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Lung adenocarcinoma is the most common subtype of lung cancer today. With the discov-
ery of epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase
(ALK ) rearrangements, and effective targeted therapy, personalized medicine has become
a reality for patients with lung adenocarcinoma. Here, we review potential additional tar-
gets and novel therapies of interest in lung adenocarcinoma including targets within the
cell surface (receptor tyrosine kinases EGFR, human epidermal growth factor receptor 2,
RET, ROS1, mesenchymal–epidermal transition, TRK), targets in intracellular signal trans-
duction (ALK, RAS–RAF–MEK, PI3K–AKT –PTEN, WNT), nuclear targets such as poly-ADP
ribose polymerase, heat shock protein 90, and histone deacetylase, and selected pathways
in the tumor environment. With the evolving ability to identify specific molecular aberra-
tions in patient tumors in routine practice, our ability to further personalize therapy in lung
adenocarcinoma is rapidly expanding.
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INTRODUCTION
In recent years, we have witnessed a transformation of the treat-
ment paradigm for advanced non-small cell lung cancer (NSCLC).
Previously, patients were offered platinum-based chemotherapy,
followed by second-line chemotherapy with docetaxel or peme-
trexed, and erlotinib after chemotherapy failure, yielding modest
benefits in an unselected population (1). Using molecular selec-
tion, clinical trials of targeted therapy have demonstrated major
improvements in response, quality of life, and progression-free
survival compared to chemotherapy, using epidermal growth fac-
tor receptor (EGFR) TKI in EGFR mutant NSCLC and crizotinib
in anaplastic lymphoma kinase (ALK ) rearranged NSCLC (2, 3).
Survival is similar in many of these trials, given the high rate
of crossover from chemotherapy to the more active agent upon
progression.

It is now standard of care to test non-squamous lung carcinoma
for the presence of EGFR mutation and ALK rearrangement upon
diagnosis of advanced disease (4), in order to select patients for ini-
tial EGFR TKI and ALK inhibitor therapy. The remarkable activity
of these agents in molecularly selected lung cancer patients has led
to a rapid increase in studies evaluating new targets and novel
targeted agents. These targets include oncogenic driver mutations
(genomic alterations that initiate malignant transformation of the
normal cell), signal transduction proteins, tumor angiogenesis,
and factors in the tumor environment supporting cancer cell pro-
liferation (for example, immune-modulating proteins) (Figure 1;
Table 1). In this review, we discuss selected new and promising
targets as well as targeted therapies currently under investigation
in non-squamous NSCLC, specifically adenocarcinoma.

TARGETS WITHIN THE CELL SURFACE
EPIDERMAL GROWTH FACTOR RECEPTOR
Targeting EGFR has led to a breakthrough in understanding
of lung cancer biology, and the NSCLC treatment paradigm.

Mutations in EGFR, resulting in greater affinity for ATP bind-
ing by the EGFR tyrosine kinase domain and constitutive acti-
vation, are found in ~15% of lung cancers in Caucasians and
40% in Asians (5, 6). Activating mutations are significantly
associated with response to EGFR TKIs, with erlotinib, gefi-
tinib, and afatinib established as initial standard therapy. How-
ever, resistance mutations have been identified, such as T790M
in exon 20. There are multiple agents in development with
enhanced affinity for T790M mutant lung cancer that may
spare wild type EGFR, potentially avoiding toxicities like rash
and diarrhea. AZD9291 and CO-1686 are examples of such
agents, and have reported responses in 58–64% of patients
with acquired EGFR TKI resistance and documented T790M
mutation (7, 8). There are other strategies in development, tar-
geting acquired EGFR TKI resistance including chemotherapy
with intercalated EGFR TKI, combinations with mesenchymal–
epidermal transition (MET ), dual EGFR and heat shock protein
90 (HSP90) inhibitors, and more. For example, combination of
afatinib and cetuximab has demonstrated activity in patients with
acquired EGFR TKI resistance and T790M positive and nega-
tive tumors (9), and the addition of AUY922 to erlotinib has
restored sensitivity in 22% of patients with acquired resistance
to erlotinib (10).

HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2
Human epidermal growth factor receptor 2 is a cell surface recep-
tor, and member of the erbB receptor tyrosine kinase family. It is
activated by heterodimerization with other ligand-bound mem-
bers of the erbB family, or by homodimerization. HER2 is a key
oncogene in breast cancer, and is associated with improved out-
comes with trastuzumab (anti-HER2 monoclonal antibody) (11,
12). In NSCLC, HER2 protein overexpression is found in 6–35%
of patients and HER2 gene amplification is found in 10–20% (13).
Trastuzumab has shown minimal activity in lung cancer, both as a
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FIGURE 1 |Targetable pathways in the non-squamous NSCLC cell.

single agent and in combination with chemotherapy, particularly
in patients with FISH positive or IHC 3+ tumors (14, 15).

HER2 mutations are seen in 2.8–6% of lung adenocarcino-
mas (16, 17), more commonly in women and non-smokers. These
mutations are commonly exon 20 in-frame insertions. Activ-
ity has been seen with trastuzumab-based therapy and afatinib
(13, 18). A phase I trial of neratinib (an irreversible pan-HER
inhibitor) and temsirolimus (mTOR inhibitor) suggested bene-
fit in five patients with HER2-mutant NSCLC (19). A phase II
trial assessing this combination is underway. Other trials include
studies of HER2-directed antibodies (trastuzumab, pertuzumab),
TKIs (neratinib, dacomitinib, and afatinib), and a peptide vaccine
(www.clinicaltrials.gov).

RET
RET (rearranged during transfection), is a known oncogene in
thyroid cancer,with both activating mutations and gene rearrange-
ments observed (20). Approximately 1.5% of NSCLC cases have
RET translocations, typically in younger, non-smoking adeno-
carcinoma patients (21). Fusion variants include KIF5B-RET in
adenocarcinoma, CCDC6, NCO4, and TRIM33 also found in
thyroid cancer (22, 23).

Vandetanib, sunitinib, sorafenib, lenvatinib, ponatinib, and
cabozantinib are all multi-targeted kinase inhibitors that target
RET. Activity has been seen in RET -positive lung cancer patients
with cabozantinib and vandetinib, and multiple trials are ongoing
in this population with a recent halt in a ponatinib study for safety
concerns (24, 25).

ROS1
ROS1 encodes a receptor tyrosine kinase of the insulin recep-
tor super family, with no known ligand and little known about

its normal function. ROS1 fusion genes, with oncogenic trans-
formation potential, have been described in multiple tumor cell
lines, including lung cancer. The prevalence of ROS1 rearrange-
ment in NSCLC is estimated at 1–2%, and can be detected using
FISH or IHC. Patients, similar to those with ALK -rearranged lung
cancer, tend to be younger, never smokers, and have adenocar-
cinoma histology, although cases in squamous carcinoma have
been reported (26). A response rate of 60% has been reported
with crizotinib in 35 patients with ROS-1-rearranged lung cancer,
including two patients with complete response, and median PFS
was not reached (27). Multiple other agents are under develop-
ment including AP26113, foretinib, PF-06463922, ceritinib, and
HSP90 inhibitors such as AT13387 (NCT01712217).

MESENCHYMAL–EPIDERMAL TRANSITION RECEPTOR
Mesenchymal–epidermal transition is a receptor tyrosine kinase,
which undergoes homodimerization by binding its ligand, hepa-
tocyte growth factor (HGF), to trigger intracellular signaling cas-
cades, including PI3K–AKT –mTOR and RAS–RAF–MAPK path-
ways. In lung cancer, MET mutations are rare, but amplification is
seen in up to 21%, resulting in constitutive MET activation and is
believed to be a potential mechanism of acquired EGFR TKI resis-
tance (28, 29). MET expression is seen in at least one-third of lung
cancers, including adenocarcinoma and squamous histology (30).

Targeting MET protein-expressing lung cancer has not been
successful to date, with negative phase III trials of onartuzumab
(anti-MET monoclonal antibody), and TKIs including tivantinib
(31, 32). Crizotinib activity has been reported in MET -amplified
tumors (33), with ongoing studies in EGFR TKI-resistant lung
cancer of MET and HGF-targeted agents, such as ficlatuzumab
(anti-HGF monoclonal antibody, NCT02034981).
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Table 1 | Selected targets and selected targeted agents in lung adenocarcinoma.

Target Frequency (common clinical features) Selected agents under study Current development

CELL SURFACETARGETS

EGFR mutations

(EGFR TKI acquired

resistance)

17–43% (female, never

smokers, Asian)

AZD9291 Phase II/III

CO-1686

HM-61713

Afatinib + cetuximab

Erlotinib +AUY922

Gefitinib + INC280 (MET TKI)

HER2 insertion

mutation

3–6% (female, never

smokers)

Trastuzumab + chemotherapy Phase II

Afatinib

Pertuzumab

Neratinib + temsirolimus

RET fusion 1–2% (young, never smokers,

poorly differentiated tumor)

Vandetanib Phase II

Cabozantinib

Lenvatinib

Ponatinib

INTRACELLULAR PATHWAYS

ROS1 fusion 1–2% (young, never smokers) Crizotinib Phase I/II

Ceritinib

AP26113

Foretinib

PF-06463922

AT13387

MET amplification ~1% Crizotinib Phase I

MET expression Up to 50% Ficlatuzumab Phase II/III

NTRK-1 fusion ~1% RXDX101 Phase I

KRAS mutations Up to 30% Selumetinib + chemotherapy Phase I–III

Trametinib + chemotherapy

MEK162 + chemotherapy

BRAF mutation 3%, smokers Dabrafenib Phase I/II

Vemurafenib

mTOR activation Up to 90% Everolimus Phase II

Temsirolimus

Sirolimus

NUCLEARTARGETS

PARP n/a Olaparib + chemotherapy Phase II/III

Veliparib + chemotherapy

HDAC n/a Romidepsin Phase II

Pabinostat

Etinostat

TUMOR ENVIRONMENT

RANK-Ligand n/a Denosumab + chemotherapy Phase III

VEGF n/a Bevacizumab Phase II/III

Nintedanib

CTLA-4 n/a Ipilimumab Phase II/III

PD-1 ~40% of lung

adenocarcinomas express

PD-L1

Nivolumab Phase II/III

PD-L1 Lambrolizumab

BMS-936559

MPDL-3286A

n/a, not available; EGFR TKI, epidermal growth factor receptor tyrosine kinase inhibitor; NTRK, neurotrophic tyrosine kinase receptor type; mTOR, mammalian tar-

get of rapamycin; PARP, poly-ADP ribose polymerase; HDAC, histone deacetylases; RANKL, receptor activator of nuclear factor kappa-B ligand; CTLA-4, cytotoxic

T-lymphocyte-associated protein 4; PD-1, programed cell death protein 1; PD-L1, programed cell death protein 1 ligand.
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NTRK1 FUSIONS
These have recently been described in never smokers with adeno-
carcinoma that is ALK and EGFR wild type. NTRK-1 fusions have
been identified in 3 of 91 lung adenocarcinoma samples that were
EGFR/KRAS/ALK-1/ROS-1 negative (34). RXDX101 has demon-
strated activity in TRK-fusion positive lung cancer in a recent
phase I trial (35).

TARGETS WITHIN INTRACELLULAR PATHWAYS
ANAPLASTIC LYMPHOMA KINASE
Anaplastic lymphoma kinase fusion genes, resulting in ALK fusion
proteins, are present in 3–5% of lung adenocarcinomas, com-
monly in never smokers and younger patients. The presence of
ALK fusion strongly predicts response to ALK TKIs, such as crizo-
tinib, ceritinib, and others. This topic is discussed in length in a
separate review article in this issue.

RAS–RAF–MEK pathway
The RAS family of oncogenes includes H-RAS,K-RAS, and N-RAS.
RAS proteins encode a membrane-bound GTP-ase that mediates
signal transduction from various tyrosine kinase receptors (e.g.,
EGFR, HER2) to the RAF/MEK /ERK pathway and others, regulat-
ing cell growth, proliferation, and apoptosis (36). KRAS mutations
are seen in ~30% of Western adenocarcinoma cases, fewer in Asian
populations, most commonly in codons 12 or 13. NRAS and HRAS
mutations are less common in lung cancer, <1% (37).

K-RAS
The role of mutant KRAS (V-Ki-ras2 Kirsten rat sarcoma viral
oncogene homolog) as a prognostic or predictive marker in
NSCLC remains controversial. An analysis of LACE-BIO suggests
that it is not prognostic in early stage lung cancer, nor does it
predict for adjuvant chemotherapy benefit (38). Several studies
suggest that it is a potential negative predictor of benefit from
EGFR TKI (39). While KRAS mutations have been identified in
patients with and without smoking histories, never smokers are
more likely to have transition mutations. Transversion mutations
are found almost exclusively in smokers (40).

The most promising agents in development for KRAS mutant
lung cancer have been MEK inhibitors combined with chemother-
apy. Selumetinib, a MEK1/2 inhibitor, significantly improved PFS
and response when added to docetaxel versus docetaxel plus
placebo (HR = 0.58, p = 0.014, RR 37 vs. 0%, p < 0.0001), with
a trend toward greater survival (41); a phase III trial is ongoing.
Trametinib, another MEK inhibitor, showed activity in combi-
nation with docetaxel as well as with pemetrexed (42, 43). The
response rate with single agent trametinib is 12%, with simi-
lar activity to docetaxel in pre-treated KRAS mutant lung cancer
patients (44).

BRAF
BRAF, a serine-threonine kinase, lies downstream of KRAS and
directly activates MEK by phosphorylation, which in turn activates
ERK. BRAF (v-Raf murine sarcoma viral oncogene homolog B)
mutations and BRAF inhibitors first gained attention in melanoma
where 40–60% of tumors harbor activating V600E BRAF muta-
tions. Three percent of lung adenocarcinomas harbor BRAF muta-
tions, half of the V600E subtype, inducing constitutive kinase

activity. These mutations occur more frequently in smokers.
Dabrafenib, a BRAF kinase inhibitor, demonstrated a 54% RR
in 17 BRAF V600E-mutated NSCLC patients (45). Vemurafenib is
another BRAF kinase inhibitor that shown activity in this popu-
lation. There are ongoing clinical trials assessing BRAF, MEK, and
AKT inhibitors in this population.

PI3K–AKT–PTEN pathway
The phosphatidylinositol 3-kinase (PI3K)–AKT –mTOR (mam-
malian target of rapamycin) signaling pathway is one of the
most dysregulated pathways in human cancers, including NSCLC.
PI3K can be activated by transmembrane receptor tyrosine
kinases like EGFR or RAS, through phosphorylation of AKT.
This inhibits pro-apoptotic proteins and promotes cell survival.
Activated mTOR complexes (mTORC1), downstream of PI3K–
AKT, result in increased ribosomal protein synthesis and further
AKT activation (mTORC2). PI3K-dependent signal transduction
can be terminated by PTEN, a tumor suppressor intracellular
protein (46).

PIK3CA
PIK3CA encodes the catalytic subunit of PI3K, and mutations and
amplification are seen in 2 and 12–17% of NSCLC cases (47, 48).
These mutations can co-exist with other known driver mutations
in lung adenocarcinoma, including EGFR and KRAS and in the
setting of acquired EGFR TKI resistance (49, 50), suggesting that
this may not be a driver mutation in itself. Trials of PI3K specific
kinase inhibitors are ongoing.

PTEN, AKT, mTOR
Loss of PTEN protein expression, with subsequent AKT overex-
pression, occurs in a third of NSCLC cases, and is associated with
poor prognosis in lung cancer (51). This may be related to epi-
genetic silencing, as PTEN mutations are rare in NSCLC (52).
AKT activation and mTOR phosphorylation is found in 51% of
NSCLC cases, although AKT mutations are rare (<1%). Given
the high level of activation and “crosstalk” with the RAS–RAF–
MEK pathway, studies of mTOR and AKT inhibitors are of major
interest in lung cancer. Everolimus (RAD001), temsirolimus, and
other mTOR inhibitors are being investigated in combination with
other targeted agents, including EGFR TKIs, although toxicity of
these agents remains challenging, with high rates of fatigue and
stomatitis (53, 54).

Wnt-beta-catenin pathway
The Wnt signaling pathway is highly active in lung cancer and
correlates with metastasis and proliferation, and is believed to
maintain cancer stem cells. Activated Wnt signaling inhibits the
proteolysis of beta-catenin. Accumulated beta-catenin in cyto-
plasm moves to the nucleus where it initiates transcription factors
promoting cell growth and chemo- and radio-resistance. Down-
regulation of Wnt inhibitors is common in NSCLC samples and
associated with poor prognosis (55). WNT mutations are rare in
lung cancer and mutations in Beta-catenin are detected in 2% of
lung adenocarcinoma (56). Several targeted therapies against the
Wnt pathway are being investigated in early phase trials, including
PRI-724, a small molecule beta-catenin inhibitor.
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NUCLEAR TARGETS
POLY-ADP RIBOSE POLYMERASE
BRCA1, BRCA2, and PALB2 are proteins responsible for repair of
DNA double-strand breaks through the homologous repair path-
way; breaks that are not repaired lead to apoptosis. This repair
pathway can be disrupted by mutations in BRCA1, BRCA2, or
ATM (ataxia telangiectasia mutated), found in 7% of lung ade-
nocarcinomas. High levels of BRCA1 protein expression in lung
cancer correlate with poor survival, while decreased expression
predicts response to platinum-based chemotherapy (57, 58). The
poly-ADP ribose polymerase (PARP) enzyme is key in repair-
ing single-strand DNA breaks, which may lead to double-strand
breaks. BRCA deficient or mutated cells are sensitive to PARP
inhibition,which may also sensitize cancer cells to alkylator or plat-
inum damage via DNA single- or double-strand breaks. Despite
a negative study with iniparib and chemotherapy, veliparib, and
olaparib are being evaluated in combination with platinum-based
therapy or EGFR TKI in NSCLC.

Heat shock protein 90
Heat shock protein 90 is a chaperone protein that assists post-
translational folding of several proteins to stabilize and protect
them from cellular stresses like heat or hypoxia, including critical
proteins in lung cancer such as EGFR, HER2, MET, ALK, and oth-
ers. HSP90 inhibitors have shown activity in EGFR mutant lung
cancer after the development of resistance, in ALK -rearranged
tumors and more recently in EGFR wild type adenocarcinoma
when combined with chemotherapy (59). A phase III clinical trial
of docetaxel plus or minus ganetespib in chemo-naïve adenocarci-
noma is ongoing. Other HSP90 inhibitors under active investiga-
tion in lung cancer include retaspimycin (IPI-504), AUY992, and
AT13387.

Histone deacetylase
Histones are a family of proteins bound to DNA strands that
maintain the helical structure of DNA. DNA expression is reg-
ulated by acetylation and deacetylation of histones. Deacetylation
results in condensed DNA and reduced transcription. But his-
tone deacetylase (HDAC), highly expressed in most cancers, may
also alter activity of various proteins involved in carcinogenesis
including HSP90, STAT3, and p53. HDAC inhibitors have multi-
ple effects on DNA transcription, including induction of HSP90
acetylation (see above), disrupting its function, and resulting
in tumor apoptosis. Vorinostat, FDA approved for treatment of
cutaneous T-cell lymphoma, showed initial promise when added
to chemotherapy in advanced NSCLC, although the subsequent
phase III trial was negative (60). Other HDAC inhibitors being
studied include etinostat, romidepsin, pabinostat, pivanex, and
CI-994.

TARGETS IN THE TUMOR ENVIRONMENT
ANGIOGENESIS
Vascular endothelial growth factor (VEGF) is a pro-angiogenic
factor, with a key role in tumor angiogenesis. Its high expres-
sion in a variety of tumors, including NSCLC, is associated with
poor prognosis (61). Although multiple agents targeting VEGF
and VEGF receptors have been studied in lung cancer, only beva-
cizumab and more recently nintedanib have improved survival in

advanced non-squamous NSCLC. Bevacizumab, combined with
paclitaxel and carboplatin, improved response, PFS, and sur-
vival in the practice-changing ECOG4599 trial (62), although
subsequent bevacizumab trials have not improved survival com-
pared to chemotherapy alone. Nintedanib, a multi-targeted VEGF-
and FGFR-1 receptor TKI demonstrated greater OS in a sub-
group of adenocarcinoma patients when added to docetaxel ver-
sus chemotherapy alone (63). Trials of multiple other agents
have not demonstrated positive results, although trials with
VEGF/R inhibitors, including in different molecular subtype of
adenocarcinoma, are ongoing.

Vascular disrupting agents, such as vadimezan, target vascula-
ture directly, not through VEGF/VEGFR. To date, trials of these
and multiple other anti-angiogenic agents have not yet yielded
benefit.

IMMUNE MODULATION
The immune system plays an active role in eradication of malig-
nant cells. However, the evolution of cancer includes developing
mechanisms to escape the immune system. Several approaches are
now being investigated to boost anti-cancer immune response,
either by inhibiting immune checkpoints (as CTLA-4, PD-1, and
PD-L1) or by developing vaccines of cancer antigens. This topic
is discussed in length in a separate review article, with the PD-
1 checkpoint inhibitors as the most promising current target in
immune therapy of lung cancer, with demonstrated single agent
activity in both adenocarcinoma and squamous carcinoma (64).

There are multiple other potential targets in lung adenocarci-
noma that are not reviewed here, such as the cell surface receptor
insulin-like growth factor 1 receptor, apoptotic receptors, and pro-
teins including TRAIL, BCL-1, IAP proteins including survivin,
and the proteasome. Additional targets in the tumor environment
include adhesion molecules such as integrins, and even osteoclasts,
all potentially important targets in lung cancer with ongoing trials
of targeted agents.

CONCLUSION
Striking therapeutic advances in metastatic NSCLC have been
observed with targeted agents using molecular selection, notable
for patients with EGFR mutant or ALK -rearranged lung can-
cer. Testing for these oncogenic drivers is now standard of care
in advanced lung adenocarcinoma, but they are found in only
~20% of lung adenocarcinomas in Western populations, while
remaining patients are eligible only for standard chemotherapy.
However, this “success story,” as well as improved understanding
of molecular pathways of lung carcinogenesis, had led to rapid
progress in the identification of novel targets in adenocarcinoma
and potential therapies. Despite this enthusiasm, there are still
barriers to overcome, including how to approach tumors without
single oncogene addiction, i.e., targeting multiple pathways, and
also how to overcome primary and secondary resistance to targeted
therapies. Finally, the development of accurate, rapid, tissue-, and
cost-conserving assays to identify multiple targets simultaneously,
including targets beyond genomic sequencing, is urgently needed.
In the meantime, drug development and discovery of novel targets
in lung adenocarcinoma remain one of the fastest growing areas
of research and development in oncology today.
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