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Vitamin D is a key regulator of calcium metabolism and has been implicated as a cancer
preventive agent. However, clinical studies have revealed conflicting results on its can-
cer preventive properties, attributed in part to multiple metabolic and regulatory factors
susceptible to affect individual responses to exogenous vitamin D. Vitamin D is obtained
from dietary sources and sun exposure, which depends on numerous parameters such
as skin type, latitude, and lifestyle factors. Focusing on thyroid cancer (TC), we docu-
ment that genetic and epigenetic determinants can greatly impact individual response to
vitamin D and may outweigh the classical clinical correlative studies that focus on sun
exposure/dietary intake factors. In particular, genetic determinants innate to host intrin-
sic metabolic pathways such as highly polymorphic cytochromes P450s responsible for
the metabolic activation of vitamin D are expressed in many organs, including the thyroid
gland and can impact vitamin D interaction with its nuclear receptor (VDR) in thyroid tissue.
Moreover, downstream regulatory pathways in vitamin D signaling as well as VDR are also
subject to wide genetic variability among human populations as shown by genome-wide
studies.These genetic variations in multiple components of vitamin D pathways are critical
determinants for the revaluation of the potential preventive and anticancer properties of
vitamin D in TC.

Keywords: thyroid cancer, vitamin D,VDR, genome-wide studies, cancer susceptibility

INTRODUCTION
Thyroid cancer (TC) is the most common endocrine cancer malig-
nancy worldwide (1) with a rising incidence in particular among
young patients and women (2–4). Overdiagnosis of subclinical
disease, previously proposed as a contributor for the rising inci-
dence, cannot explain the full extent of the increase (5, 6). Risk
factors such as exposure to ionizing radiation (7–10), chemical
genotoxins (11–13), and obesity (14–17), as well as a lack of pro-
tective factors, such as vitamin D deficiency have been implicated
in TC increased incidence (18–21).

Vitamin D, an active ingredient of cod-liver oil, was first identi-
fied as a cure for rickets in the nineteenth century and has emerged
as a principal regulator of calcium homeostasis (22). Cutaneous
exposure to sun and dietary intake are the two main natural sources
of vitamin D. Vitamin D activity depends on metabolic activa-
tion through hydroxylation of the 25 followed by the 1 position
of the molecule by cytochromes P450s, which generate the bio-
logically active metabolite 1,25(OH)2D3. The action of vitamin
D occurs mainly through its binding to the nuclear vitamin D
receptor (VDR), which acts as a hormone-regulated transcription
factor (23). Upon activation, the VDR forms a heterodimer with
related retinoid-X receptors and binds to vitamin D response ele-
ments (VDREs) on chromatin regions resulting in the regulation
of the expression of several target genes (24–26). VDRE bind-
ing by the VDR provides the principle mechanism by which the

receptor can activate gene transcription. However, the hormone-
bound receptor can also repress gene transcription by a variety of
mechanisms (27). Downstream targets of the receptor are involved
in mineral metabolism, but VDR also regulates a variety of other
metabolic pathways, many of which are components of immune
response and cancer signaling (28, 29).

Independent studies support that circulating levels of vitamin
D are inversely correlated to several malignancies, including col-
orectal cancer (30, 31), prostate cancer (32), breast cancer (33, 34),
and head and neck squamous cell carcinoma (35, 36). As well, a
more recent meta-analysis reported a correlation between vitamin
D deficiency and poorer prognosis in several tumor types (37). In
TC, several studies point toward a role for impaired 1,25(OH)2D3-
VDR signaling in the occurrence and progression of the disease
(38). This review addresses new insights into genetic and epige-
netic determinants of vitamin D response in relation to cancer
risk focusing on TC. We provide a systematic review and analysis
of experimental and clinical data and the impact of genome-wide
analyses on individual susceptibility to TC.

MATERIALS AND METHODS
GENOMIC DATABASE
The UCSC Cancer Genomics Browser (39),a set of web-based tools
to display,was used to investigate and analyze cancer genomics data
and its clinical information associated with VDR. The browser
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provides whole-genome to base-pair level views of several differ-
ent types of genomic data, including next-generation sequencing
platforms. Biological pathways, collections of genes, genomic or
clinical information were used to sort, aggregate, and zoom into a
group of samples. The current release (2013) displays an expand-
ing set of data from various sources, including 201 datasets from
22 The Cancer Genome Atlas (TCGA) cancers as well as data from
Cancer Cell Line Encyclopedia and Stand Up To Cancer (39).

DATABASE OF SOMATIC MUTATIONS
To collect data on TC related to VDR mutation, the web-software
BioMart Central Portal and the Catalog of Somatic Mutations in
Cancer (COSMIC) database (40) were used. BioMart offers a one-
stop shop solution to access a wide array of biological databases,
such as the major biomolecular sequence, pathway, and annotation
databases such as Ensembl, Uniprot, Reactome, HGNC, Worm-
base, and PRIDE (41). The Cancer BioMart web-interface with
the following criteria was used: (1) Primary site =“thyroid”; (2)
Mutation ID is not empty. The first criterion ensures that the muta-
tion occurs in thyroid tissues, and the second criterion helps to
exclude the samples without mutation in a specific gene. Thereby,
we obtained the list of mutations in TC.

Catalog of Somatic Mutations in Cancer (40) stores and dis-
plays somatic mutation information and related details on human
cancers. COSMIC was developed, and is currently maintained, at
the Welcome Trust Sanger Institute. It is designed to gather, curate,
and organize information on somatic mutations in cancer and
to make it freely available on-line. It combines cancer mutation
data, manually curate from the scientific literature, with the out-
put from the Cancer Genome Project (CGP). Genes are selected for
full literature curation using the Cancer Gene Census. The current
release (v64) describes over 913,166 coding mutations of 24,394
genes from almost 847,698 tumor samples. All genes selected for
the COSMIC database came from studies in the literature and are
somatically mutated in human cancer (42). Based on this authority
resource, a dataset of TC mutation was constructed.

DATA EXTRACTION
Information was carefully extracted from all eligible publications
including clinical and experimental studies assessing any relation
between vitamin D and non-medullary TC. A search for studies
in the electronic databases Ovid Medline, Ovid Embase, Web of
Science, AMED, and the Cochrane Library was run using an elabo-
rated search strategy (Supplemental Material). In order not to miss
any appropriate study, no time or language limits were applied
for the search. Review articles were included only temporarily to
provide a manual search tool.

The selection of studies involved an initial screening of the
title and the abstract. In doubtful cases, the full text was obtained.
Articles were entered in the data management software and the
duplicates were eliminated (Endnote 6®, Thomson Reuters Inc.).
For clinical studies, detailed information about participants (num-
ber of patients, study location(s), and demographics variables),
exposure (sun irradiation, dietary intake, and vitamin D serum
level), comparison group, and outcome was assessed.

The search retrieved 471 references published until July 4th,
2013, 12 from the Cochrane Library, 176 from Ovid Medline, 188

471 citations found by literature search on July, 4th, 2013

176 from OvidMedline
188 from OvidEmbase and AMED

95 from Web of Science

12 from The Cochrane Library

26 articles retrieved for detailed evaluation

4 studies retrieved manually using reviews

30 studies included

234 duplicates

211 citations excluded after screening of 
titles and/or abstracts

49 studies on hypocalcemia after thyroidectomy

42 reviews
28 studies on medullary thyroid cancer

20 studies on parathyroid glands

17 studies on bone/osteoporosis

14 studies on non-neoplastic thyroid disease
14 conference abstracts

11 studies on other endocrine organs

6 veterinary studies
10 others

17 clinical studies

Table 1

13 experimental studies

Table 2

FIGURE 1 | Flow chart of study selection for systematic review.

from Ovid Embase and AMED, and 95 from Web of Sciences.
Crosschecking the references of the reviews led to the inclusion of
four supplementary articles (43–46). No clinical trial was available.
The flow chart of study selection is shown in Figure 1.

Overall 30 articles were included, of which 17 were clinical
studies (Table 1) and 13 experimental studies (Table 2). These
studies were published in English language from 1987 to 2013.
Of the 17 clinical studies, 8 (47.0%) showed protective effect of
vitamin D (44, 45, 47–52), 6 (35.3%) no significant relationship
(43, 46, 53–57), and 2 (11.7%) revealed an increased TC risk with
high vitamin D intake (58, 59). No comparison could be drawn
from the remaining study (5.8%) (60). TC incidence was assessed
in all of these studies, mortality in two (45, 47); and one report
assessed both (45). Except for three studies involving Arab pop-
ulations (51, 56, 60), all studies included Europeans’ descendants
and/or Hispanic whites.

RESULTS AND DISCUSSION
DETERMINANTS OF VITAMIN D LEVELS AND IMPACT IN TC
Solar UVB irradiation is the primary source of vitamin D and
can be estimated by latitude of the living area. In TC, large
epidemiological studies support an inverse relation between TC
incidence and latitude (45, 47) (Table 1). These studies per-
formed a multivariate analysis to adjust for confounding factors.
However, vitamin D levels were not measured. Consequently, it
is unclear if the multivariate analysis resulted in accurate vita-
min D estimates. Indeed, vitamin D deficiency is highly prevalent
among latitudes that benefit from high solar irradiation such as
Africa, the Middle East, and Southern Asia. This may be due to
skin pigmentation, traditional clothing, and sun avoidance seen
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Table 1 | Summary of clinical studies reporting an association between thyroid cancer and vitamin D.

First author Pub year Country

(state/province)a
Cases/controls Outcome Exposure Resultsb

Akslen (44) 1998 Norway 2627/NA Incidence Seasonal variation pro

Boscoe (45) 2006 USA >4,000/>4,000 Incidence and

mortality

Latitude proc

D’avanzo (53) 1997 Italy 399/617 Incidence Intake NS

Glattre (54) 1993 Norway 92/460 Incidence Intake NS

Grant (47) 2006 Spain NR Mortality Latitude pro

Greenlee (58) 2004 USA (WA) 305/64,226 Incidence Intake con

Haghpanah (56) 2007 Iran 71/82 Incidence VDR polymorphism NS

Jonklass (46) 2013 USA (DC) 48/17 Incidence Serum 25(OH)D NS

Laney (55) 2010 USA (NE) 24/42 Incidence Serum 25(OH)D NS

Mack (43) 2002 USA (CA) 292/292 Incidence Intake NS

Penna-Martinez (48) 2009 Germany 147/57 Incidence Serum 1,25(OH)2 D VDR

Polymorphism

pro

Penna-Martinez (49) 2012 Germany 253/302 Incidence Serum 1,25(OH)2 D pro

Peterson (60) 2011 USA (MI) 30/70 NA Sun exposure NA

Ron (59) 1987 USA (CT) 159/285 Incidence Intake con

Roskies (50) 2012 Canada (QC) 12/88 Incidence Serum 25(OH)D pro

Sahin (51) 2013 Turkey 344/116 Incidence Serum 25(OH)D pro

Stepien (52) 2010 Poland 50/26 Incidence Serum 1,25(OH)2 D pro

aWA, Washington; DC, District of Columbia; NE, Nebraska; CA, California; MI, Michigan; CT, Connecticut; QC, Quebec;
bpro, protective effect of vitamin D (or surrogates); NS, not significant; con, vitamin D (or surrogates) increasing risk; NA, not applicable;
cfor women only.

in southern heat-exposed populations (60, 74). In contrast, fair-
skinned northern populations usually seek sun exposure and may
also benefit from high intake of vitamin D rich diet such as fatty
fish and cod-liver oil (74). Further, a mutation in the cutaneous
structural protein filaggrin, which occurs in up to 10% of Euro-
peans was shown to lead to higher circulating vitamin D levels
(75). Nonetheless, North American and European studies have
shown seasonal variations of vitamin D levels due to insufficient
sun irradiation during winter (76). In TC, one study from Norway
reported higher proliferation values for tumors resected during
winter compared to other seasons (44). These results comply with
above-mentioned studies showing an inverse relation between TC
incidence and latitude (45, 47). For studies estimating vitamin D
consumption and TC risk, however, no convincing associations
have been shown (Table 1) (43, 53, 54, 58, 59). This may be due
to the general poor correlation between vitamin D deficiency and
estimates of vitamin D consumption (57).

A more accurate way to assess vitamin D is biological moni-
toring. Association studies investigating the relationship between
levels of serum vitamin D and TC risk mostly point toward a
protective effect of vitamin D (48–52, 55, 77) (Table 1). Pooling
the data among these studies is not possible due to different cut-
off levels for different vitamin D derivatives and control groups
used in each of these studies. This would greatly limit the valid-
ity of a meta-analysis. The lack of consensus in cut-off levels
may reflect the fact that those are differently defined depend-
ing on targeted clinical endpoints (78, 79). Classical vitamin D
targets, i.e., those implicated in calcium and bone homeostasis,

do not allow conclusions on optimal level of vitamin D having
anticancer properties. While doses up to 4,000 IU of daily vita-
min D supplementation have been considered safe, studies have
reported hypercalcemia, nephrolithiasis, vascular, and soft tissue
calcification with high doses of vitamin D and also U-shaped rela-
tionship between vitamin D levels above 75 nmol/l and certain
cancer subtypes (80, 81). One additional issue of most of these
association studies is that vitamin D levels were measured only
once, which does not permit distinction between outcome and
exposure. Indeed, some studies have reported low serum vitamin
D as a result of malignancy (82).

Above-mentioned skin types, alimentary, and social habits
yet do not fully explain vitamin D variability among popula-
tions (83). One major determinant of individual susceptibility
to vitamin D is the activity of vitamin D metabolizing enzymes.
Three major cytochrome P-450 (CYP) hydroxylases are respon-
sible for vitamin D activation through 25- followed by 1α-
hydroxylation of the molecule, and deactivation through 24-
hydroxylation. Multiple enzymes have been reported as vitamin
D 25-hydroxylases, a step occurring constitutively and primar-
ily in the liver. Unlike 25-hydroxylation, 1α-hydroxylation of
25(OH)D3 by the CYP27B1 is a tightly regulated and rate-limiting
step. It is regulated by calcium, 1α,25(OH)2D3 itself, PTH, cal-
citonin, and phosphate levels. Recently, fibroblast growth factor
23 (FGF23) was identified as a novel antagonist of PTH and
is thought to play an important role in vitamin D regulation
pathway (84). Although CYP27B1 and CYP24A1 are primar-
ily expressed in the kidney, recent studies showed that they are
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Table 2 | Experimental studies using cell lines or preclinical models to assess vitamin D effect on thyroid cancer.

First author Pub year Samplesa Main results

Balla (61) 2011 6 PTC Overexpression of CYP24A1 mRNA

Bennett (62) 2012 TPC1, C643 Antiproliferative effect of calcitriol

Clinckspoor (63) 2011 FTC133, C643, 8505c, Hth74 Antiproliferative effect of calcitriol and superagonistic

analog CD578

Clinckspoor (64) 2012 64 thyroid cancers VDR, CYP24A1, CYP27B1 overexpression

Dackiw (65) 2004 15 SCID mice/WRO Growth inhibition of orthotopic tumor and p27kip1

restoration after calcitriol treatment

Khadzkou (66) 2006 44 PTC Overexpression of VDR and CYP27B1 (FFPE)

Liu (67) 2002 NPA, WRO Antiproliferative effect of calcitriol and superagonistic

analog EB1089, p27 restoration

Liu (68) 2005 WRO Calcitriol and its analog EB1089 restore

PTEN-dependent fibronectin expression

SCID mice/WRO Growth inhibition in heterotopic model with calcitriol

and EB1089

Liu (69) 2011 WRO, MRO Calcitriol inhibits CEACAM1

Okano (70) 1999 Nude mice/NPA Trend to growth inhibition in heterotopic model with

calcitriol and less-calcemic analog

NPA Dose-dependent inhibition of calcitriol and

less-calcemic analog

Sharma (71) 2010 TPC1, C643, Hth7, Hth74, 8505c, SW1736 Response to calcitriol/DP006 depending on VDR

polymorphism and 24-hydroxylase levels

Somjen (72) 2013 NPA, ARO, MRO Overexpression of VDR and CYP27B1

Suzuki (73) 1999 TPC1-4, TAC1, TTA1 Dose-dependent growth inhibition of calcitriol and

less-calcemic analog

aCell line-corresponding histologic subtype:TPC1-4-PTC, KTC-PTC, BCPAP-PTC, NPA-PTC, KAT5-PTC, FTC133-FTC, FRO-FTC, MRO-FTC, WRO-FTC, C643-ATC, Hth7-

ATC, Hth74-ATC, 8505c-ATC, SW1736-ATC, TAC-1-ATC, TTA-1-ATC. PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; ATC, anaplastic thyroid cancer; SCID,

severe combined immunodeficient.

expressed in many other tissues, including the thyroid (61, 62).
In TC, there is evidence that polymorphisms leading to impaired
CYP27B1 function and/or increased CYP24A1 activity are associ-
ated with increased TC risk (49). Transcriptional profiling studies
show that both enzymes are overexpressed in early TC (61), but
their expression tends to decrease along with tumor progression
(64, 66).

DETERMINANTS OF PREDICTED RESPONSE TO VITAMIN D
The action of vitamin D mainly occurs through binding to the
VDR (23), whose levels are subject to genetic variations. Using the
UCSC genomic database, we analyzed 552 thyroid samples that
underwent genomic profiling using RNA Seq. The expression of
VDR was down regulated in benign thyroid samples and up regu-
lated in most TC cases (Figure 2). These results are confirmed by a
few in vitro studies using TC cell lines (72) and independent clinical
samples (64, 66). However, VDR levels alone may translate poorly
with response to vitamin D stimulation if polymorphisms of VDR
are not taken into account (71, 85, 86). The analysis of the genomic
organization of the VDR locus at chromosome 12q13.1 revealed
the large VDR gene (about 100 Kb) with an extensive promoter
region capable of generating multiple tissue-specific transcripts
(87). In view of the observed genome-wide frequency of single
nucleotide polymorphisms (88), one can predict >100 functional
polymorphisms to be present in the VDR region alone, including

the promoter region (Figure 3). Point mutations in the VDR gene
have been identified in various regions, including the VDR DNA
binding domain (DBD) and the ligand-binding domain (LBD)
(89). Such mutations can disrupt ligand-binding affinity to the
receptor (90), heterodimerization of VDR with RXR (91), or inter-
actions of the VDR receptor with partners such as coactivators
(92). Other mutations such as in the initiation codon can cre-
ate a premature termination (93) or alternative translation start
sites to result in alternative splicing and formation of truncated
proteins (94, 95). The analysis of the COSMIC database showed
a high proportion of missense mutations that were re-identified
(67.44%), while complex mutations were not detected (Table 3).
The distribution of the mutations observed in the VDR gene in
TC is shown in Figure 4. Only two studies investigated the asso-
ciation between VDR polymorphisms and TC risk, one showed
an increased TC risk for patients with particular VDR polymor-
phism (48), while another could not point out any significant
difference (56).

DOWNSTREAM IMPACT OF VDR ACTIVATION
Upon activation by vitamin D, VDR binds as a heterodimer with
retinoid-X receptors to specific VDREs (84). VDREs usually bear
a consensus sequence known as DR3 element located in the pro-
moter region of the target genes. In addition to this classic mecha-
nism, recent chromatin-immunoprecipitation (ChIP-seq) studies
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FIGURE 2 | Gene expression profile showing VDR signature for 552
thyroid cancer cases (RNA Seq). Each row corresponds to sample from a
single case. Columns from the left correspond to genomic heatmap according
to chromosomal location. The last two columns represent VDR expression

profile (represented by red for overexpression and green for downregulation)
in normal (pink) versus cancer (red) tissues. VDR is mostly overexpressed in
malignant samples but almost absent in benign tissues. Source: UC Santa
Cruz – Cancer Genomics Browser.

FIGURE 3 | Schematic diagram of VDR gene showing different restriction site on chromosome 12.

allowed to gain genome-wide insights of the binding sites of VDR
(96). These studies showed that the ligand-bound heterodimer can
bind to ~2000–8000 sites in the genome. Interestingly, the major-
ity of the binding sites do not bear the classical DR3-type sequence

(84). A significant enrichment was seen in regions associated with
active chromatin and histone modifications thus supporting a
broad genetic and epigenetic regulatory role of vitamin D. Fur-
ther enrichment of VDR binding was also found in proximity of
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Table 3 | Mutations identified in VDR.

Position

(AA)

Mutation

(CDS)

Mutation

(amino acid)

Mutation

type

8 c.23C >T p.T8I Substitution – missense

33 c.98G >A p.G33D Substitution – missense

52 c.156G >A p.M52I Substitution – missense

74 c.221G >A p.R74H Substitution – missense

78 c.233C > G p.A78G Substitution – missense

130 c.389G >A p.R130H Substitution – missense

146 c.438C > G p.T146T Substitution – coding silent

149 c.445G >T p.D149Y Substitution – missense

154 c.460C >T p.R154W Substitution – missense

158 c.472C >T p.R158C Substitution – missense

159 c.477G > C p.V159V Substitution – coding silent

161 c.481G >A p.D161N Substitution – missense

162 c.484G >T p.G162C Substitution – missense

169 c.507G >A p.R169R Substitution – coding silent

181 c.541G >T p.D181Y Substitution – missense

191 c.573C >A p.I191I Substitution – coding silent

199 c.597G >A p.S199S Substitution – coding silent

208 c.623G >T p.S208I Substitution – missense

236 c.708C >A p.Y236a Substitution – nonsense

253 c.757G >T p.D253Y Substitution – missense

274 c.820C >T p.R274C Substitution – missense

296 c.887G >A p.R296H Substitution – missense

320 c.960G >A p.L320L Substitution – coding silent

339 c.1015G >A p.V339I Substitution – missense

350 c.1049C >T p.A350V Substitution – missense

350 c.1050G >A p.A350A Substitution – coding silent

352 c.1056T > C p.I352I Substitution – coding silent

353 c.1058A >T p.E353V Substitution – missense

358 c.1072C >T p.R358C Substitution – missense

365 c.1094C >T p.T365M Substitution – missense

368 c.1103G >A p.R368H Substitution – missense

379 c.1135C >T p.L379F Substitution – missense

399 c.1196A >T p.K399M Substitution – missense

402 c.1205G > C p.R402P Substitution – missense

418 c.1254G >T p.V418V Substitution – coding silent

420 c.1258G >A p.E420K Substitution – missense

aNonsense mutation resulting in stop codon.

genes involved in autoimmune diseases (e.g., multiple sclerosis,
type-I diabetes, and Crohn’s disease) and colorectal or breast can-
cer (97). For TC, only data relying on classical in vitro experiments
is available.

In agreement with experimental studies in other cancer types,
exposure of a variety of TC cells to vitamin D in vitro leads to
antiproliferative and pro-differentiation properties (62, 63, 67, 70,
71, 73) (Table 2). These results have been confirmed by in vivo
studies (65, 68). Most studies are testing vitamin D itself and
synthetic vitamin D analogs, as patient’s exposure to pharmaco-
logically high doses of vitamin D can be limited by the side-effects,
mainly hypercalcemia (63, 67, 70, 71, 73).

Mechanistically, vitamin D was shown to inhibit prolifera-
tion through c-mac mRNA inhibition, which is a well-known
proto-oncogene (70). Further, it can induce a growth arrest
effect in part through stimulating accumulation of the cyclin-
dependent kinase inhibitor p27kip1 in the nucleus (67). Treatment
with vitamin D is thought to prevent p27kip1 phosphorylation,
which was shown to increase its ubiquitin-dependent protea-
some degradation (67). Further, vitamin D was shown to enhance
cell–cell adhesion through PTEN-dependent fibronectin upreg-
ulation (68). Those results could be confirmed in vivo. Inter-
estingly, the antiproliferative effect of vitamin D was abolished
when knocking down fibronectin (68) and was shown to be inde-
pendent of CEACAM1 expression, a tumor-suppressive adhesion
molecule (69).

CONCLUSION AND PERSPECTIVES
The pleiotropic roles of vitamin D in cancer have been recognized
through seminal preclinical studies although the preventive and
therapeutic potential of vitamin D or its analogs remain debated
due in part to the complex mode of action of this vitamin. Recent
progress in high-throughput technologies to interrogate human
genomic and epigenomic events has provided additional levels of
regulatory loops and individual genetic variations that can impact
on individual susceptibility to vitamin D. This knowledge opens
up new tools to address confounding factors that contribute to
discrepant results seen in previous association studies, in particu-
lar in relation to cancer prevention. As well, this knowledge impels
an exciting avenue in the discovery of novel vitamin D analogs
with enhanced preventive or therapeutic efficiency and limited
side-effects.

FIGURE 4 | Pie-chart showing the percentage of the mutation type in VDR in thyroid cancer according to COSMIC database.
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