (Bragg peak)
with very little exit dose. To be clinically useful, several Bragg
peaks can be super-positioned to create a spread-out Bragg peak
(SOBP) to cover a specific tumor volume with a desired dose.
When compared with photon therapy (3D-CRT or IMRT), pro-
ton therapy was shown to significantly reduce the dose to the
thoracic OARs, which allowed dose escalation from 63 to 74 Gy
within the boundaries of accepted normal tissue dose constraints
in stage III NSCLC (85). Intensity-modulated proton therapy

(IMPT) may further improve OAR sparing in stage IIIB NSCLC
patients, which increases the possibility of dose escalation when
compared to IMRT (63–83.5 Gy), and passive scattering proton
therapy (PSPT) (74–84.4 Gy) (86). ART may also be indicated in
the delivery of PT to improve OAR sparing and target volume cov-
erage (87). In a retrospective study of PT for patients with stage
II–III NSCLC, local control of 88.6% was achieved following a
median follow up of 16.9 months (88). In this study, a median dose
of 78.3 Gy was delivered without any ≥grade 3 toxicity observed.
In a phase II study of concurrent chemotherapy and PSPT (74 Gy)
for stage III NSCLC, local control of 79.5% and a median over-
all survival of 29.4 months were observed after a median follow
up of 19.7 months (89). In this study, isolated local failure was
observed in only 9.1% of the patients, while no grade 4–5 toxi-
city was observed. While comparable to what is observed in the
standard arm of RTOG 0617 in median survival, this may be fur-
ther improved with adaptive IG-IMPT, which needs to be further
investigated in future studies. Due to the unique physical proper-
ties of protons, dose distribution in IMPT is very sensitive to tumor
motion in relation to the treatment beam scanning motion, which
is known as the interplay effect (90). Range uncertainties produced
by the interplay effect may lead to under-dosing of the tumor or
increased dose to the OARs immediately beyond the range of the
proton beam. To account for interplay uncertainties, 4D treat-
ment planning, larger spot size, and fractionated dose schedules
have been advocated (91–93). Recently, image guidance for range
verification during proton therapy has been shown to be feasible
with in-room PET imaging (94). This along with strategies to over-
come interplay uncertainties in proton therapy warrants further
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investigation. However, early clinical experience with proton ther-
apy in the setting of dose escalation for locally advanced NSCLC
appears promising.

Although not widely studied, delivering SABR to small periph-
eral primary tumors and conventionally fractionated radiother-
apy combined with concurrent chemotherapy to regional nodal
disease in selected cases of locally advanced NSCLC has been
endorsed and clinically used by many thoracic Radiation Oncolo-
gists. The local control of the primary tumor may be potentially
improved as suggested by clinical outcome from SABR for early
stage NSCLC (16). At the same time, the regional disease can
be addressed with concurrent chemo-radiation. SABR combined
with concurrent chemo-radiation, as definitive treatment or a
boost to the primary disease, will be suitable for a selected group of
patients only. As the mediastinum contains many critical normal
structures, which may be at a risk for overdosing along with the
lungs if the primary tumor is in their proximity.

CHEMOTHERAPY IN THE SETTING OF DOSE ESCALATION
Combining chemotherapy with radiotherapy has been shown to
improve local control and patients’ overall survival in previous
trials (1, 95). However, chemotherapy, especially taxane-based reg-
imens, has been associated with increased incidence of severe RP
(96–99). Severe RP was observed in 47% of the patients treated
with concurrent weekly docetaxel and conventionally fraction-
ated radiotherapy to 60–66 Gy delivered with 2D techniques in
a phase II study (96). This observation was dose independent,
but correlated with the size of initial radiation portals. Consolida-
tion docetaxel was also found to be correlated with increased risk
of grade 2–5 RP (14.6 vs. 3.6%, p= 0.015) following concurrent
chemo-radiation in the retrospective review of the dosimetric data
from a randomized prospective study (97). In this study, the mean
lung dose was also significantly correlated with the incidence of
RP. Furthermore, the increased risk of RP with chemotherapy may
be more prominent in patients who are older (98, 99). Therefore,
special attention may be necessary to keep the treated volume
to as small as possible to minimize the amount of normal lung
tissue irradiated to the full dose, which may be especially impor-
tant in patients who are older than 65 years (99). For the purpose
of dose escalation in the setting of chemo-radiation, this may be
best accomplished with modern techniques of respiratory motion
management and image guidance used in the context of various
emerging treatment strategies discussed above.

CONCLUSION
Adaptive, image-guided IMRT, when delivered with appropriate
respiratory motion management strategies, can effectively reduce
the tumor target volume while accurately localize the tumor dur-
ing a course of chemo-radiation. This allows for dose escalation
to the gross disease in the treatment of locally advanced NSCLC
as less normal tissue is being irradiated to the prescribed dose.
This strategy can be further enhanced with the incorporation
of FDG–PET in target volume definition. The utility of stereo-
tactic ablative therapy as a boost or definitive treatment for the
primary tumor appears to be feasible in selected patients, while
proton therapy, and especially IMPT, appears to be promising
and may be superior to photon therapy in dose escalation for

the treatment of locally advanced NSCLC. These new treatment
approaches remain to be further studied in future clinical trials.
Here, we propose the following strategies to be further investi-
gated in selected patients in future trials with respiratory motion
management and the incorporation of FDG–PET in the treatment
planning required:

(1) Adaptive image-guided IMRT or IMPT delivered in a simul-
taneously integrated fashion with concurrent chemotherapy.

(2) Stereotactic boost to the primary tumor to be delivered prior
or after a standard course of concurrent chemo-radiation
to 60 Gy, or given in between a split course of concurrent
chemo-radiation that is hypofractionated, image-guided, and
intensity modulated.

(3) Stereotactic ablative radiotherapy to the primary tumor to
be followed by concurrent chemotherapy and image-guided
IMRT to the regional nodal disease.
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