
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 27 October 2014

doi: 10.3389/fonc.2014.00291

Endoplasmic reticulum chaperones and oxidoreductases:
critical regulators of tumor cell survival and
immunorecognition
Tomás Gutiérrez andThomas Simmen*

Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada

Edited by:
Paul Eggleton, Exeter University
Medical School, UK

Reviewed by:
Amedeo Amedei, University of
Florence, Italy
Pedro Berraondo, Centro de
Investigación Médica Aplicada, Spain

*Correspondence:
Thomas Simmen, Department of Cell
Biology, Faculty of Medicine and
Dentistry, University of Alberta,
Medical Sciences Building Room 565,
Edmonton, AB T6G 2H7, Canada
e-mail: Thomas.Simmen@ualberta.ca

Endoplasmic reticulum (ER) chaperones and oxidoreductases are abundant enzymes that
mediate the production of fully folded secretory and transmembrane proteins. Resisting
the Golgi and plasma membrane-directed “bulk flow,” ER chaperones and oxidoreductases
enter retrograde trafficking whenever they are pulled outside of the ER by their substrates.
Solid tumors are characterized by the increased production of reactive oxygen species
(ROS), combined with reduced blood flow that leads to low oxygen supply and ER stress.
Under these conditions, hypoxia and the unfolded protein response upregulate their target
genes. When this occurs, ER oxidoreductases and chaperones become important regula-
tors of tumor growth. However, under these conditions, these proteins not only promote
the folding of proteins, but also alter the properties of the plasma membrane and hence
modulate tumor immune recognition. For instance, high levels of calreticulin serve as an
“eat-me” signal on the surface of tumor cells. Conversely, both intracellular and surface
BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the
properties of tumor tissue include protein disulfide isomerase (PDI), Ero1α and GRP94.
Understanding the roles and mechanisms of ER chaperones in regulating tumor cell func-
tions and immunorecognition will lead to important insight for the development of novel
cancer therapies.
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INTRODUCTION
The endoplasmic reticulum (ER) is the location of oxidative pro-
tein folding, a mechanism that enzymatically manufactures fully
folded secretory and transmembrane proteins. These two groups
of proteins make up about 10 and 20% of a typical mammalian
proteome, respectively (1). Ribosomally produced polypeptides
for these two groups of proteins are first targeted to the ER mem-
brane, where they interact with the Sec61 protein translocation
channel (translocon) using their signal peptide (2). At this loca-
tion, polypeptides undergo cytosolic folding that continues during
translocation to the ER lumen (3, 4). Subsequently, the interac-
tion with immunoglobulin binding protein (BiP/GRP78), a major
ER-lumenal chaperone, initiates the production of secretory and
transmembrane proteins (5, 6). If polypeptides are glycosylated
they subsequently interact with the lectin chaperones calnexin
and calreticulin (7), as well as oxidoreductases including protein
disulfide isomerase (PDI) and related family members such as
ERp57 (8). The oxidizing activity of these proteins is kept intact by
oxygen- or hydrogen-peroxide consuming oxidoreductases such
as Ero1α (9). Thus, ER chaperones and oxidoreductases cyclically
interact with the ongoing flow of polypeptides emerging from the
translocon. The flow of these proteins is massive. Using a vesicular
stomatitis virus G protein (VSVG) fusion with green fluorescent
protein (GFP), it has been estimated to amount to 7,000 molecules
per second for this model protein alone (10, 11).

This observation raises the question as to how cells handle this
quantity of export and how they ensure that exported proteins
are segregated from resident ER chaperones and oxidoreductases.
Early research using glycosylated short peptides had indicated
that ER–Golgi trafficking occurs via non-specific “bulk flow” (12).
However, this intuitive model may not be correct, since positive
signals are not only needed for export from the ER (13, 14), but
also for transit toward the Golgi complex (15). Moreover, secretory
proteins are actually actively excluded from retrograde trafficking,
which describes the trafficking route from the Golgi complex back
to the ER (15). Conversely, most ER oxidoreductases and chap-
erones are equipped with a C-terminal KDEL motif that serves
to interact with the KDEL receptor, a retrieval receptor that re-
establishes ER localization for proteins with such a motif (16, 17).
Therefore, given these efficient retention mechanisms, it makes lit-
tle sense that tumor immunorecognition should be influenced by
ER-restricted chaperones and oxidoreductases, when this mecha-
nism is dictated by the properties of the cell surface. Nevertheless,
in a cancer setting, proteins of this group can become localized
to the plasma membrane or even secreted (18). When this occurs,
ER oxidoreductases and chaperones become important regulators
of tumor growth, but also of tumor immune recognition. For
instance, the escape of calreticulin from the ER leads to the gen-
eration of an “eat-me” signal on the surface of tumor cells (19).
Surface BiP/GRP78 is a target for antibody-based experimental
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therapies as well (20, 21). Understanding how these proteins tar-
get to the plasma membrane could therefore lead to important
insight for the development of immune-based cancer therapies.

ER RETRIEVAL OF CHAPERONES AND OXIDOREDUCTASES
To ensure their residence to the ER and their availability for further
work on newly synthesized polypeptides, chaperones and oxidore-
ductases are continually recycled back to the ER (22). Lumenal ER
chaperones and oxidoreductases use the lysine-based C-terminal
KDEL sequence for this purpose to interact with the KDEL recep-
tor, a sorting receptor that cycles between the Golgi complex and
the ER, first discovered by the Pelham lab in 1990 (16, 17). The
KDEL receptor is part of a group of transmembrane proteins that
all retrieve luminal ER proteins (23). These transmembrane recep-
tor proteins typically use cytosolic, C-terminal lysine-based motifs
(KKXX) to travel from the Golgi complex to the ER on a retro-
grade trafficking route (24). One example is the KKFF motif in the
case of the lectin ERGIC53 (25).

KKXX motifs retrieve ER transmembrane proteins by medi-
ating interaction with the coatomer protein complex, also called
COPI (26). This is a multi-subunit protein complex composed
of seven distinct proteins termed coatomer whose subunits are
termed α, β, β′, γ, δ, ε, and ζ COPs (27). The binding of dilysine-
bearing cargo molecules on α and β′ subunits nucleates the forma-
tion of COPI coats (28, 29). This step also requires the activation
of ADP-ribosylation factor 1 (Arf1) (30). Upon pinching off from
within the Golgi complex or the ER–Golgi intermediate compart-
ment (ERGIC), retrograde vesicles are uncoated, following GTP
hydrolysis on Arf1 mediated by Arf GTPase activating proteins
(ArfGAPs) 1, 2, and 3 (31). These vesicles then migrate into the
proximity of the ER. Here, a Soluble NSF Attachment Protein
Receptor (SNARE) complex becomes important for retrograde
trafficking. This trans-SNARE complex forms via Dsl1p (yeast) or
Zw10 (mammals) with incoming COPI-derived vesicles (32, 33).
These vesicles then fuse with the ER membrane at a site termed
ER import sites, whose existence so far has only been demon-
strated in plants (34). Trafficking from the Golgi complex to the
ER is also under the control of Ras-related GTPases, members
of a large regulatory protein family that serve as address tags
for intracellular trafficking (35). Rab6 and Rab2 likely work in
sequence to facilitate retrograde transport mediated by coatomer
and directed to the ER (36–38), whereas Rab18 might regulate
coatomer-independent trafficking from the Golgi to the ER (39).
Together, the retention of ER chaperones and oxidoreductases
clearly requires a large set of proteins, whose identity and mech-
anisms are now fairly well understood, despite some important
outstanding questions (40).

In addition to COPI-mediated retrieval, some ER chaper-
ones and oxidoreductases are retained in this organelle by other
retention mechanisms (41). One type of mechanism requires the
interaction of ER-resident proteins with COPI adaptors or helper
proteins, exemplified by the interaction of a calnexin cytosolic
acidic cluster motif with the sorting adaptor PACS-2 that dic-
tates the extent of calnexin ER retention (42). This is particularly
important, as calnexin does not have a canonical KKXX motif,
but rather a di-arginine-based C-terminal motif involved in its
retention (43).

Another way how ER transmembrane proteins are excluded
from ER export is by the length of their transmembrane domains.
This is demonstrated with artificial 17 transmembrane residue
constructs that are unable to enter ER exit sites (ERES), whereas
22 residue long transmembrane domains allow for inclusion
into Golgi-destined vesicles (44). The length of these transmem-
brane domains might facilitate inclusion into specific ER mem-
brane domains (44). Some ER proteins use their transmembrane
domains to enter a retrieval cycle similar to KDEL-tagged ER lume-
nal proteins. This is the case with sarcoendoplasmic reticulum
calcium transport ATPase (SERCA) (45). Some of these proteins
use the retrieval receptor Rer1 for their localization to the ER,
as is the case for rhodopsin or components of the γ-secretase
complex (46–48).

Endoplasmic reticulum lumenal chaperones and oxidoreduc-
tases further depend on the nature of the ER environment to
achieve their typical distributions (49). This phenomenon is best
understood for the ER oxidoreductase Ero1α (50). This lumenal
ER protein lacks a KDEL motif, but uses interactions with other ER
oxidoreductases (PDI and ERp44) to stay within the ER, but only
under oxidizing conditions (51, 52). A similar mechanism is used
by peroxiredoxin 4 (53). Less is known about the ability of Ca2+

binding domains to assist to ER retention, as is known to occur in
the case of the ER chaperone calreticulin (54). While the depletion
of ER lumenal Ca2+ is a known inducer of ER stress, the disrup-
tion of calreticulin ER localization is uniquely dependent on Ca2+.
Calreticulin is not secreted upon induction of an ER stress with, for
instance, tunicamycin (55). Potentially, this finding could indicate
a requirement of Ca2+ binding to achieve a retrievable confor-
mation of ER chaperones and oxidoreductases and specifically
calreticulin. Such a hypothesis would be consistent with known
alterations of protein conformation upon the loss of bound Ca2+

(56) and a general loss of chaperone–protein interactions within
the ER upon the loss of free Ca2+ (57, 58). Either consequence
could then lead to a loss of KDEL retrieval, either via masking
of the KDEL sequence or via saturation of KDEL receptors (59).
A similar Ca2+-dependent mechanism appears to determine the
retention of BiP/GRP78 in the ER (60, 61). Together, ER localiza-
tion of chaperones and oxidoreductases is lost or reduced upon
the interference with retrieval receptors, upon modulation of the
oxidative conditions of the ER and upon loss of ER Ca2+.

ER CHAPERONES AND OXIDOREDUCTASES ON THE PLASMA
MEMBRANE OF TUMOR CELLS
At first glance, the ER retention of chaperones and oxidoreduc-
tases appears like an abstract problem of interest only to very
specialized cell biologists. Although cell types such as thyrocytes
and immature thymocytes retain ER chaperones and oxidoreduc-
tases less efficiently, it is not known what the exact biological
significance of this finding is (62, 63). However, over the past
few years, information has emerged that ER chaperone and oxi-
doreductase retention in the ER is a critical sentinel mechanism
that signals ER stress to the immune system (64). This is not
unexpected, since ER chaperones such as calreticulin are func-
tionally linked to the immune system and mediate the folding of
major histocompatibility complex (MHC) class I (64). Through
this function, ER chaperones and oxidoreductases already exhibit
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a tight link to the immune system via the regulation of intracellu-
lar peptide presentation by MHC class I on the plasma membrane
(65). Accordingly, lost retention of ER chaperones and oxidore-
ductases upon ER stress impairs MHC class I expression on the
surface (66). Surprisingly, however, this is not the only conse-
quence. Calreticulin is normally enriched on the rough ER (rER)
(67, 68). However, in cells undergoing ER stress, in particular fol-
lowing the depletion of ER Ca2+, calreticulin, PDI, BiP/GRP78,
and GRP94 escape ER retention and retrieval (69). These cell
surface-exposed chaperones and oxidoreductases can present anti-
gens to the immune system (calreticulin, GRP94), serve as anchors
for leukocytes (PDI), but can also activate pro-survival signal-
ing pathways (BiP/GRP78) (18). In addition, ER stress generated
from lost ER localization of chaperones and oxidoreductases leads
to mitochondrial dysfunction and also triggers the activation of
the NLRP3 inflammasome (70). In an organism, these metabolic
and chemical changes lead to increased blood flow and leuko-
cyte delivery to cells, where ER stress occurs (71). Therefore, the
mechanisms that retain ER chaperones and oxidoreductases com-
municate ER stress to the immune system via multiple readouts:
they determine MHC class I surface exposure, they influence the
activation of inflammation, but they also signal the intracellular
stress status to the immune system when found on the plasma
membrane.

CALRETICULIN: A DAMP ON THE PLASMA MEMBRANE OF
TUMOR CELLS
The appearance of ER chaperones and oxidoreductases on the
plasma membrane corresponds to a danger-associated molecular
pattern (DAMP) (72). DAMPs are molecules that are normally
intracellular, but become exposed on the plasma membrane in
stressed, damaged, or dying cells, as well as in tumor cells (73).
Their presence on the cell surface leads to the recruitment of
innate inflammatory cells, following the interaction of surface
DAMPs with pattern-recognition receptors (PRRs) (74). An exam-
ple for this is CD91, found on the surface of dendritic cells (DC)
and other antigen-presenting cells (APC), which interacts with
the ER-derived DAMPs calreticulin and GRP94 on stressed or
dying cells (75). Upon formation of a complex between these
proteins, a potent “eat-me” signal is generated and phagocyto-
sis of calreticulin or GRP94-bearing stressed cells is initiated (19,
76). In contrast, CD47 acts as an inhibitor of this activity of
calreticulin by interfering with the calreticulin–CD91 complex
formation (64, 76).

This mechanism is particularly important in the cancer sce-
nario (Figure 1), where calreticulin is today one of the most
extensively studied DAMPs that dictates the immunogenicity of
cancer cells (19, 77). Importantly, calreticulin exposure on the
plasma membrane is triggered upon treatment with different

FIGURE 1 | Major tumor-promoting (red) and tumor-inhibitory
(green) ER chaperones and oxidoreductases. Their localization and
function within the ER can be favorably influenced by a number of
currently known drugs (for details see text). At the plasma membrane,

inhibitory binding peptides can stop the tumor-promoting activity of this
class of proteins. In contrast, simple modulation of the unfolded protein
response (UPR) is expected to induce both tumor-promoting and
tumor-blocking responses.
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chemotherapeutic stimuli, including cisplatin and the anthracy-
clines doxorubicin, idarubicin, and mitoxantrone (19, 78). How-
ever, it is not clear whether calreticulin remains in the membrane
of the stressed cell or is transferred over to immune cells (79).
Regardless of the exact location of this extracellular calreticulin,
stressed and apoptotic cells are subsequently engulfed and elimi-
nated (80). This activation of the immune system can be exploited
via the injection of calreticulin-coated cancer cells. Once in the
blood stream, these abnormal cells can trigger a tumor-specific
immune-response that eventually may activate an anti-tumor
immune-response in vivo (81).

An additional important prerequisite for the immuno-
elimination of tumor cells using the calreticulin “eat-me” signal
is autophagy: the inhibition of autophagy significantly increases
the amounts of calreticulin on the surface of stressed tumor cells,
suggesting that autophagy-competent cancer tissue may be less
susceptible to calreticulin-mediated immunorecognition of tumor
cells (82, 83). In contrast, autophagy promotes the secretion of
ATP upon ER stress, another tumor DAMP (84, 85). Interestingly,
not only calreticulin on the plasma membrane, but also its over-
all expression is frequently enhanced in tumor tissue, potentially
indicating that this chaperone could indeed provide an avenue for
future cancer immunotherapy (86). Specifically, calreticulin over-
expression is associated with the development and progression
of pancreatic cancer (87). However, studies on infiltrating ductal
breast carcinomas (IDCAs) were not able to detect an involvement
of calreticulin in the development of a humoral immune-response
(88). In defense of the calreticulin role as a protective mechanism
against cancer, none of these studies have investigated the intracel-
lular distribution of calreticulin in the respective tumor scenario.
Consistent with this caveat, hepatocellular carcinoma has been
found associated with high levels of circulating anti-calreticulin
antibodies (89). In addition, serum IgG levels of anti-calreticulin
autoantibodies have been found to be significantly higher in blad-
der cancer patients than in normal controls, leading to the proposal
of anti-calreticulin antibodies as a novel biomarker for blad-
der cancer progression (90). It is currently unclear whether the
injection of a fragment of recombinant calreticulin blocks tumor
growth using these or other mechanisms (91, 92).

ERp57, GRP94, Ero1α, AND PDI: FUNCTIONS BEYOND
IMMUNORECOGNITION FOR TUMOR CELL MIGRATION
Other ER chaperones and oxidoreductases also show aberrant tar-
geting to the plasma membrane. One example is ERp57, which is
critical for the peptide loading complex for MHC class I together
with calreticulin (93). Similar to what occurs with calreticulin,
ERp57 also appears on the cell surface following anthracycline
treatment. Importantly, ERp57 might not act as a DAMP itself,
but rather as a prerequisite for calreticulin surface targeting (94,
95). The expression level of ERp57 in cancer does not provide
much insight about its role in cancer, since bladder and gastric
cancers appear to be characterized by low levels of calreticulin and
ERp57 (96, 97).

GRP94 (also called gp96) is another prominent chaperone of
the ER that has a much smaller set of client proteins when com-
pared to calreticulin (98). Its substrates include toll-like receptors
(TLRs), important sensors of DAMPs (99). This Hsp90 family

protein can escape ER retention like calreticulin, and is found
secreted from pancreatic cells and hepatocytes (100, 101). In con-
trast, tumor cells are decorated with surface-bound GRP94 (102,
103). On this localization, GRP94 acts as a DAMP similar to cal-
reticulin (104) and in parallel to surface-exposed Hsp90 (105).
In addition, GRP94 also binds HER2 on the surface of breast
cancer cells, and regulates its cancer-promoting activity (106).
Interestingly, cell surface GRP94 may interact with the CD91
receptor, like calreticulin, albeit with unclear functional signif-
icance (107, 108). Breast cancer tissue is characterized by the
over-expression of GRP94 that may modulate the ability of tumor
cells to migrate (109).

The oxidoreductase PDI is a central enzyme in the formation of
disulfide bonds in secreted proteins (110). This protein also local-
izes in significant amounts to the cell surface of platelets, CHO,
and pancreatic cells, as well as thyrocytes (62, 111–113). Here, it
modulates surface-exposed thiols (113, 114) and cellular adhesion
of immune cells via the association with integrins (115, 116). This
mechanism also determines the ability of T helper cells to migrate
through the extracellular matrix (117). PDI expression is tied to
tumor vascularization that is often low and results in the activation
of the hypoxia-dependent transcription factor HIF-1α (118). This
transcription factor then promotes the upregulation of the oxi-
doreductases PDI and Ero1α (119–121). Subsequently, increased
PDI and Ero1α expression also induces the production of vascular
endothelial growth factor (VEGF), which, in turn, enables hypoxic
tumors to improve angiogenesis (120, 121). Similar to GRP94, the
levels of PDI and Ero1α have also been found to correlate with the
invasiveness of glioma and the metastatic ability of soft tissue sar-
coma, due to the role of PDI in mediating the interaction of cells
with integrins (122, 123). Although Ero1α is secreted from hypoxic
tumor cells, we currently do not known whether this occurs in vivo
and what the function of surface or extracellular Ero1α is (67).

BiP/GRP78, AN INHIBITOR OF TUMOR CELL APOPTOSIS AND
IMMUNORECOGNITION
Compared to PDI, more is known about the role of BiP/GRP78 for
cancer cells, and specifically when found on the plasma membrane.
BiP/GRP78 is over-expressed in many cancers, a hallmark that is
associated with aggressive growth, invasive properties, and thera-
peutic resistance (124). This chaperone is a major regulator of ER
protein folding and ER stress (125). By binding hydrophobic sur-
faces on newly synthesized polypeptides, BiP/GRP78 is first in line
for ER protein folding, a role that becomes accentuated when mis-
folded polypeptides accumulate within the ER. Under that condi-
tion, also termed ER stress, BiP/GRP78 binds to unfolded proteins
in its ATP-bound form, mediates their folding at the expense of
ATP and is released when GDP is exchanged with GTP (126, 127).
Folding is typically achieved through multiple rounds of bind-
ing and release of BiP/GRP78. Interestingly, when BiP/GRP78 acts
as a chaperone, it dissociates from the ER transmembrane stress
sensor proteins inositol requiring enzyme 1 (Ire1), protein kinase
RNA-like ER kinase (PERK), and activating transcription factor 6
(ATF6) that are then able to trigger the unfolded protein response
(UPR) (128). This intracellular signaling pathway activates the
transcription of numerous ER chaperones and oxidoreductases to
protect the cell from accumulated unfolded proteins, but also acts
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as an activator of apoptosis (129). Notably, BiP/GRP78 itself is a
transcriptional target of the UPR via ER stress-responsive elements
that can bind to ATF6 (130).

In cancer tissue, the UPR is frequently constitutively active,
because solid tumors are poorly vascularized, leading to low
oxygen delivery for mitochondria and low glucose delivery for
glycolysis, both a cause of low ATP availability for ER protein
folding (131). Consistent with this, BiP/GRP78 has been found
over-expressed in prostate, head and neck, melanoma, breast, lung,
brain, gastric, colon, and hepatocellular carcinomas (132). High
levels of BiP/GRP78 act first of all as suppressors of apoptosis (133,
134), based on its role as a suppressor of the UPR (18), but also
from its ability to sequester ER-associated pro-apoptotic Bcl2 fam-
ily proteins such as Bik (135). Over-expression of BiP/GRP78 also
inhibits pro-apoptotic Ca2+ transfer from the ER to mitochon-
dria in astrocytes. This likely occurs due to the inhibitory action of
BiP/GRP78 on the inositol-1,4,5 trisphosphate receptors (IP3Rs),
major Ca2+ release channels of the ER (136, 137). As expected
from these tumor-promoting roles of BiP/GRP78, high levels of
this ER chaperone lead to poor prognosis in breast cancer (138).

As a side effect, the UPR not only leads to elevated expression
of BiP/GRP78 in tumor tissue, but also leads to aberrant local-
ization of this ER chaperone to the cytosol, mitochondria, and
the plasma membrane (124). Cell surface BiP/GRP78 is appar-
ently directly tied to its expression level that is under the control
of the UPR, suggesting that high expression of this chaperone
leads to saturation of the KDEL receptor retrieval mechanism (61).
This phenomenon has been found in prostate, ovarian, and gas-
tric cancer, as well as melanoma (21, 139–141). In some tumors,
so much BiP/GRP78 escapes from the ER that secretion results,
accompanied by the production of autoantibodies (142). These
autoantibodies can promote or inhibit proliferation and apop-
tosis, but also interfere with phosphoinositide 3-kinase (PI3K),
Akt, and MAP kinase pathways with the consequence of increased
survival in several types of tumors (143, 144). This latter activ-
ity depends on the activating, physical interaction of cell surface
BiP/GRP78 with PI3K that subsequently results in the activation
of its downstream target Akt (145, 146). This activity of surface
BiP/GRP78 may depend on α2-macroglobulin (α2M*), since the
association between the two proteins triggers Akt phosphorylation
in a PI-3 kinase-dependent manner (147, 148). In contrast, low lev-
els of BiP/GRP78 tend to have opposite effects in mice and result
in decreased activity of PI3K signaling in prostate and leukemia
cancer models (149, 150).

Like calreticulin, BiP/GRP78 also influences the way cancer
cells interact with the immune system. However, whereas calretic-
ulin provides an “eat-me” signal, cell surface BiP/GRP78 protects
insulinoma and fibrosarcoma cells from cytotoxic T lymphocytes
(151, 152). In addition, BiP/GRP78 also interacts with MHC class
I on the cell surface, although the functional significance of this
observation is currently unclear (153).

AVENUES OF INTERFERENCE WITH ER CHAPERONES IN
CANCER
Increased expression and cell surface appearance of ER chaper-
ones and oxidoreductases have emerged as critical hallmarks of
cancer cells and as consequences of low tumor vascularization

that results in hypoxia. The observations outlined in our review
suggest this insight may be used to develop new strategies to treat
cancer (Figure 1) (154). In cancer, an approach under considera-
tion consists in triggering the UPR (155). A number of compounds
are currently in preclinical studies or Phase II/III trials and typi-
cally attempt to prevent the pro-survival readout of the UPR. This
approach led to marked decrease of cancer growth in a multiple
myeloma xenograft model (156). A promising strategy appears to
be the combination of such drugs with bortezomib, a blocker of
the proteasome and inducer of ER stress (157). With this combina-
tion of drugs, stress-inducing bortezomib primes cancer cells for
death that becomes inevitable, once an inhibitor of protective UPR
responses is added to the mix. A similar approach aims to target
the redox-modulatory role of ER chaperones and oxidoreductases
using the PDI inhibitor bacitracin,which acts as a potent booster of
the chemotherapeutics fenretinide and bortezomib (158). Due to
the toxicity of bacitracin, novel PDI inhibitors are currently under
development (159). Another way how ER redox modulation can
be used as an adjuvant for cancer chemotherapy is by interfering
with the redox-sensitive activity of SERCA to allow for increased
cell stress in tumor tissue due to reduced ER Ca2+ content (160,
161). Given the tumor-promoting (e.g., BiP/GRP78, PDI) and
tumor-opposing (e.g., calreticulin) activities of ER chaperones
and oxidoreductases, current knowledge suggests more pinpointed
approaches are needed to increase efficacy of ER-targeted cancer
chemotherapeutic strategies.

Interestingly, the SERCA inhibitor thapsigargin and the non-
steroidal anti-inflammatory drug celecoxib both make use of the
interference with ER Ca2+ content as a weapon against tumor
cells (Figure 1) (162–164). Under this condition, calreticulin, PDI,
BiP/GRP78, and GRP94 escape ER retention and retrieval (69,
165). This effect is similar to an indiscriminate activation of the
UPR, which turns on ER chaperone and oxidoreductase produc-
tion, and leads to the saturation of KDEL as well as di-lysine-based
retrieval to the ER (166, 167). Similar to blanket interference with
the UPR, this approach is bound to have tumor-promoting and
tumor-opposing effects: while calreticulin and GRP94 will appear
as immune system targets on the cell surface of tumor cells, PDI
and BiP/GRP78 will have tumor-promoting effects as promoters
of cell mobility and blockers of apoptosis.

Ideally, an efficient therapy would aim to generate cell surface
calreticulin to serve as an efficient “eat-me” signal on tumor cells,
while down-regulating or inactivating BiP/GRP78 on the plasma
membrane, which acts as tumor-promoting. To achieve such a
goal, it would be helpful to understand the molecular machinery
of calreticulin plasma membrane exposure, currently known to
require the triggering of PERK, the cleavage of caspase-8, and the
functioning of SNARE proteins (168). Mitoxantrone, an anthra-
cycline that robustly influences these mechanisms and leads to
calreticulin surface exposure, is currently in clinical trials against
lymphoma (Figure 1) (169).

In contrast to calreticulin, the requirements for BiP/GRP78
cell surface exposure are less understood. As a sole factor,
the transmembrane protein MTJ-1 has been identified as criti-
cal for BiP/GRP78 surface translocation (170), possibly via the
catalysis of ATP exchange through its J domain (171). Inter-
estingly, photo-dynamic therapy (PDT) using the ER-localized
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photosensitizer hypericin may be such a magic bullet: not only
does it result in the reduction of SERCA activity (172), but this
treatment specifically results in the surface targeting of only cal-
reticulin, and not BiP/GRP78 (84). Promisingly, this treatment
causes tumor regression in BALB/c mice inoculated with colon
carcinoma (173).

Conversely, inhibitory agents against BiP/GRP78 could cre-
ate tumor cell specificity of UPR-targeted anti-cancer strate-
gies (Figure 1). Approaches include the selective destruction
of BiP/GRP78 on the surface with the bacterial toxin SubAb
that cleaves and inactivates this chaperone (174). This strategy
delayed the growth of multiple cancer xenografts in mice (175,
176). Cancer cells also respond well to the inhibition of the
BiP/GRP78 ATPase activity with epigallocatechin gallate, hon-
okiol, and salicylate (177–179). It is currently unknown whether
these effects stem from inhibiting the activity of MTJ-1 that is
needed to transport BiP/GRP78 to the plasma membrane (170).
Xenograft growth of tumors is also inhibited in the presence of
BiP/GRP78-binding peptides that obstruct the chaperone’s fold-
ing pocket (180). Importantly, these peptides bind specifically to
tumor cells and abrogate their growth in vivo (181, 182). Such
a strategy might be particularly important following the surgical
removal of tumor tissue or in combination with chemotherapeutic
approaches (183, 184).

CONCLUSION
Endoplasmic reticulum chaperones and oxidoreductases have
emerged as unlikely regulators of tumor growth. While neither
being directly connected to the regulation of cell division and
growth, nor the triggering of apoptosis, they instead frequently
acquire new functions unrelated to their classic ER roles in a
cancer setting. These new roles coincide with their relocation
from the ER to the plasma membrane. In most cases, this occurs
because the UPR triggers the production of more chaperones
and oxidoreductases that eventually saturate the KDEL retrieval
machinery. Once at the plasma membrane, ER chaperones and
oxidoreductases serve as DAMPs for the immune system (calreti-
culin, GRP94) or modulators of tumor hallmarks (BiP/GRP78,
PDI). The exploitation of this group of proteins as cancer ther-
apeutic targets will require a detailed understanding of their
intracellular and extracellular roles. Our current knowledge has
identified chaperones that serve as DAMPs, whereas modula-
tors of tumor hallmarks including cell death and metabolism
are typically tumor-promoting. Specific triggers and inhibitors
of the functions of ER chaperones and oxidoreductases will
help direct cancer therapeutic approaches in the right direc-
tion. This insight warrants further investigation on this class of
proteins.
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