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In the United States, one-third of population is affected by obesity and almost 29 million peo-
ple are suffering from type 2 diabetes. Obese people have elevated serum levels of insulin,
insulin-like growth factor 1 (IGF1), and interleukin-17 (IL-17). Insulin and IGF1 are known to
enhance IL-17-induced expression of inflammatory cytokines and chemokines, which may
contribute to the chronic inflammatory status observed in obese people. We have pre-
viously demonstrated that insulin/IGF1 signaling pathway crosstalks with IL-17-activated
nuclear factor-κB pathway through inhibiting glycogen synthase kinase 3β (GSK3β) activity.
However, it is unclear whether GSK3α also plays a role and whether this crosstalk can be
manipulated by AZD5363, a novel pan-Akt inhibitor that has been shown to increase glyco-
gen synthase kinase 3 activity through reducing phosphorylation of GSK3α and GSK3β.
In this study, we investigated IL-17-induced expression of C-X-C motif ligand 1 (Cxcl1), C-
C motif ligand 20 (Ccl20), and interleukin-6 (Il-6 ) in wild-type, GSK3α−/−, and GSK3β−/−

mouse embryonic fibroblast cells as well as in mouse prostate tissues by real-time quan-
titative PCR. We examined the proteins involved in the signaling pathways by Western
blot analysis. We found that insulin and IGF1 enhanced IL-17-induced expression of Cxcl1,
Ccl20, and Il-6, which was associated with increased phosphorylation of GSK3α and GSK3β

in the presence of insulin and IGF1. AZD5363 inhibited the synergy between IL-17 and
insulin/IGF1 through reducing phosphorylation of GSK3α and GSK3β by inhibiting Akt func-
tion.These findings imply that the cooperative crosstalk of IL-17 and insulin/IGF1 in initiating
inflammatory responses may be alleviated by AZD5363.

Keywords: IL-17, insulin, IGF1, inflammation, prostate cancer, obesity

INTRODUCTION
Interleukin-17 (IL-17 or IL-17A) is an inflammatory cytokine
(1). It can activate nuclear factor-κB (NF-κB) activator 1 (Act1)
through similar expression to fibroblast growth factor genes, IL-
17 receptors, and Toll–IL-1R (SEFIR) domains, upon its binding
to a heterodimer of IL-17RA/IL-17RC receptor complex (2–6).
Act1, as an E3 ubiquitin ligase, activates tumor necrosis factor
receptor-associated factor 6 (TRAF6) through lysine-63-linked

Abbreviations: Act1, NF-κB activator 1; ASF, alternative splicing factor; CCL2,
C-C motif ligand 2; Ccl20, C-C motif ligand 20; CCL7, C-C motif ligand 7;
cDNA, complementary deoxyribonucleic acid; C/EBPβ, CAAT enhancer binding
protein β; Cxcl1, C-X-C motif ligand 1; CXCL5, C-X-C motif ligand 5; DMEM,
Dulbecco’s modified eagle’s medium; Gapdh, glyceraldehyde-3-phosphate dehydro-
genase; GSK, glycogen synthase kinase; IGF1, insulin-like growth factor 1; IGF1R,
insulin-like growth factor 1 receptor; IKK, IκB kinase; IL-6, interleukin-6; IL-17,
interleukin-17; IL-17R, interleukin-17 receptor; IR, insulin receptor; IRS, insulin
receptor substrates; MEF, mouse embryonic fibroblast; mTORC2, mTor complex
2; NF-κB, nuclear factor-κB; PDK1, protein kinase 1; PH, pleckstrin homology;
PI3K, phosphatidylinositol 3-kinase; SF2, splicing factor 2; SEFIR, similar expres-
sion to fibroblast growth factor genes, IL-17 receptors, and Toll–IL-1R; TAK1,
transforming growth factor-β-activated kinase 1; TRAF6, tumor necrosis factor
receptor-associated factor 6.

ubiquitination (7). The polyubiquitinated TRAF6 triggers trans-
forming growth factor-β-activated kinase 1 (TAK1) and subse-
quently IκB kinase (IKK) complex, which in turn leads to acti-
vation of NF-κB pathway that induces transcription of a variety
of cytokines, chemokines, and growth factor, e.g., C-X-C motif
ligand 1 (Cxcl1) and IL-6 (8–10). Several studies have demon-
strated that IL-17 stabilizes downstream Cxcl1 mRNA through an
inducible kinase IKKi-dependent Act1–TRAF2–TRAF5 complex,
which ligands with splicing factor 2 [SF2, also named alterna-
tive splicing factor (ASF)] and prevents SF2/ASF-mediated mRNA
degradation (11, 12).

Insulin is a hormone produced by the pancreas β cells, and its
abnormal high concentration (hyperinsulinemia) may circulate in
the body of people with obesity and type 2 diabetes mellitus with
insulin resistance. Under hyperinsulinemic conditions, the liver
produces insulin-like growth factor 1 (IGF1) (13). Two types of
insulin receptors (IR-A and IR-B) can bind to either insulin or
IGF1. IGF1 can also bind to a heterodimer of IR and IGF1 recep-
tor (IGF1R). Upon binding with the receptors, insulin (or IGF1)
leads to autophosphorylation of the β subunit of IR or IGF1R
(14), which in turn recruits insulin receptor substrates-1 (IRS-1)

www.frontiersin.org December 2014 | Volume 4 | Article 343 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00343/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00343/abstract
http://www.frontiersin.org/people/u/185891
http://www.frontiersin.org/people/u/56773
mailto:zyou@tulane.edu
http://www.frontiersin.org
http://www.frontiersin.org/Surgical_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chen et al. AZD5363 inhibits inflammatory synergy

to IRS4, and then phosphatidylinositol 3-kinase (PI3K)/Akt path-
way is activated (8). One of the major substrates of Akt is glycogen
synthase kinase 3β (GSK3β) (8, 15). Previous studies have shown
that insulin inactivates GSK3β by inducing phosphorylation at
serine 9 mainly via Akt signaling pathway (15, 16).

Glycogen synthase kinase 3 includes two type of isoforms
GSK3α and GSK3β, which are ubiquitously expressed in all
cells and capable of phosphorylating more than 50 substrates
(17). One of the substrates, CAAT enhancer binding protein β

(C/EBPβ), is also induced by IL-17 (3, 9, 18). C/EBPβ tran-
scription factor is essential for transcription of IL-17 down-
stream target genes such as IL-6 and 24p3/lipocalin 2 (19).
Phosphorylation of C/EBPβ inhibits expression of IL-17 down-
stream target genes, thus GSK3β negatively regulates IL-17
signaling through phosphorylation of C/EBPβ (20). Indeed,
inhibition of glycogen synthase kinase 3 (GSK3) activity by
GSK3 inhibitor can enhance IL-17-induced expression of IL-6,
24p3/lipocalin 2, CXCL5, C-C motif ligand 2 (CCL2), CCL7,
and NF-κB inhibitor zeta, whereas, overexpression of GSK3β can
inhibit IL-17-induced IL-6 promoter and 24p3 promoter activ-
ities in a mouse stromal ST2 cell line (21). Therefore, GSK3β

functions as an intrinsic negative regulator of IL-17-mediated
inflammatory responses (21). Our previous study has shown
that GSK3β inhibition by phosphorylation or gene knockout
enhanced IL-17-induced expression of inflammatory cytokines
and chemokines (8).

AZD5363 [(S)-4-amino-N -[1-(4-chlorophenyl)-3-hydroxypro
pyl]-1-(7H -pyrrolo [2, 3-d] pyrimidin-4-yl) piperidine-4-
carboxamide] is a pan-Akt inhibitor that is currently being inves-
tigated in phase I clinical trials for cancer therapy (22, 23). Akt is
a serine/threonine protein kinase, also known as protein kinase
B (PKB), which regulates a variety of cellular process includ-
ing cell proliferation, cell survival, and glucose and fatty acid
metabolism (24–26). Because Akt signaling network is the key
pro-tumor network in human cancers, it is a target in development
of new therapies (27). The active form of Akt is phosphorylated
Akt (P-Akt), which may occur at threonine 308 (Thr308) residue
phosphorylated by 3-phosphoinositide dependent protein kinase
1 (PDK1), or at serine 473 (Ser 473) residue phosphorylated by
mTor complex 2 (mTORC2) (28–30). Given that GSK3 is a down-
stream substrate of Akt, we hypothesized that inhibition of Akt by
AZD5363 might inhibit the synergistic effects between IL-17 and
insulin/IGF1. In this study, we tested this hypothesis.

MATERIALS AND METHODS
CELLS AND TISSUE CULTURE
Mouse embryonic fibroblast cells (wild-type, GSK3α−/−, or
GSk3β−/− gene knockout) (31) were maintained in a 37°C, 5%
CO2 humidified incubator. All of these cell lines express IL-
17 receptors A and C (data not shown). Dulbecco’s Modified
Eagle’s Medium (DMEM; Mediatech, Inc., Manassas, VA, USA)
with 10% fetal bovine serum (FBS; Mediatech, Inc.) and 1%
penicillin/streptomycin was used as the growth medium. Mouse
prostate tissues were dissected from 7 to 9-week-old male mice
euthanized by CO2 asphyxiation. The prostate tissues were washed
three times with phosphate-buffered saline (PBS), cut into 1–
2 mm3 cubes, and kept in 60-mm cell culture dishes in serum-free

DMEM in the incubator. The animal study was approved by the
Animal Care and Use Committee of Tulane University.

TREATMENT OF CELLS AND TISSUES
Mouse embryonic fibroblast cells were seeded into 60-mm cell cul-
ture dishes with 0.5× 106 cells/dish. After 24 h incubation, the cells
were incubated with serum-free DMEM for 20 h, and then treated
with IL-17 (R&D Systems, Inc., Minneapolis, MN, USA), insulin,
IGF1 (Sigma Aldrich, Inc., St Louis, MO, USA), and/or AZD5363
(Selleck Chemicals, Inc.,Houston,TX,USA). The harvested mouse
prostate tissues immersed in serum-free DMEM were incubated
for 20 h before any treatments. The treatment for cells and tissues
included: (1) control with vehicle; (2) AZD5363 at 2 µM for 3 h;
(3) insulin at 50 ng/ml for 2.5 h; (4) IGF1 at 50 ng/ml for 2.5 h; (5)
IL-17 at 20 ng/ml for 2 h; (6) insulin+ IL-17 at the same doses but
adding insulin 0.5 h before addition of IL-17; (7) IGF1+ IL-17
at the same doses but adding IGF1 0.5 h before addition of IL-
17; (8) AZD5363+ Insulin+ IL-17 at the same doses but adding
AZD5363 1 h and insulin 0.5 h before addition of IL-17; and (9)
AZD5363+ IGF1+ IL-17 at the same doses but adding AZD5363
1 h and IGF1 0.5 h before addition of IL-17.

REAL-TIME QUANTITATIVE REVERSE TRANSCRIPTASE PCR
Following treatments, mouse embryonic fibroblast (MEF) cells
or mouse prostate tissues were collected in lysis buffer. Mouse
prostate tissues were homogenized with Fisher Scientific™ Model
505 sonic dismembrator. Total RNAs of MEF cells or mouse
prostate tissues were isolated by using RNeasy Kit (QIAGEN,
Valencia, CA, USA) according to the manufacturer’s instruc-
tions. Genomic DNA contamination of each sample was avoided
by using DNase I digestion. RNA was reversed to cDNA
by using iScript™ cDNA synthesis kit (Bio-rad Laborato-
ries, Hercules, CA, USA). Mouse glyceraldehyde-3-phosphate
dehydrogenase (Gapdh), Cxcl1, Ccl20, and Il-6 primers were
obtained from Eurofins (Huntsville, AL, USA). The PCR primers
specific for each gene were as follows: Cxcl1 forward: 5′-
CACCCAAACCGAAGTCATAG-3′, reverse: 5′-AAGCCAGCGTT
CACCAGA-3′; Ccl20 forward: 5′-AACTGGGTGAAAAGGGCT
GT-3′, reverse: 5′-GTCCAATTCCATCCCAAAAA-3′; Il-6 for-
ward: 5′-CTACCCCAATTTCCAATGCT-3′, reverse: 5′-ACCACAG
TGAGGAATGTCCA-3′; Gapdh forward: 5′-TGCACCACCAAC
TGCTTAG-3′, reverse: 5′-GGATGCAGGGATGATGTTC-3′. Quan-
titative real-time PCR (qRT-PCR) was conducted using iQ5®
iCycler and iQ™ SYBR Green Supermix (Bio-Rad Laboratories)
following the manufacturer’s protocols. The result of each group
was normalized to its own Gapdh level by using the formula ∆Ct
(Cycle threshold)=Ct of target gene−Ct of Gapdh. The fold
change of mRNA level of each treatment group was calculated
as: ∆∆Ct=∆Ct of target gene in the treatment group−∆Ct of
target gene in control group, and fold change= 2−∆∆Ct.

WESTERN BLOT ANALYSIS
Following the treatment of cells or tissues, proteins were extracted
by using RIPA lysis buffer, which contains 50 mM sodium
fluoride, 0.5% Igepal CA-630 (NP-40), 10 mM sodium phos-
phate, 150 mM sodium chloride, 25 mM Tris (pH 8.0), 1 mM
phenylmethylsulfonyl fluoride, 2 mM ethylenediaminetetraacetic
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acid (EDTA), and 1.2 mM sodium vanadate. Protein concentra-
tion was assessed by using Bio-Rad Protein Assay Dye Reagent
Concentrate (Bio-Rad Laboratories, Hercules, CA, USA) and
BioTek ELx800 microplate reader (BioTek, Winooski, VT, USA).
Eighty microgram of protein of each group was loaded to
10% SDS-polyacrylamide gel electrophoresis and transferred to
polyvinylidene difluoride membrane. Membrane blocking was
done using 5% non-fat dry milk in TBST buffer (25 mM Tris-
HCl, 125 mM sodium chloride, and 0.1% Tween 20). Primary
antibody was incubated with the membrane at 4°C overnight.
The membrane was washed three times with TBST, and incu-
bated with IRDye® 800CW- or IRDye® 680RD-conjugated sec-
ondary antibodies (LI-COR Biosciences, Lincoln, NE, USA) at
room temperature for 1 h. The membrane was scanned by
Odyssey Infrared Imager (LI-COR Biosciences) for visualization.
The antibodies used included: rabbit anti-P-Akt (S473), rabbit
anti-Akt, rabbit anti-P-GSK3α (S21), rabbit anti-GSK3α, rab-
bit anti-P-GSK3β (S9), and rabbit anti-GSK3β antibodies were
purchased from Cell Signaling Technology, Danvers, MA, USA.
Mouse anti-GAPDH antibody was purchased from Millipore,
Billerica, MA, USA.

STATISTICAL ANALYSIS
The data were presented as mean± SD of triplicate experi-
ments (n= 3). Statistical significance was determined by one-way
ANOVA and Tukey’s tests. All of the analyses were performed using
GraphPad Prism® 5.0 (GraphPad Software, La Jolla, CA, USA).

RESULTS
In the wild-type MEF cells, insulin or IGF1 alone treatment led to
increased levels of P-Akt, P-GSK3α, and P-GSK3β (Figures 1A,B).
When AZD5363 treatment was added, the levels of P-Akt were
further increased. On the contrary, AZD5363 treatment reduced
the levels of P-GSK3α and P-GSK3β (Figures 1A,B). In the
GSK3α−/− MEF cells (Figures 1C,D) and GSK3β−/− MEF cells
(Figures 1E,F), insulin or IGF1 alone treatment increased the lev-
els of P-Akt, and subsequently the levels of P-GSK3β and P-GSK3α

in GSK3α−/− and GSK3β−/− MEF cells, respectively. AZD5363
treatment led to a further increase of P-Akt compared to insulin
or IGF1 alone treatment in both GSK3α−/− and GSK3β−/− MEF
cells. However, AZD5363 treatment reduced the levels of P-GSK3β

and P-GSK3α in GSK3α−/− and GSK3β−/−MEF cells, respectively,
in comparison to insulin or IGF1 alone treatment.

FIGURE 1 | Effects of AZD5363 on insulin/IGF1 signaling
pathways. (A) Effects of insulin with or without AZD5363 on
wild-type MEF cells; (B) Effects of IGF1 with or without AZD5363 on
wild-type MEF cells; (C) Effects of insulin with or without AZD5363
on GSK3α−/− MEF cells; (D) Effects of IGF1 with or without AZD5363
on GSK3α−/− MEF cells; (E) Effects of insulin with or without

AZD5363 on GSK3β−/− MEF cells; (F) Effects of IGF1 with or without
AZD5363 on GSK3β−/− MEF cells. The concentrations of insulin and
IGF1 were 50 ng/ml and the concentration of AZD5363 was 2 µM.
The levels of phosphorylated and unphosphorylated Akt, GSK3α, and
GSK3β were shown by western blot analysis. Equal loading of
proteins was confirmed by reprobing GAPDH.
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FIGURE 2 | Effects of AZD5363 on IL-17 and insulin/IGF1 signaling
pathways in wild-type MEF cells (A), GSK3α−/− MEF cells (B), and
GSK3β−/− MEF cells (C). Cells were treated with 20 ng/ml IL-17, 50 ng/ml
insulin, 50 ng/ml IGF1, and 2 µM AZD5363, either alone or in combination
for 2 h. The levels of phosphorylated and unphosphorylated Akt, GSK3α,
and GSK3β were shown by western blot analysis. Equal loading of proteins
was confirmed by reprobing GAPDH.

As shown in Figure 2A, IL-17, insulin or IGF1 alone treatment
only slightly increased the levels of P-Akt, P-GSK3α, and P-GSK3β

in wild-type MEF cells, compared to control group. A combina-
tion of insulin and IL-17, or IGF1 and IL-17, further increased the
levels of P-Akt, P-GSK3α, and P-GSK3β. When AZD5363 treat-
ment was added to the combined treatment groups, the levels of
P-GSK3α and P-GSK3β were dramatically reduced, though the lev-
els of P-Akt were further increased. In GSK3α−/− and GSK3β−/−

MEF cells, similar changes were observed, except that only GSK3β

(Figure 2B) or GSK3α (Figure 2C) was present due to knockout
of the other GSK3 isoform.

Because AZD5363 treatment decreased the levels of P-GSK3α

and P-GSK3β that might affect IL-17-induced gene expression
(8), we checked the mRNA levels of Cxcl1 and Ccl20 in wild-
type, GSK3α−/− and GSK3β−/− MEF cells after the treatment as
described above. In the wild-type MEF cells, IL-17 or insulin alone
treatment increased Cxcl1 mRNA levels by 2.0± 0.4 or 1.6± 0.8-
fold, compared to control group (Figure 3A). Cxcl1 mRNA level
was increased by 4.6± 0.6-fold in the insulin and IL-17 combined
treatment group, which was statistically significant compared to

insulin or IL-17 alone treatment group (p < 0.05). Addition of
AZD5363 to this combined treatment group reduced Cxcl1 mRNA
level to 1.8± 0.1-fold, which was significantly less than the insulin
and IL-17 combined treatment group (Figure 3A, p < 0.05).
Similarly, Ccl20 mRNA levels were increased by 2.0± 0.5 and
1.6± 0.3-fold in IL-17 or insulin alone treated group, respec-
tively. A combination of insulin and IL-17 treatment increased
Ccl20 mRNA level by 3.0± 0.8-fold, which was significantly higher
than either IL-17 or insulin alone treatment. In contrast, addition
of AZD5363 to the combined treatment reduced Ccl20 mRNA
level almost to the basal level of 1.1± 0.3-fold, which was sig-
nificantly lower than the insulin and IL-17 combined treatment
group (Figure 3A, p < 0.05). As shown in Figure 3B, IGF1 and
IL-17 also synergistically induced Cxcl1 and Ccl20 mRNA expres-
sion, which was inhibited by addition of AZD5363. In GSK3α−/−

(Figures 3C,D) and GSK3β−/− (Figures 3E,F) MEF cells, IL-17
alone treatment dramatically increased the levels of Cxcl1 and
Ccl20 mRNA. In contrast to wild-type MEF cells, combination
of insulin or IGF1 with IL-17 did not further increase levels
of Cxcl1 and Ccl20 mRNA, compared to IL-17 alone treatment
(Figures 3C–F). Furthermore, addition of AZD5363 to the com-
bined treatment did not reduce the elevated mRNA levels of Cxcl1
or Ccl20 (Figures 3C–F).

In order to assess if our findings in the studies of cell lines
are relevant to the in vivo organ tissues, we did similar experi-
ments using ex vivo cultured mouse prostate tissues. As shown
in Figure 4A, increased levels of P-Akt, P-GSK3α, and P-GSK3β

were observed in mouse prostate tissues treated with insulin alone,
IGF1 alone, a combination of insulin and IL-17, and a combina-
tion of IGF1 and IL-17, compared to the control group. However,
addition of AZD5363 to the combined treatment groups reduced
the levels of P-GSK3α and P-GSK3β, compared to the combined
treatment groups. The changes in the signaling proteins were asso-
ciated with the changes in the mRNA levels of Cxcl1, Ccl20, and
Il-6. As shown in Figure 4B, a combination of insulin and IL-
17 treatment significantly increased the mRNA levels of Cxcl1,
Ccl20, and Il-6, compared to insulin or IL-17 alone treatment
(p < 0.05). Similarly, a combination of IGF1 and IL-17 treatment
showed the same effects (Figure 4C). However, when AZD5363
was added to the combined treatment groups, the induction of
mRNA levels of Cxcl1, Ccl20, and Il-6 was significantly reduced,
compared to the combined treatment groups without AZD5363
(Figures 4B,C).

DISCUSSION
Inflammation has been shown to be a driving force behind a vari-
ety of cancer types (32–34). IL-17 is an inflammatory cytokine that
stimulates leukocytes, fibroblasts, epithelial cells, and endothelial
cells to release inflammatory signals that can further fire up inflam-
mation (1). We have previously demonstrated that IL-17 promotes
formation and growth of prostate cancer in a mouse model (35,
36). Recently, we showed that insulin and IGF1 enhance IL-17-
induced expression of inflammatory cytokines and chemokines
(8). The crosstalk between insulin/IGF1 signaling pathway and
IL-17 signaling pathway is mediated by GSK3β, as GSK3β knock-
out blocks the crosstalk. In the present study, we found that GSK3α
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FIGURE 3 | Expression of Cxcl1 and Ccl20 mRNAs in wild-type MEF cells
(A,B), GSK3α−/− MEF cells (C,D), and GSK3β−/− MEF cells (E,F). Cells were
treated with 20 ng/ml IL-17, 50 ng/ml insulin, 50 ng/ml IGF1, and 2 µM
AZD5363, either alone or in combination for 2 h. The levels of Cxcl1 and Ccl20

mRNAs were determined using real-time PCR. Data represent mean±SD of
triplicate experiments (n= 3). a, p < 0.05 Compared to IL-17 alone or
insulin/IGF1 alone; b, p < 0.05 compared to the combination of IL-17 and
insulin or IGF1.

knockout also blocks the crosstalk between insulin/IGF1 and IL-
17 pathways. In fact, knockout of either GSK3α or GSK3β appears
to relieve the repressive function of GSK3 on IL-17-induced gene

expression, as IL-17 can induce gene expression to the levels signif-
icantly higher than in the wild-type MEFs where IL-17 can usually
induce gene expression to very modest levels. These findings
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FIGURE 4 | Effects of AZD5363 on IL-17 and insulin/IGF1 signaling
pathways and expression of Cxcl1 and Ccl20 mRNAs in mouse
prostate tissues. Mouse prostate tissues were cultured ex vivo and
treated with 20 ng/ml IL-17, 50 ng/ml insulin, 50 ng/ml IGF1, and 2 µM
AZD5363, either alone or in combination for 2 h. (A) The levels of
phosphorylated and unphosphorylated Akt, GSK3α and GSK3β were shown
by western blot analysis. Equal loading of proteins was confirmed by
reprobing GAPDH. (B,C) The levels of Cxcl1 and Ccl20 mRNAs were
determined using real-time PCR. Data represent mean±SD of triplicate
experiments (n=3). a, p < 0.05 Compared to IL-17 alone or insulin/IGF1
alone; b, p < 0.05 compared to the combination of IL-17 and insulin or IGF1.

suggest that both GSK3α and GSK3β isoforms are required to
be present, in order to repress IL-17-induced gene expression.
Lithium chloride is an inhibitor to both GSK3α and GSK3β

isoforms, which has been shown to increase IL-17-induced gene
expression in two previous studies (8, 20). The exact molecular
mechanisms underlying the crosstalk are yet to be determined,

FIGURE 5 | Illustration of the proposed crosstalk between insulin/IGF1
and IL-17 signaling pathways. IL-17 acts through the IL-17RA:IL-17RC
receptor complex to activate Act1–TRAF6–TAK1–IKK signaling cascade, thus
activating NF-κB transcription factor and subsequently activating C/EBPβ

transcription factors. NF-κB and C/EBPβ transcription factors are required
for initiation of transcription of the downstream target genes such as IL-6,
Cxcl1, and Ccl20. Insulin and IGF1 bind to their receptors and activate
PI3K/Akt pathway; Akt phosphorylates GSK3B at serine 9 and GSK3A at
serine 21 to inhibit GSK3 activity; GSK3 phosphorylates C/EBPβ at
threonine 179 after a priming phosphorylation at threonine 188 by ERK1/2,
thus inhibiting C/EBPβ’s transcription function. Therefore, insulin/IGF1
signaling is linked with IL-17 signaling by GSK3 and C/EBPβ. AZD5363
inhibits Akt activation, thus enhancing GSK3 activity and subsequently
diminishing IL-17-induced gene expression by inhibiting C/EBPβ function.

though a previous study suggested that it might be phospho-
rylation of C/EBPβ by GSK3, which inhibits the transcription
function of C/EBPβ (21). As shown in Figure 5, IL-17 acts through
the IL-17RA:IL-17RC receptor complex to activate Act1–TRAF6–
TAK1–IKK signaling cascade, thus activating NF-κB transcription
factor and subsequently activating C/EBPβ transcription factors.
NF-κB and C/EBPβ transcription factors are required for initia-
tion of transcription of the downstream target genes such as IL-6,
Cxcl1, and Ccl20. Insulin and IGF1 bind to their receptors and
activate PI3K/Akt pathway; Akt phosphorylates GSK3B at serine 9
and GSK3A at serine 21 to inhibit GSK3 activity; GSK3 phosphory-
lates C/EBPβ at threonine 179 after a priming phosphorylation at
threonine 188 by ERK1/2, thus inhibiting C/EBPβ’s transcription
function. Therefore, insulin/IGF1 signaling is linked with IL-17
signaling by GSK3 and C/EBPβ. AZD5363 inhibits Akt activa-
tion, thus enhancing GSK3 activity and subsequently diminishing
IL-17-induced gene expression by inhibiting C/EBPβ function.

Manipulation of the crosstalk between insulin/IGF1 and IL-17
is potentially significant in obese population. It has been reported

Frontiers in Oncology | Surgical Oncology December 2014 | Volume 4 | Article 343 | 6

http://www.frontiersin.org/Surgical_Oncology
http://www.frontiersin.org/Surgical_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chen et al. AZD5363 inhibits inflammatory synergy

that serum and tissue levels of IL-17 are increased in obese mice
(37, 38) and humans (39). Interestingly, serum levels of insulin and
IGF1 are also increased in obese population, which together with
IL-17, may be the underlying cause of the chronic inflammatory
state with increased serum levels of inflammatory mediators TNFα

and IL-6 (8, 40). Obesity has been associated with increased risks
of breast cancer, endometrial cancer, esophageal adenocarcinoma,
pancreas cancer, colorectal cancer, renal cancer, thyroid cancer,
gallbladder cancer, and prostate cancer (41–49). Chronic inflam-
mation in obesity is suspected as one of the possible mechanisms
underlying the increased cancer risk. In our previous study, we
found that melatonin can block the crosstalk between insulin/IGF1
and IL-17 through inhibition of Akt function (8). In the present
study, we found that AZD5363, a pan-Akt inhibitor, can do the
same. AZD5363 reduced phosphorylation of GSK3α at serine 21
and GSK3β at serine 9, thus increasing the enzyme activities of
GSK3α and GSK3β, and subsequently represses IL-17-induced
gene expression. Preclinical studies have shown that AZD5363
may be effective in inhibiting tumor growth (27), yet it remains
to be determined whether AZD5363 may alter the inflammatory
microenvironment in the tumors and how this contributes to the
anti-tumor function of AZD5363.

Interestingly, we observed that AZD5363, a pan-Akt inhibitor,
increased the P-Akt levels in wild-type, GSK3α−/− and GSK3β−/−

MEF cells. In general, phosphorylated Akt is the activated form of
Akt (30). However, it has been reported that several Akt inhibitors
elevate the levels of P-Akt. The mechanism behind this may be
that suppression of S6K (p70S6K) activity stabilizes IRS-1 and
increases IRS-1 adapter protein levels, which in turn induces Akt
activity (50–54). Another possible cause of the hyperphosphory-
lation is that the Akt inhibitor sensitizes the pleckstrin homology
(PH) domain to bind basal levels of PIP3 to facilitate membrane
localization and induce conformational change of Akt to become
more susceptible to kinase phosphorylation or less susceptible to
phosphatase dephosphorylation (55). Of note, the increase of P-
Akt and total Akt was less obvious in the mouse prostate tissues,
compared to the MEFs upon AZD5363 treatment. We specu-
late that this might be due to that the prostate glandular tissues
responded differently from the MEFs. But the exact reason is not
clear.

In summary, this study indicates that insulin and IGF1 can
enhance IL-17-induced inflammatory responses through sup-
pression of GSK3 function by phosphorylation of GSK3α and
GSK3β. AZD5363 inhibits Akt function and thus inhibits the syn-
ergy between IL-17 and insulin/IGF1 through enhancing GSK3
function by reducing phosphorylation of GSK3α and GSK3β.
These findings imply that the cooperative crosstalk of IL-17
and insulin/IGF1 in initiating inflammatory responses may be
alleviated by AZD5363.
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