
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 08 December 2014
doi: 10.3389/fonc.2014.00344

Altered transcriptional control networks with
trans-differentiation of isogenic mutant-KRas
NSCLC models
John A. Haley 1, Elizabeth Haughney 1, Erica Ullman2, James Bean3, John D. Haley 4* and MarcY. Fink 1*
1 Department of Biomedical Sciences, LIU Post, Brookville, NY, USA
2 Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
3 Infectious Disease Division, Memorial Sloan Kettering Cancer Center, New York, NY, USA
4 Department of Pathology, Cancer Center, Stony Brook School of Medicine, Stony Brook, NY, USA

Edited by:
Pierre Savagner, Institut National de la
Santé et de la Recherche Médicale,
France

Reviewed by:
Markus A. N. Hartl, University of
Innsbruck, Austria
Navneet Momi, Boston Medical
Center, USA

*Correspondence:
John D. Haley , Department of
Pathology, Cancer Center, Stony
Brook School of Medicine, Stony
Brook, NY 11794, USA
e-mail: john.haley@stonybrook.edu;
Marc Y. Fink, Department of
Biomedical Sciences, LIU Post, 720
Northern Blvd, Brookville, NY 11548,
USA
e-mail: marc.fink@liu.edu

Background: The capacity of cancer cells to undergo epithelial mesenchymal trans-
differentiation has been implicated as a factor driving metastasis, through the acquisition
of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mech-
anisms promoting drug and radiation resistance. Our aim was to define molecular signaling
changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC
models. We focused on central transcription and epigenetic regulators predicted to be
important for mesenchymal cell survival.

Experimental design: We have modeled trans-differentiation and cancer stemness in
inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As
expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of
cellular signaling not apparent in their epithelial counterparts. We employed large-scale
quantitative phosphoproteomic, proteomic, protein–protein interaction, RNA-Seq, and net-
work function prediction approaches to dissect the molecular events associated with the
establishment and maintenance of the mesenchymal state.

Results: Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2,
MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-
differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple
networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways.
Enrichment correlations also indicated marked decrease in cell cycling, which occurred early
in the EMT process. RNA abundance time course studies also indicated early expression
of epigenetic and chromatin regulators within 8–24 h, including CITED4, RUNX3, CMBX1,
and SIRT4.

Conclusion: Multiple transcription and epigenetic pathways where altered between
epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1,
HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhi-
bition of pathway regulators, notably factors controlling epithelial cell state. Through large-
scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation
can promote diversification of signaling networks potentially important in resistance to
cancer therapies.

Keywords: tumor heterogeneity, epigenetic, transcription, systems biology, EMT

INTRODUCTION
Cellular plasticity in epithelial cancers is associated with a pro-
gression to a metastatic state (1, 2) and resistance to anti-cancer
therapies (3, 4). Over 90% of cancer patient deaths are attribut-
able to complications arising from metastatic dissemination of
cancer cells to distant organ sites. Tumor plasticity associated
with epithelial mesenchymal transition (EMT) (5, 6) contributes
to metastasis, drug resistance and is correlated with poor prog-
nosis (7, 8). The epigenetic reprograming associated with EMT

promotes the disassembly of epithelial cell-junctions, a loss of
epithelial polarity (4, 9), and the formation of molecular assem-
blies allowing cell migration and invasion (10). In multiple model
systems, EMT-derived mesenchymal cells can show the properties
of cancer stem cells including tumor initiation at low cell inocu-
lation in vivo, sphere formation in vitro, and CD44high, CD24low,
and ALDH1active pluripotent stem cell markers (11, 12). Despite
advances in the treatment of non-small cell lung cancers (NSCLC),
for example, the development of EGFR tyrosine kinase inhibitors
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(EGFR TKIs) for patients with activating EGFR mutations, sur-
vival rates for patients with mutant-KRas lung cancer are poor.
Mutant-KRas is observed in ~20% of NSCLC cases and is gen-
erally independent of EGFR mutations (13). In a recent clinical
study, the median survival time of patients treated with standard
of care was 7.7 months in NSCLC patients with mutant-KRas, in
marked contrast to 38 months in patients with mutant EGFR (14).
Several studies suggest tumor cells harboring mutant-KRas may be
primed to undergo epithelial mesenchymal trans-differentiation,
for example (15, 16). These mesenchymal-like carcinoma cells
have been shown to be resistant to many conventional lung cancer
therapies, including taxanes, pemetrexed, gemcitabine, and EGFR
TKIs (8, 12, 17). Chemotherapy has been shown to promote selec-
tion for EMT-derived cells in a number of solid tumor types (7,
17, 18) and conversely markers of EMT appears to contribute to
chemotherapy resistance (19) and predict response to EGFR and
PI3K inhibitors (20). Similar data show EMT-derived cells can
serve as reservoirs for cancer recurrence in relevant genetically
engineered models (21, 22). Therapies are needed that specifi-
cally target drug resistant mesenchymal-like tumor cells. However,
survival signaling networks in EMT–derived cells appear heteroge-
neous and critical dependencies common to mesenchymal tumor
cells remain ill defined. Current inhibitors of mesenchymal stem-
like tumor cells have been largely restricted to specific tumor
and driver types, for example, JAK or PDGFR inhibitors. Since
mesenchymal trans-differentiation involves an epigenetic repro-
graming, the pharmacological use of epigenetic modulators would
appear attractive. However, initial therapeutic successes with sin-
gle agent DNA methyltransferase inhibitors, HDAC inhibitors, and
EZH2 inhibitors have been more pronounced in the hematologic
malignancies, as opposed to epithelial-derived carcinomas, which
can undergo EMT.

In order to understand and identify transcriptional and epi-
genetic networks in a mutant-KRas mesenchymal cell context,
we have modeled metastable reversible EMT in two NSCLC cell
backgrounds. “Metastable” refers to a reversible EMT, achieved
for example by withdrawal of inducer (23), where in interme-
diate stages cells can express both epithelial and mesenchymal
markers (24). Here, we compared CD44low A549 cells with iso-
genic CD44high A549/transforming growth factor beta (TGFβ)
cells and CDH1/E-cadherinhigh H358 cells with isogenic CDH1low

H358/dox-TGFβ cells. As expected both models reversibly undergo
EMT and are less responsive to paclitaxel, gemcitabine, and
erlotinib in the mesenchymal state (data not shown). These mod-
els confirm the clinical observations and show that tumor cells that
have undergone EMT show increased resistance to standard of care
cancer treatments. Importantly, upon undergoing EMT tumor
cells acquire novel mechanisms of cellular signaling and resistance
to apoptosis not apparent in their epithelial counterparts.

We sought to define at signaling network changes distinguish-
ing epithelial and mesenchymal tumor states, with an aim of
identifying key nodes important in mesenchymal cell survival.
Pharmacological blockade of mesenchymal survival pathways may
overcome a limitation of current therapies, which preferentially
impact tumor cells with an epithelial phenotype (17). We used a
combination of RNA-Seq, phosphoproteomic, and bioinformat-
ics approaches to identify transcriptional and epigenetic networks

modulated as a consequence of epithelial mesenchymal transi-
tion (EMT). We employed TGFβ to induce EMT in the A549 and
H358 NSCLC models, where cells were preselected for a starting
epithelial state. TGFβ is a physiologically relevant inducer of EMT
(25) associated with a macrophage/monocyte rich inflammatory
microenvironment (26). Detailed RNA, protein, and phosphopep-
tide abundance datasets were obtained. Using pathway prediction
and gene-set enrichment approaches, and protein–protein inter-
action data we observed altered regulation of transcriptional,
epigenetic, and chromatin modulators and explored intersections
between key pathways.

MATERIALS AND METHODS
CELL CULTURE CONDITIONS
Parental H358 and A549 cells were obtained from the ATCC and
maintained in RPMI 1640 containing 10% FCS. Both H358 and
A549 are related adenocarcinoma NSCLC lines,where both express
an activated KRas oncogene, with mutations at G12C and G12S,
respectively. H358 cells harbor pathogenic mutations in CTNNB1,
KRAS, LIMK1, MAX, MED12, MSH3, PML, RNF212, RUNX2,
SATB2, SF3B1, SGK3, TP63, and USP2. A549 adenocarcinoma
NSCLC cells harbor pathogenic mutations in DCLK3, FRMD6,
KEAP1, KRAS, PTPN21, and TCEA2 (27). Both cell lines undergo
EMT in response to TGFβ. All cells were kept at 37°C with 5%
CO2. The TGFβ inducible variant of H358 and its dox-vector
control line were both engineered from a single H358 cell clone
with marker expression CDH1high and epithelial cell-junctions.
Multiple H358-dox-TGFβ cell lines were isolated (23, 24) using
the doxycycline inducible CMV promoter (pTRE2puro; invit-
rogen.com) using the two vector TET repressor/TET activator
system (ptTS, prTA; blaR) based on Ref. (28). H358-dox-TGFβ

clones were maintained in RPMI 1640, 10% tetracycline-free FCS
(clontech.com), L-glutamine (1 mM), sodium pyruvate (1 mM),
D-glucose (4.5 g/l), 10 mM HEPES, blasticidin (10 µg/ml), and
doxycycline (0.5 µg/ml). Doxycycline (0.5 µg/ml) induction of
transgene expression was verified by immunoblot and was shown
to correctly modulate EMT marker expression (Figure S1 in Sup-
plementary Material). Inducible RNA expression (log2 FC= 4.6)
is shown in Table S1 in Supplementary Material. Parental A549
cells were anti-CD44 antibody selected using magnetic beads into
a CD44low starting epithelial population, which was subsequently
induced with TGFβ (10 ng/ml) to yield a uniformly mesenchymal
cell population after 7 days.

RNA-Seq
Duplicate cell samples (~3× 106 cells) were lyzed in 600 µl Qiagen
RLT buffer, 1% β-mercaptoethanol, followed by column isolation
(qiagen.com). RNA isolation, library construction, and RNA-Seq
essentially followed Illumina protocols (illumina.com). cDNA was
prepared from total RNA with globin RNA reduction, followed
by library generation (Illumina True Seq). cDNA libraries were
immobilized (Illumina, Standard Cluster Generation Kit) and
sequenced on an Illumina HySeq instrument. Read depths for
H358 and A549 were 30 million and 25 million, respectively. RNA-
Seq was performed on Illumina HySeq instrument1 . FASTQ file

1http://www.expressionanalysis.com
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reads passing Illumina purity filter (PF reads) were aligned and
quantitation performed by RSEM (29), generating files where nor-
malized counts for each detected gene and isoform (UCSC Known
Gene). Aligned RNAs (27976 genes; 48241 isoforms) passing QC
thresholds were used to calculate mesenchymal–epithelial tran-
script abundance ratios followed by log2 linear scaling. Additional
analysis was performed using Cufflinks (30) on BAM files aligned
to hg19. For RNA-Seq data were selected where log2 fold change
(FC) was ≥1.0 and where rsem reads were >5 in any sample.
In difference analysis where either numerators or denominators
were equal to zero, values were generated (specified as >5 or <5)
in gene lists if differences >10 rsem reads were observed in both
H358 and A549 models with concordant log2 signs. Concordance
required >2 FC in three out of four samples (Mes-1 and Mes-2
over Epi-ave) for both A549 and H358 cell models.

PREPARATION OF CELL EXTRACTS AND PHOSPHORYLATION DIRECTED
AFFINITY CHROMATOGRAPHY
Essentially, site-specific serine and threonine phosphorylation
changes were measured by SILAC labeling of proteins, trypsin
digestion, ion-exchange fractionation, and TiO2 affinity selec-
tion in the presence of 1 M lactic acid to minimize acidic pep-
tide binding followed by nano LC-MS/MS. Site-specific tyro-
sine phosphorylation was measured by SILAC labeling, pep-
tide anti-phosphotyrosine selection, and nano LC-MS/MS. Total
protein changes were assessed by SILAC labeling, ion-exchange
fractionation, and LC-MS/MS.

Approximately 5× 108 H358 or A549 mesenchymal and epithe-
lial cells were cultured in RPMI 1640 media containing heavy
(13C6) arginine and lysine or light (12C) arginine and lysine,
respectively [SILAC; (31)]. Cells from five biological replicates
were extracted in 8 M urea, 50 mM HEPES, 2.5 mM sodium
pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium ortho-
vanadate, and phosphatase inhibitor cocktails 1 and 2 (1:100
dilution; sigmaaldrich.com). Heavy and light extracts were mixed,
sonicated for 2× 30 s and centrifuged at 10,000× g. The com-
bined supernatant was subjected to reduction (5 mM tributyl
phosphine), alkylation (15 mM iodoacetamide), proteolysis with
trypsin, desalting on C18 resin (Sep-Pak C18; waters.com) and
lyophilization. Peptides were immunoprecipitated with anti-
phosphotyrosine affinity resin essentially as described (32),
with C18 cartridge (Opti-Lynx 40 µg C18AQ; optimizetech.com)
desalting with a 10 min gradient elution with inline UV absorbance
detection at 220 nm using a 250 nl flow cell. Peptides were
lyophilized, resuspended in 0.1% formic acid, and analyzed by
LC-MS/MS.

Anti-phosphotyrosine flow through peptides were separated
by SCX ion-exchange chromatography (SampliQ resin 150 mg;
agilent.com) in 10 mM KH2PO4 pH 3.0, 25% acetonitrile step
eluted with increasing KCl (20, 40, 60, 80, 100, 125, 150, 200, 350,
500 mM KCl) yielding ten fractions. Samples were desalted by C18
step chromatography (OASIS 60mg C18; waters.com), followed by
TiO2 affinity chromatography (10 u beads; glsciences.com) using
3 mg TiO2 beads per fraction in 100 ul 0.1% TFA, 50% acetonitrile
(ACN), where 1 M lactic acid was used to suppress non-specific
binding. Phosphopeptides were eluted with 50 mM KH2PO4 pH
10.5 (pH adjusted with NH4OH), immediately neutralized with

5% formic acid, 50% acetonitrile, and lyophilized. Peptide frac-
tions were resuspended in 0.1% FA and analyzed by LC-MS/MS.
Peptides not binding to TiO2 (flow through fraction) were desalted
(OASIS 60 mg C18; waters.com), lyophilized and protein concen-
tration determined by micro BCA assay (piercenet.com). Peptide
fractions were resuspended in 2% ACN, 0.1% FA, and analyzed by
LC-MS/MS.

PEPTIDE IDENTIFICATION AND QUANTIFICATION BY LC-TANDEM MS
LC-MS/MS was performed essentially as previously described
(33, 34). Two (A549) or three (H358) LC-MS/MS experiments
were performed for each fraction (1 fraction for pY, 10 frac-
tions for SCX/TiO2, and 10 fractions for SCX/total peptide).
Proteins were identified from survey and product ion spectra
data, using the Paragon algorithm of ProteinPilot [v4.0; (35)] and
GPM [(36) v2.2.1]. Two missed tryptic cleavages were allowed
and posttranslational modifications considered included cysteine
derivitization, STY phosphorylation, deamidation, carbamylation,
oxidation, and SILAC labels. Database searches used the human
UniProt FASTA database (10-2012; 70,391 sequences including
common contaminants). When multiple protein isoforms were
identified, Protein Pilot allowed only peptides specific to each
detected isoform to be used, which factored in ion counts for
weighting in the protein ratio calculation (37). Parsimony of pro-
tein results was assured by rigorous protein inference with the
ProGroup algorithm. Protein identification complied with the
guidelines of Bradshaw et al. (38) where two or more unique
isoform-specific peptides were required for inclusion. False dis-
covery rates of phosphotyrosine peptide capture experiments were
<1%. False positive rates for the high complexity TiO2 and total
peptide assignments ranged between 1.4 and 0.8%. For statisti-
cal analysis we required four or more peptides with individual
peptide assignments at >95% confidence. Phosphopeptide peak
areas were normally distributed by log10+ 1 conversion followed
by paired t -test. Phosphopeptides sites identified four or more
times are listed in Table S2 in Supplementary Material and coordi-
nate changes in phosphopeptide abundance between H358 and
A549 models were observed for 73 unique sites are listed in
Table S3 in Supplementary Material. Fifty-eight protein abun-
dance changes were coordinately associated with H358 and A549
trans-differentiation, with two or more unique peptides also at
95% peptide ID confidence are listed in Table S4 in Supplementary
Material. Co-correlation of overlapping peptides from skipped
cleavage and multiple charge states were used to further reduce
false discovery rates and correctly bin previously defined bench-
mark peptides from E-cadherin, vimentin, and fibronectin to their
respective epithelial or mesenchymal cell states.

FUNCTIONAL ANALYSIS AND PERFORMANCE PARAMETERS
A schema for the statistical and categorical analysis of pro-
tein, phosphopeptide, and RNA transcript data is provided in
Figure 1. Changes in the abundance of proteins, phosphopep-
tides, and RNA transcripts were compared between fractions,
experiments, and models where membership within specific sig-
naling networks only was established using two or more inde-
pendent lines of evidence. Cross-correlation between two inde-
pendent isogenic KRas models was used to reduce noise and
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FIGURE 1 | Marker expression in H358 and A549 isogenic mesenchymal
trans-differentiation models. (A) Immunoblot staining for E-cadherin, CD44,
vimentin, and actin (control) in the H358-dox-TGFβ model in epithelial (−dox)
or mesenchymal (+dox) states (5 days and ~180 days on doxycycline).
(B) Deconvoluted fluorescence microscopy image for CD44 (green) and
E-cadherin (red) in the H358-dox-TGFβ model in epithelial (−dox) or
mesenchymal (+dox) states. (C) H358 cells induced to express TGFβ for

14 days (bottom panels) show increased aldefluor activity, a marker of
aldehyde dehydrogenase activity and stemness, relative to control cells (top
panels), as measured by FACS. (D) Immunoblot staining for fibronectin,
E-cadherin, vimentin, and GAPDH (control) in the A549 cell in the presence or
absence of exogenous TGFβ (10 ng/ml) for 7 or 14 days. (E) A workflow
schema for RNA, protein, phosphopeptide abundance measurement, and
cross-correlation.
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reduce false positives. Proteins, phosphopeptides, and RNA tran-
scripts differentially expressed between EMT-like cell states were
grouped by function using literature, gene-set enrichment (GSEA)
(v14; broadinstitute.org/gsea), Gene Pattern (v3.8.1; broadin-
stitute.org/cancer/software/genepattern), DAVID2, and Ingenuity
pathway prediction (IPA; ingenuity.com). In the functional illus-
trations of complexes modulated during EMT, proteins were
assembled by protein–protein contacts [BioGrid; thebiogrid.org/
(39); STRING; string-db.org] and further grouped manually by
biological systems or “machines.” The function of individual
peptide phosphosites was evaluated using PhosphoSite [phos-
phosite.org; (40)] and published literature. Venn overlaps were
calculated using (bioinformatics.psb.ugent.be/webtools/Venn/).

REPORTER PLASMID TRANSFECTION
SuperTOP plasmid is a TCF–LEF responsive promoter driving
expression of luciferase (addgene.com). The control superFOP
contains mutated TCF/LEF promoter binding sites and serves
as a negative control. The TK-renilla plasmid serves to normal-
ize for DNA uptake. Plasmids were isolated from DH5a E. coli
using an endotoxin-free isolation (qiagen.com). H358-dox-TGFβ

cells were plated into 12 well plates (~2× 105 cells/well). Super
TOP, super FOP, and control Renilla plasmids (promega.com),
were transfected using Lipofectamine 2000 (lifetechnologies.com)
and reporter assays conducted as defined by the manufacturer
(promega.com). After normalization to Renilla control signal,
TOP and FOP data were expressed in relative light units (RLUs).

IMMUNBLOT AND IMMUNOFLUORESCENCE
Gel electrophoresis and immunoblot of H358 and A549 cell
extracts were performed under standard conditions using ECL
Plus Western Blotting Substrate (piercenet.com) using vimentin
(1:5000 dilution; bdbiosciences.com) and E-cadherin antibodies
(1:1000 dilution; cellsignal.com). Immunofluorescence was per-
formed under standard conditions using β-catenin (1:100 dilu-
tion), E-cadherin (1:200 dilution), and CD44 antibodies (1:400
dilution), all from Cell Signaling Technologies (cellsignal.com)
with DAPI staining. Cells were imaged using a Zeiss Axiovert
inverted fluorescence microscope at 60×magnification.

RESULTS
CHARACTERIZATION AND VALIDATION OF H358 AND A549
MUTANT-KRas MODELS
Two KRas mutant adenocarcinoma NSCLC cell lines H358 and
A549 were used as model systems to molecularly define tran-
scriptional and epigenetic reprograming following mesenchymal
trans-differentiation. H358 and A549 cells can spontaneously gen-
erate populations of CDH1high/CD44low and CDH1low/CD44high,
with epithelial and mesenchymal-like phenotypes, respectively
(41). Spontaneous inter-conversion has been previously reported
(42, 43). H358 contain relatively rare (estimated at ~2–4%)
CDH1low/CD44high cells while A549 are typically a more mixed
population of each phenotype. As such, all H358 experiments
were initiated from epithelial CDH1high/VIMlow clones with

2http://david.abcc.ncifcrf.gov/

predominant epithelial cell-junctions, from which subsequent
H358/dox-TGFβ clones were derived. Doxycycline (0.5 µg/ml)
induction of transgene expression, a constitutively active form
of TGFβ1 (37), was verified by immunoblot and was shown to
correctly modulate EMT marker expression (CDH1low, CD44high,
and VIMhigh) as shown in Figure 1A. Fluorescence microscopy
(Figure 1B) showed loss of E-cadherin membrane localization
and gain of CD44 expression in H358/dox-TGFβ cells relative to
the minus dox control. Multiple H358/dox-TGFβ clones exhibited
correct isogenic mesenchymal trans-differentiation and in con-
trast vector control cells remained epithelial in the presence of
doxycycline (24). Similarly, the percentage of aldefluor positive
cells, a marker of aldehyde dehydrogenase activity and putative
stemness, was increased after mesenchymal trans-differentiation
with TGFβ for 14 days. The percentage of aldefluor positive cells
was 6.2% in the −dox control H358 cells and 16.8% in the +dox
H358/TGFβ producing cells (Figure 1C). A549 cells were anti-
CD44 antibody counter selected using magnetic beads into a
CD44low starting epithelial population, which was subsequently
induced with TGFβ (10 ng/ml) to yield a uniformly mesenchymal
cell population after 14 days. This allowed a more direct compar-
ison of the CD44low starting population with the TGFβ-induced
mesenchymal population, which became CD44high. Immunoblot
for fibronectin, E-cadherin, and vimentin confirmed an EMT
transition after 7 and 14 days exposure to TGFβ in A549 cells
(10 ng/ml; Figure 1D). EMT occurs in H358 and A549 epithelial
CDH1+/CD44low subclones exposed to TGFβ over a prolonged
period.

INTEGRATION OF RNA, PROTEIN, AND PHOSPHOPROTEIN EMT
STATE-SPECIFIC MEASUREMENTS
In order the globally assess differences between isogenic epithe-
lial and mesenchymal cell states, we measured RNA, protein, and
phosphorylation changes as outlined in Figure 1E. RNA-Seq (44)
was performed where non-zero ratios with RSEM reads≥5 for any
condition are listed in Table S1 in Supplementary Material (20,443
genes). Correlation between biological replicate RNA-Seq samples
was r2

= 0.90 and r2
= 0.84 for H358 and A549 models, respec-

tively (Figure 2A). Protein and phosphopeptide changes between
epithelial and mesenchymal cell states were measured using SILAC
labeling (31) in H358 and A549 TGFβ-treated or control. Analy-
sis of RNA and protein abundance (Figure 2B) confirmed the
gain of vimentin (VIM), fibronectin (FN1), and loss of keratin-8
(KRT8) and S100A6, expected RNA and protein changes occurring
with mesenchymal trans-differentiation. We focused on changes in
RNAs encoding transcription regulators, where 82 transcripts were
coordinately regulated in comparing mesenchymal and epithelial
cell states for both isogenic H358 and A549 models (Figure 2C).

FUNCTIONAL ANNOTATION OF TRANSCRIPTION AND EPIGENETIC
NETWORKS
Functional association with RNA abundance changes was assessed
by GSEA. As expected multiple signatures associated with KRas
transformation, stemness, and mesenchymal trans-differentiation
were significantly enriched (Table S5 in Supplementary Mater-
ial), with normalized enrichment score (NES) p-value <0.05 and
the false discovery rate (FDR) q-value <0.05. Similarly pathway
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C

H358 model

A549 model

A

Gene 

Symbol

Gene 

H358    

log2 M:E

 Gene 

A549    

log2 M:E

Protein 

H358   

log2 M:E

Protein 

A549   

log2 M:E

ACTN1 0.67 1.15 0.63 1.36

ALDH3A2 -1.23 -1.04 -1.55 -1.55

ANXA6 3.84 1.45 0.44 0.94

CALU 1.34 1.20 1.18 1.52

CDH1 -2.59 -5.04 -1.67 nd

ENO2 0.93 1.25 1.11 0.70

FN1 2.12 2.06 2.46 2.94

KRT8 -2.36 -1.79 -4.10 -0.50

PLOD2 0.72 2.57 1.65 1.50

S100A6 -1.03 -0.93 -1.21 -3.41

TGFBI 1.58 1.73 2.70 2.65

TLN1 1.10 1.46 0.80 0.79

TPM1 0.57 1.18 1.38 2.59

VIM 2.15 0.81 3.15 1.74

ZYX 1.12 1.15 1.03 1.39

B

Gene Symbol Entrez Gene Name

H358 

M1:E

H358 

M2:E

A549 

M1:E

A549 

M2:E

ABLIM3 actin binding LIM protein family, member 3 1.14 1.33 1.43 1.38

ANKRD2 ankyrin repeat domain 2 -3.58 -2.58 -2.30 -2.66

ATXN1 ataxin 1 1.16 1.29 2.32 2.24

BCL11A B-cell CLL/lymphoma 11A 2.54 2.64 >5 >5

BNC2 basonuclin 2 1.90 2.10 1.31 1.29

C19orf33 chromosome 19 open reading frame 33 -1.06 -0.85 -1.63 -1.52

CREB3L1 cAMP responsive element binding protein 3-like 1 2.98 3.15 1.90 1.54

CUX2 cut-like homeobox 2 >5 >5 3.12 2.58

DLX2 distal-less homeobox 2 0.66 1.06 2.32 1.58

DPF3 D4, zinc and double PHD fingers, family 3 1.98 2.02 >5 >5

EBF1 early B-cell factor 1 3.49 3.54 1.40 1.60

EBF4 early B-cell factor 4 7.55 7.66 1.16 0.85

EHF ets homologous factor -2.32 -2.25 -3.32 -4.54

ELF3 E74-like factor 3 -4.96 -4.39 -2.36 -2.52

ELL2 elongation factor, RNA polymerase II, 2 0.94 1.06 1.93 1.87

ERG v-ets erythroblastosis virus E26 oncogene homolog >5 >5 >5 >5

FANK1 fibronectin type III and ankyrin repeat domains 1 1.05 1.20 1.03 0.55

FLI1 Friend leukemia virus integration 1 >5 >5 4.75 4.00

FOXE1 forkhead box E1 -1.19 -0.94 -1.27 -1.08

FOXO4 forkhead box O4 2.20 2.60 1.09 0.70

FOXQ1 forkhead box Q1 3.91 4.12 2.89 2.68

GATA2 GATA binding protein 2 -2.17 -2.23 -2.68 -2.68

GLI3 GLI family zinc finger 3 0.98 1.16 7.79 7.78

GLIS1 GLIS family zinc finger 1 5.75 5.17 4.32 3.81

GPER G protein-coupled estrogen receptor 1 -1.04 -0.57 -3.00 -3.00

GRHL1 grainyhead-like 1 -1.71 -1.33 -1.44 -2.64

HDAC5 histone deacetylase 5 1.74 1.84 2.07 1.94

HIVEP2 HIV type I enhancer binding protein 2 1.01 1.24 1.10 0.99

HIVEP3 HIV type I enhancer binding protein 3 1.25 1.47 1.66 1.57

HLF hepatic leukemia factor -1.60 -1.17 -4.48 -3.89

HLX H2.0-like homeobox 1.43 1.54 1.04 0.92

HNF1A HNF1 homeobox A -1.32 -0.77 -3.70 -3.84

HR hairless homolog -1.42 -1.61 -5.16 -4.71

ID4 inhibitor of DNA binding 4 -2.57 -2.36 -1.23 -1.11

JAZF1 JAZF zinc finger 1 4.22 4.54 1.04 1.09

KCNIP3 Kv channel interacting protein 3, calsenilin 2.24 2.46 0.69 1.61

KLF5 Kruppel-like factor 5 -1.84 -1.76 -1.68 -1.67

LHX1 LIM homeobox 1 3.06 3.27 1.08 1.15

MNX1 motor neuron and pancreas homeobox 1 -1.81 -1.89 -1.73

MXI1 MAX interactor 1 1.26 1.47 1.63 1.35

NKX6-1 NK6 homeobox 1 1.21 1.91 3.58 3.91

NOVA1 neuro-oncological ventral antigen 1 1.04 1.46 2.04 1.87

NR4A1 nuclear receptor subfamily 4, group A, member 1 2.29 2.32 0.98 1.09

NR4A3 nuclear receptor subfamily 4, group A, member 3 1.72 2.21 1.92 1.96

NR5A2 nuclear receptor subfamily 5, group A, member 2 -1.83 -1.67 -1.07 -0.77

OSR2 odd-skipped related 2 -2.32 -2.68 -1.00 -1.50

PAX6 paired box 6 1.14 1.52 1.33 1.28

PPP1R13L protein phosphatase 1, regulatory subunit 13 like 1.51 1.63 0.91 1.11

PRDM13 PR domain containing 13 -1.13 -0.74 -2.00 -3.00

PROX2 prospero homeobox 2 1.65 1.65 1.42 1.42

RAI14 retinoic acid induced 14 0.90 1.07 1.53 1.47

RNF208 ring finger protein 208 -2.50 -3.31 -1.13 -1.81

RORA RAR-related orphan receptor A 0.98 1.51 1.00 2.17

SAMD4A sterile alpha motif domain containing 4A 1.61 1.77 1.55 1.65

SHOX2 short stature homeobox 2 0.98 1.17 1.75 1.98

SMAD9 SMAD family member 9 1.86 2.03 2.44 2.75

SMARCD3 SWI/SNF related, subfamily d, member 3 2.72 2.69 0.98 1.18

SOX2 SRY -2.17 -1.87 -1.32

SP110 SP110 nuclear body protein 0.88 1.06 1.24 1.11

SPDEF SAM pointed domain containing ets transcription factor -2.64 -2.32 -6.59 -6.59

SREBF1 sterol regulatory element binding transcription factor 1 -1.28 -1.14 -1.46 -1.68

STOX1 storkhead box 1 -1.51 -1.21 -0.89 -1.12

SUPT3H suppressor of Ty 3 homolog 1.33 1.62 1.19 1.17

TANC2 tetratricopeptide repeat 2 0.87 1.14 1.64 1.62

TCF4 transcription factor 4 1.05 1.26 1.83 1.95

TFAP2C transcription factor AP-2 gamma -2.47 -2.19 -2.10 -2.15

TGFB1I1 transforming growth factor beta 1 induced transcript 1 1.57 1.75 2.00 1.95

TP63 tumor protein p63 -1.79 -1.68 -4.83 -4.42

TRANK1 tetratricopeptide repeat and ankyrin repeat containing 1 1.92 2.20 1.65 1.65

VGLL3 vestigial like 3 (Drosophila) 1.60 1.84 1.94 1.89

YBX2 Y box binding protein 2 -1.80 -1.83 -3.75 -1.43

YPEL4 yippee-like 4 (Drosophila) 5.07 5.44 1.58 2.00

ZEB1 zinc finger E-box binding homeobox 1 3.61 3.78 1.01 1.04

ZMAT1 zinc finger, matrin-type 1 4.33 4.67 3.16 2.58

ZNF167 zinc finger protein 167 0.94 1.11 1.05 1.18

ZNF25 zinc finger protein 25 1.53 1.63 1.30 1.22

ZNF275 zinc finger protein 275 1.00 1.12 0.79 1.01

ZNF296 zinc finger protein 296 -1.33 -0.83 -2.17 -1.67

ZNF469 zinc finger protein 469 2.00 1.98 1.70 1.65

ZNF544 zinc finger protein 544 -1.18 -0.83 -1.57 -1.54

ZNF575 zinc finger protein 575 1.35 1.63 1.14 1.14

ZNF860 zinc finger protein 860 -1.92 -1.52 -1.80 -1.80

FIGURE 2 | (A) Regression analysis of duplicate mesenchymal RNA-Seq samples expressed at a ratio to the mean epithelial control for both H358 and A549
models (greater than twofold changes are indicated in black). (B) Concordant RNA and protein changes for both isogenic H358 and A549 models.
(C) Transcription associated RNA transcripts with differential abundance between epithelial and mesenchymal cell states in both H358 and A549 models.
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Haley et al. Epigenetic and transcription networks in NSCLC EMT

prediction analysis predicted activation of TGFβ signaling (45),
and inhibition of DKK1 and SMAD7 signaling. These findings fur-
ther served as validation benchmarks for the GSEA and pathway
prediction approaches. Similarly benchmark RNA expression val-
ues for transcriptional regulators, which can induce EMT [Snail,
Slug, Twist, and Zeb (9, 46–48)] were markedly increased in a
model dependent manner (Table S6 in Supplementary Material).

Transcriptional signatures surrounding LEF1, NFκB, and BMI1
were highly enriched in datasets comparing H358 and A549
epithelial and mesenchymal-like cell states using GSEA and/or
pathway prediction analysis (Table 1). We considered other pre-
dicted activated or inhibited nodes common to both KRas trans-
differentiation models. Pathway prediction analysis was used to
model signaling activation or inhibition based on transcription
factor response. Table 2 summarizes pathway state based on H358
and A549 RNA-Seq datasets. Expected activation or Snail (H358),

Twist (A549), and STAT pathways [H358 and A549 via increased
IL11 and IL6; (23, 49)] was expected but highlight model hetero-
geneity, even within closely related NSCLC systems. Interestingly,
RNA expression correlated the mesenchymal state with KDM5B,
SMARCA4, and EGR1 pathway activation, and Myc/Max, SIN3A,
and SPDEF pathway inhibition.

ALTERED TCF/LEF AND NFκB NETWORKS WITH THE MESENCHYMAL
CELL STATE
Canonical Wnt signaling leads to the nuclear translocation of β-
catenin and the activation of TCF and LEF family transcription
factors, which in turn promote pro-survival gene expression pro-
grams. The activation of the Wnt/β-catenin/TCF–LEF axis has
been implicated in epithelial mesenchymal transition and metasta-
tic behavior (50, 51). GSEA correlations predict LEF1 pathway
activation in the mesenchymal state (Table 1). Figure 3A shows

Table 1 | RNA changes correlating with gene-set enrichment (GSEA) signatures and/or pathway prediction analysis (IPA) for (A) Wnt/LEF1,

(B) NFκB, and (C) BMI1 signaling networks in H358 and A549 KRas NSCLC models comparing isogenic epithelial and mesenchymal cell states.

Node Tool Cell

model

State GSEA dataset NAME Size NES NOM

p-value

FDR

q-value

(A)

Wnt GSEA A549 Epi LEF1_UP.V1_DN 186 1.62 0.000 0.011

H358 178 1.66 0.000 0.013

IPA IPA transcription regulator IPA predicted

activation state

Reg.

z-score

p-Value

overlap

H358 Mes TCF12 Activated 1.45 0.040

A549 0.87 0.046

H358 WISP2 Inhibited −4.26 0.021

A549 −2.31 0.000

(B)

NFkB GSEA A549 Epi HINATA_NFKB_TARGETS_DN 23 1.30 0.102 0.243

H358 23 1.99 0.006 0.005

A549 Mes HINATA_NFKB_TARGETS_UP 91 −1.85 0.000 0.013

H358 87 −1.53 0.004 0.121

A549 SCHOEN_NFKB_SIGNALING 34 −1.57 0.010 0.149

H358 33 −1.44 0.054 0.182

IPA IPA transcription regulator IPA predicted

activation state

Reg.

z-score

p-Value

overlap

H358 NFKB1 Activated 0.61 0.002

(C)

BMI GSEA A549 Epi BMI1_DN.V1_DN 141 1.50 0.000 0.023

H358 126 1.54 0.000 0.017

A549 Mes BMI1_DN.V1_UP 145 −1.49 0.000 0.032

H358 142 −1.66 0.000 0.007

A549 Epi BMI1_DN_MEL18_DN.V1_DN 145 1.54 0.000 0.016

H358 129 1.66 0.000 0.015

A549 Mes BMI1_DN_MEL18_DN.V1_UP 144 −1.82 0.000 0.002

H358 141 −1.83 0.000 0.001

A549 Mes PRC1_BMI_UP.V1_DN 184 −1.30 0.023 0.119

H358 158 −1.41 0.004 0.060

A549 WIEDERSCHAIN_TARGETS_BMI1_PCGF2 57 −1.49 0.011 0.213

H358 56 −1.56 0.009 0.104

Individual GSEA signatures are defined in detail at http:// www.broadinstitute.org/ gsea/ msigdb/ index.jsp. Statistical significance is denoted by values in italics.
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Haley et al. Epigenetic and transcription networks in NSCLC EMT

Table 2 |Transcription pathway prediction (IPA) based on differential

RNA expression between mesenchymal and epithelial cell states for

both A549 and H358 models.

Model Upstream

regulator

Predicted

activation

state

Activation

z-score

p-Value of

overlap

H358dT E2F6 Inhibited −2.55 0.002

A549 E2F6 −1.85 0.002

H358dT EGR1 Activated 2.95 ns

A549 EGR1 Activated 3.14 ns

H358dT ESRRA Inhibited −2.30 0.006

A549 ESRRA Inhibited −3.33 0.009

H358dT ETS1 1.45 0.029

A549 ETS1 1.92 ns

H358dT FOXM1 Inhibited −2.70 0.014

A549 FOXM1 −1.19 0.023

H358dT KDM5B Activated 3.52 0.000

A549 KDM5B Activated 2.27 0.000

H358dT MAX Inhibited −3.20 0.012

A549 MAX Inhibited −2.18 0.002

H358dT MYC Inhibited −3.76 0.000

A549 MYC Inhibited −2.16 0.000

H358dT NRF1 −1.17 0.004

A549 NRF1 Inhibited −3.03 0.024

H358dT PPARGC1B −0.96 0.003

A549 PPARGC1B −0.61 0.046

H358dT RUVBL1 −1.06 0.001

A549 RUVBL1 −1.92 0.000

H358dT SIN3A Inhibited −2.33 ns

A549 SIN3A Inhibited −2.33 ns

H358dT SMAD7 Inhibited −2.02 ns

A549 SMAD7 −1.87 ns

H358dT SMARCA4 Activated 2.67 ns

A549 SMARCA4 Activated 2.42 ns

H358dT SNAI1 Activated 2.32 0.053

H358dT SPDEF Inhibited −4.24 ns

A549 SPDEF Inhibited −2.92 0.027

A549 STAT3 Activated 2.10 ns

H358dT STAT6 1.93 ns

H358dT TP53 Activated 3.07 0.000

A549 TP53 Activated 3.07 0.000

H358dT TRIM24 Activated 2.93 ns

A549 TRIM24 1.76 ns

H358dT TSC22D1 Activated 2.24 ns

A549 TSC22D1 Activated 2.24 ns

H358dT TWIST2 1.76 ns

A549 TWIST2 Activated 2.19 0.032

H358dT USF1 1.88 ns

A549 USF1 1.89 ns

H358dT WT1 0.84 0.003

A549 WT1 1.02 0.001

H358dT XBP1 Activated 6.62 0.001

A549 XBP1 1.24 0.000

(Continued)

Model Upstream

regulator

Predicted

activation

state

Activation

z-score

p-Value of

overlap

H358dT YY1 1.77 0.003

A549 YY1 1.56 0.006

Expected marker genes, Snail for H358 and Twist2 for A549, served as internal

benchmarks. Activation of transcriptional regulators KDM5B, EGR1, SMARCA4,

TP53,TSC22D1, inhibition of ESRRA, MYC/MAX, SIN3A, and SPDEF were corre-

lated with both H358 and A549 mesenchymal states. TGFβ1, the EMT inducer,

served as an internal control.

GSEA plots of genes down-regulated by overexpression of LEF1 in
epithelial DLD1 cells (52), positively correlating with the epithe-
lial cell state. Correlations between the H358 and A549 RNA
abundance changes and LEF1 gene signatures were statistically
significant (p < 0.0001 and FDR q-value <0.02; Table 1A). The
top 20 positively and negatively correlated genes were identi-
fied and heat mapped for H358 (Figure 3B; control and TGFβ

duplicate samples) and for A549 (Figure 3C; control and TGFβ

duplicate samples). The data suggested TCF/LEF1 signaling were
up-regulated in EMT-derived mesenchymal lung tumor cells. We
asked whether EMT state in H358 or A549 cells might alter the
abundance of RNA transcripts encoding components of the Wnt
signaling pathway itself, where log2 ratios are shown for duplicate
samples comparing 44 Wnt pathway components between mes-
enchymal and epithelial states (Figure 4A). Both positively acting
and negatively acting Wnt pathway encoded RNAs were observed.
The Wnt pathway positive regulators TCF4/TCF7L1/LEF1 and
WNT5A/5B were found to be up-regulated in either H358 or A549
mesenchymal cell states, while the negative regulators DKK1 and
NDK2 were down-regulated in mesenchymal cell states.

Nuclear β-catenin localization has been shown to correlate with
neoplastic transformation and cancer patient outcome (53). In
normal epithelial cells β-catenin forms a complex with α-catenin
and E-cadherin on the inner side of the plasma membrane, impor-
tant for cell–cell interaction. By immunofluorescence microscopy,
we observed that β-catenin was localized at cell–cell-junctions
on the inner side of the plasma membrane in the epithelial cell
state, as expected (Figure 4B; top panels). In the mesenchymal cell
state, β-catenin staining was lost from the cell membrane, with
expected (54) diffuse cytoplasmic and speckled nuclear staining
(Figure 4B; bottom panels). We asked whether signaling through
the Wnt/β-catenin pathway might show a change in activity
between epithelial and mesenchymal lung states. H358 cells were
transfected with TCF promoter–reporter plasmid (sTOP),measur-
ing TCF/LEF dependent transcription, or control (FOP) plasmid
with mutated TCF/LEF binding sites. A control TK-renilla plasmid
was used to control for transfection efficiency. Triplicate biologi-
cal experiments were performed, each run in triplicate, which were
normalized to the TK-renilla control and averaged (Figure 4C).
We observed the signal from the TCF/LEF reporter was increased
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Haley et al. Epigenetic and transcription networks in NSCLC EMT

FIGURE 3 | (A) Correlation of H358 and A549 EMT regulated genes with
the LEF1 signature from LEF1 over-expressing epithelial DLD1 cells (from
GSE3229). Normalized enrichment score (NES) was 2.63, nominal
p-value, FDR q-value, and FWER p-value were <0.001. (B) The top 20

positively and negatively correlated genes were identified and heat
mapped for H358 (B) control [0; A, B] and TGFβ [180; A, B] duplicate
samples) and (C) for A549 (control [Cntrl; LB13, LB16] and TGFβ [TGFb;
B11, B12] duplicate samples).

8.5-fold in the mesenchymal state relative to the epithelial state
in all experiments (p= 0.02). Similar findings were observed fol-
lowing serum removal for 24 prior to transfection and maintained
for 48 h following transfection, where TCF/LEF reporter activ-
ity was increased in the mesenchymal state 6.1-fold (p= 0.004).
The mutated control reporter showed minimal activity relative
to TCF [p= 0.02 in serum and p= 0.002 in serum-free condi-
tions (SFM)]. The use of LEF signatures and TCF/LEF reporter
data serves in part to validate the informatics approach, further

supported by correlation with expected gene signatures (Table
S5 in Supplementary Material) for TGFβ, stem cell, and KRas
pathways.

Gene-set enrichment and pathway prediction analysis of RNAs
altered in abundance with mesenchymal trans-differentiation,
indicated potential activation of the NFκB pathway, particu-
larly in A549 (Table 1B; Figure 5A). The Hinata NFκB sig-
nature was derived from normal keratinocytes over-expressing
NFKB1 and RELA (52). The Schoen NFκB signature reflects genes
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A B

C

H358/doxTGFβ

H358-dox

Name H358-1 H358-2 A549-1 A549-2

APC2 0.74 1.34 1.22 1.44

AXIN2 -1.50 -1.34 -0.24 0.18

BTRC 0.68 0.93 0.07 0.07

CCND1 -1.21 -1.00 -0.49 -0.45

CDH1 -2.70 -2.47 -5.22 -4.86

CREBBP -1.28 -1.00 0.23 0.24

CSNK1E 1.04 1.14 0.98 0.84

CTBP1 -1.07 -0.91 0.21 0.28

CTBP2 -0.60 -0.37 0.00 -0.07

CTNNB1 0.52 0.72 0.07 0.03

DIXDC1 1.21 1.41 1.15 1.03

DKK1 -1.12 -0.91 -3.94 -3.91

DKK2 -2.13 -1.98 nd nd

DKK3 1.87 2.10 1.98 1.91

FBXW10 -1.88 -2.21 -0.57 -0.61

FN1 2.00 2.24 2.11 2.01

FOSB 1.65 1.83 -0.06 -0.35

FOSL2 -0.40 -0.23 1.04 1.05

FZD3 -1.03 -0.68 -0.81 -0.67

FZD5 -2.76 -2.48 -0.54 -0.68

FZD8 -0.59 -1.07 -0.71 -1.09

FZD9 -1.63 -1.63 -1.45 -1.32

JUN 0.93 1.18 0.87 0.81

JUNB 1.02 1.24 -0.50 -0.45

LEF1 >5 >5 nd nd

LRP5 -1.86 -1.71 0.25 0.16

LRP5L -2.07 -1.67 -0.74 -0.61

LRP6 0.36 0.54 0.04 -0.01

MMP7 -3.86 -3.01 -5.11

MYC 0.84 1.04 0.41 0.44

NKD2 -4.85 -4.54 -1.66 -2.00

PPARD 1.68 1.81 0.40 0.32

SFRP4 -1.58 0.42 -3.00 -3.32

SFRP5 nd nd -2.75 -2.17

SMAD3 -1.19 -1.03 0.38 0.37

TCF4 1.05 1.26 1.83 1.95

TCF7 1.73 1.91 -0.77 -0.93

TCF7L1 1.02 0.78 0.39 0.43

TCF7L2 0.45 0.62 -0.13 -0.18

WNT11 -1.46 -0.85 -2.81 -2.81

WNT2B 1.64 1.88 0.42 1.22

WNT5A 3.27 3.47 9.32 9.37

WNT5B 1.87 3.06 0.96 1.08

WNT7B -2.40 -2.17 -0.24 -0.34

β-catenin DAPI

FIGURE 4 | Nuclear translocation of β-catenin andTCF/LEF activation in
steady-state mesenchymal H358 cells expressing Wnt5A. (A) Heat map of
RNA abundance of Wnt signaling components and target genes in H358 and
A549 isogenic models (mesenchymal/epithelial; log2) from duplicate samples.
(B) Loss of membrane β-catenin localization and gain of punctate nuclear
localization in mesenchymal H358/dox-TGFβ cells. Top panels: H358 cells in
the absence of doxycycline. Bottom panels: H358/dox-TGFβ cells in a
mesenchymal-like state. Cells were labeled with β-catenin antibody (red) and
DAPI (blue) and imaged (60X). (C) Co-transfection of sTOP-TCF/LEF-luciferase

(“TCF”) or control FOP-luciferase (“Cntrl”) was used to measure the activity
of the TCF–LEF pathway. Renilla-luciferase was used to normalize transfection
efficiency. H358/dox-TGFβ cells, in the presence or absence of doxycycline,
were transfected and after 48 h luciferase measurements preformed under
standard conditions. Both steady-state serum and 24 h serum starvation
conditions (“-SFM”) were used with similar results. The y -axis units are
relative light units (RLU). The means of two independent experiments are
shown, each in triplicate, where the error bars reflect the standard error of the
mean.

down-regulated in mesenchymal-like A375 melanoma cells treated
with an NFκB inhibitor (55). The top 20 positively and negatively
correlated genes form the Hinata signature correlation were iden-
tified and heat mapped for A549 (Figure 5B). RNAs encoding
components of the pathway, notably IL1, TLR5, and TLR9, were
markedly increased in the mesenchymal state (Figure 5C). It is
beyond the scope of this study to fully define upstream signal-
ing pathways, which promote the transcriptional and epigenetic

changes observed in H358 and A549 models. However, network
predictions from RNA sequencing datasets, phosphoproteomic
analysis, and kinase activity immunoblots all suggest pronounced
activation of ERK1/2 (56, 57) and casein kinase-2 (CK2) and the
inhibition of glycogen synthase-3 (GSK3) protein kinase activi-
ties in both A549 and H358 mesenchymal states. Phosphorylation
of GSK3beta on the kinase activating site Y216 is reduced in
H358 mesenchymal cells (data not shown). The inhibition of
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B

A

Name H358-1 H358-2 A549-1 A549-2

CCL2 nd nd 3.64 3.41

CD40 2.36 2.56 -1.64 -1.39

EGFR 0.34 0.53 0.33 0.38

EGR1 0.92 1.14 -0.42 -0.42

HMOX1 1.19 1.30 0.29 0.19

IL8 0.44 0.58 5.89 5.67

IL1A 3.05 3.48 4.81 4.44

IL1B 1.10 1.10 5.39 5.08

IRAK2 0.91 1.05 1.05 0.88

IRF1 -1.31 -1.10 0.23 0.45

JUN 0.93 1.18 0.87 0.81

NFKB1 -0.79 -0.66 0.42 0.35

NFKB2 0.85 0.97 -0.42 -0.41

TIMP1 1.10 1.32 0.34 0.35

TLR1 0.93 1.12 -2.90 -3.18

TLR2 -1.17 -0.87 nd nd

TLR4 1.41 1.60 nd nd

TLR5 0.99 1.32 1.85 1.49

TLR7 0.75 0.84 0.04 1.40

TLR9 1.32 2.31 2.59 2.05

TNFAIP3 0.12 0.39 1.86 1.87

TNFRSF10D 1.64 1.82 -0.25 -0.30

TRAF2 -0.55 -0.22 -1.25 -1.35

TRAF6 1.41 1.59 0.09 0.03

C

A549/TGFβ

D

TCF NFkB

TCF-NFkB 

overlap

Gene 

H358

Gene 

A549

CTNNB1 0.62 0.05

EP300 -0.48 0.12

LYL1 0.36

MEN1 0.10 -0.11

NR4A1 2.30 1.03

PML 0.46 0.57

SUMO1 -0.12 0.17

UBC -0.31 0.33

FIGURE 5 | Activation of the NFκB pathway in mesenchymal H358.
(Continued)
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Haley et al. Epigenetic and transcription networks in NSCLC EMT

FIGURE 5 | Continued
(A) Correlation of A549 EMT regulated genes with the NFκB signature from
NFκB and RELA over-expression in keratinocytes (52). Normalized enrichment
score (NES) was −1.85, nominal p-value <0.001, FDR q-value 0.01. (B) The
top 20 positively and negatively correlated genes were identified and heat

mapped for A549, as defined in Figure 4. (C) Heat map of RNA abundance of
NFκB signaling components and target genes in H358 and A549 isogenic
models (mesenchymal/epithelial; log2). (D) Protein–protein overlaps between
TCF4 and NFκB protein interaction datasets from BioGrid, showing NR4A1 as
a common physical node between the two pathways.

FIGURE 6 | (A) Increased BMI target gene enrichment from RNA-Seq
datasets comparing differential RNA expression between H358 and A549 cell
states. Statistical significance (p < 0.0001 and FDR q-value <0.04 was

observed. (B) The top 20 positively and negatively correlated genes were
identified and heat mapped for H358 and (C) for A549, with labels as defined
in Figure 3.
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GSK3 has been shown to stabilize Snail, which in turn increases
Zeb1 expression, while CK2 kinase activity has been correlated
with NFκB activation (58). Wnt5A is a transcriptional target of
NFκB, which is increased in the mesenchymal state in both H358
and A549 models. Wnt5A driven TCF/LEF targets are known to
include CD44 and Snail, further reinforcing the establishment
of the mesenchymal state. Interaction nodes between TCF/LEF
and NFκB pathways were mapped using protein–protein inter-
action data (BioGrid; Figure 5D). The orphan nuclear receptor
NR4A1/TR3/Nur77 was identified as an up-regulated common
component of the LEF1 and NFκB 1 protein–protein interac-
tion networks. NR4A1 showed coordinate regulation with redox
sensitive genes, e.g., TXNDC5, suggesting NR4A1 may regulate
oxidative stress as has been observed in pancreas cancer mod-
els (59). Low NR4A1 levels have been correlated with cisplatin
resistance (60). The elevated RNA abundance for NR4A1 in the
mesenchymal state, suggest mesenchymal-like tumor cells may be
more sensitive to cisplatin. Our previous studies have shown mes-
enchymal H358 and A549 cells are relatively resistant to EGFR (8,
61, 62) and IGF1R/IR (63) TKIs and to gemcitabine and paclitaxel,
while retaining sensitivity to cisplatin in vitro.

ALTERED TRANSCRIPTION AND EPIGENETIC NETWORKS
BMI1 is a component of the polycomb repressive complex (PRC1),
formed by complexes with heterochromatin adaptor family pro-
teins (e.g., CBX8). PRC1 functions as an inhibitor of transcrip-
tion during embryogenesis and in neoplastic transformation, as a
tumor suppressor. BMI1 is required for Twist mediated EMT (64).
Multiple GSEA signatures associated with changes in BMI1 tar-
get gene expression were observed (Table 2C), with the majority
showing stringent statistical significance (p < 0.05 and FDR q-
value <0.05). The BMI_DN and Wiederschain signatures reflect
genes up-regulated the stem-like medulloblastoma line DAOY
by knockdown of BMI1 with or without co-knockdown of the
polycomb ring finger gene PCGF2/Mel-18 (65). In contrast, the
PRC1_BMI signature (66) is derived by knockdown of BMI1 in
fibroblasts, cells of mesodermal origin, showed a reversed corre-
lation. The GSEA plots correlating BMI1 knockdown with the
H358 and A549 mesenchymal cell state are shown (Figure 6A).
The top 20 positively and negatively correlated genes were iden-
tified and heat mapped for H358 (Figure 6B) and for A549
(Figure 6C), suggesting altered regulation of the BMI1 pathway
with EMT in the two mutant-KRas NSCLC models. Interestingly,
the GSEA indicated better correlation with inhibition of BMI1 tar-
get genes with the mesenchymal cell phenotype. However, direct
analysis of up-regulated and down-regulated BMI1 target genes
showed enrichment in both H358 and A549 epithelial and mes-
enchymal cell states (Table S7 in Supplementary Material), which
also was observed by GSEA (anti-correlation) at lower statistical
stringency. These findings suggest additional factor(s) likely con-
tribute to BMI1 target gene recognition and/or the directionality
of regulation between epithelial and mesenchymal cell states. Non-
PRC1 components may modify the directionality BMI1 output, for
example, CtBP, E2F6, NFκB, and Cited2 (67).

Runx family transcription factors contain a conserved Runt
DNA binding domain and are developmentally regulated. RUNX2
and RUNX3 are overexpressed in the A549 and H358 models,

Target

Gene 

Symbol

H358 

M1:E

H358 

M2:E

A549 

M1:E

A549 

M2:E

CREBBP -1.28 -1.00 0.23 0.24

ETS1 0.06 0.25 0.99 1.03

FOS 0.64 0.68 -2.13 -1.93

HDAC5 1.74 1.84 2.07 1.94

HIF1A -0.87 -0.68 0.83 0.87

HIVEP3 1.25 1.47 1.66 1.57

JUN 0.93 1.18 0.87 0.81

KAT2B 2.19 2.25 0.81 0.76

RBM14 -0.99 -0.82 0.21 0.27

RUNX2 -0.08 0.11 3.33 3.44

SMAD3 -1.19 -1.03 0.38 0.37

SMURF2 -0.39 -0.14 0.85 0.80

STAT3 0.47 0.62 -1.35 -1.37

SUV39H1 -1.31 -1.25 -0.24 -0.36

DLG4 2.65 2.74 0.20 0.19

EZH2 -1.13 -0.98 0.29 0.26

NOTCH1 1.64 1.78 -0.92 -0.95

RUNX3 6.98 7.06 0.77 0.79

SMAD3 -1.19 -1.03 0.38 0.37

SMURF2 -0.39 -0.14 0.85 0.80

SP110 0.88 1.06 1.24 1.11

SUV39H1 -1.31 -1.25 -0.24 -0.36

RUNX2

RUNX3

FIGURE 7 | RNA expression ratios comparing H358 and A549
mesenchymal/epithelial cell states in duplicate. Complexes associated
with RUNX2 (top) and RUNX3 (bottom) are shown.

respectively. RUNX3, previously thought to function as a tumor
suppressor, has recently been associated with cancer progression
(68) and cooperative induction with NFκB of the inflammatory
cytokine IL23 (69). In NSCLC overexpression of RUNX2 has
been observed in comparisons of tumor and normal tissues and
was implicated with poor outcome (70). The overexpression of
exogenous RUNX2 also has been shown to promote EMT (71,
72), increase migratory and invasive behavior (73), and increase
expression of Twist and Slug, both of which are markedly increased
with EMT in the A549 background. We examined interaction
networks around RUNX2 and RUNX3, where proteins forming
direct contacts and potentially establishing signaling complexes,
are shown in Figure 7. In H358 RUNX3 RNA expression was
correlated with increased expression for potential protein–protein
interactors SP110, NOTCH1, DLG4, JUN, KAT2B, HIVEP3, and
HDAC5 and decreased expression and potential interaction with
EZH2, SUV39H1, RBM14, CREBBP, and SMAD3. This also was
associated with an increased SP110 phosphorylation of S256.
In A549, Runx2 expression correlated with increased KAT2B,
HIVEP3, ETS1, SP110, and HDAC5 expression and decreased
expression of STAT3 and FOS.

Multiple transcription factors associated with the maintenance
of the epithelial state were markedly decreased with EMT in both
models. Grainyhead-like 1 (GRHL1) RNA expression is decreased
in both mesenchymal models and GRHL2 is reduced in the H358
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Table 3 | Statistical analysis of phosphopeptide changes with EMT

state, from proteins specifically associated with transcriptional

function (where N ≥4).

Cell

model

Gene

symbol

Site N Peptide

log2 M:E

p-Value

H358 ARID1A S696 8 0.67 0.0001

A549 BAZ1B S1468 6 −0.20 0.0001

H358 BRD3 S263 4 1.06 0.0016

H358 CBX3 S95 17 0.70 0.0001

H358 CBX8 S191 4 −0.59 0.0036

H358 CTR9 S970 5 0.84 0.0001

A549 CTR9 T925 6 0.56 0.0009

H358 CTR9 T925 7 −0.05 0.0862

H358 DAXX S495 14 0.84 0.0001

H358 DPF2 S142 7 0.35 0.0009

H358 EAF1 S158, S165 5 1.12 0.0001

H358 FLII S856 4 0.50 0.0001

H358 FOXK1 S416, S420 17 0.45 0.0001

H358 FOXK1 S441, S445 6 0.02 0.0001

A549 HDAC1 S393 15 −0.35 0.0001

H358 HDAC1 S393 10 0.02 0.0008

A549 HDAC2 S394 22 −0.12 0.0001

H358 HDAC2 S394 7 0.31 0.0013

H358 HDAC2 S422, S424 18 0.36 0.0001

H358 HIRIP3 S125 12 0.01 0.0010

H358 HIRIP3 S223, S227 14 −0.23 0.0038

H358 HIRIP3 T84, S87 4 0.12 0.0022

H358 HIST1H1B S18 54 −1.98 0.0001

H358 HIST1H1E T18 46 −1.75 0.0001

H358 IRF2BP1 S384 8 0.50 0.0001

A549 IRF2BP1 S436 5 −0.05 0.0001

A549 IRF2BP2 S175 6 −0.97 0.0060

H358 IRF2BP2 S175 6 −0.83 0.0001

H358 LMO7 S1510 6 −3.39 0.0001

H358 MED1 T1051 7 −0.10 0.0151

H358 MEF2D S231 5 1.16 0.0001

A549 MYBBP1A S1267 6 −0.29 0.0001

H358 NCOR2 S956 23 1.01 0.0001

H358 PELP1 S481 11 0.55 0.0001

H358 PHC3 T609, S616 5 1.09 0.0017

A549 PNN S100 14 −0.33 0.0001

H358 PNN S100 45 0.63 0.0001

H358 PURB S101 7 0.56 0.0001

H358 PURB S304 15 0.53 0.0001

H358 RBM15 S670, S674 8 0.07 0.0001

A549 RBM15 T568 8 −0.02 0.0001

H358 RBM15 T568 4 0.18 0.0013

H358 SAFB S601, S604 10 0.96 0.0001

H358 SAFB S604 7 0.32 0.0002

H358 SMARCA5 S66 26 −0.48 0.0897

H358 SMARCC1 S328, S330 8 0.91 0.0001

H358 SNW1 S224, S232 12 0.22 0.0001

H358 SP110 S256 16 0.16 0.0001

(Continued)

Cell

model

Gene

symbol

Site N Peptide

log2 M:E

p-Value

H358 SSRP1 S437 57 0.04 0.0001

H358 SUDS3 S234, S237 13 0.07 0.0001

H358 TLE3 S263, S267 6 0.64 0.0002

H358 TRIM28 S19 34 0.52 0.0001

H358 TRIM28 S473 6 0.30 0.0001

H358 TRIM28 S33 6 0.19 0.0001

H358 YBX1 S165 4 0.59 0.0001

H358 YBX1 S167 16 0.58 0.0001

H358 YBX1 S174 10 0.67 0.0001

H358 YBX1 S176 4 0.63 0.0001

H358 YBX1 S2 5 0.24 0.0069

H358 ZC3H8 S77 4 1.19 0.0001

Data are expressed as the log2 ratio of mesenchymal/epithelial values (log2 M:E).

Log2 ratio values are colored where red denotes increased in the mesenchymal

state and green denotes decreased in the mesenchymal state.

model. GRHL2 and GRHL1 share ~70% homology and GRHL2
has been associated with the maintenance of an epithelial state
(74, 75), as a target repressed by Zeb1. Similarly transcription
factor AP-2 gamma (TFAP2C), a transcription factor associated
with estrogen receptor signaling in breast cancer (76), showed
reduced expression in the mesenchymal state. Emerging data
indicate TFAP2C is important for the normal luminal epithe-
lial differentiation (77) where knockdown promotes mesenchymal
transition (78). Conversely, overexpression of the TFAP2C cDNA
reduced CD44 expression, and high TFAP2C expression was cor-
related with response to neoadjuvant chemotherapy (79). EHF, an
ETS family transcription factor, also has been associated with an
epithelial differentiation program and EHF RNA expression was
decreased (74). Interestingly, the epithelial-specific splicing fac-
tors ESRP1 and ESRP2 (80) are markedly attenuated with EMT
in the H358 model, but their expression is absent in both epithe-
lial and mesenchymal A549 states, again indicating considerable
heterogeneity in EMT programs within closely related NSCLC
models. Finally,Odd-skipped related 2 (OSR2) is a Smad3/4 down-
regulated palate and limb developmental gene (81), reduced in the
both mesenchymal models.

Epithelial mesenchymal transition state was correlated with
statistically significant changes in site-specific phosphorylation
(Table 3). Several members of the BAF SWI/SNF complex
chromatin remodeling proteins were altered in their pattern of
site-specific phosphorylation dependent on EMT state. Notably
SMARCC1 showed increased phosphorylation at positions S328
and S330, and ARID1A was increased in phosphorylation at
position S696. CBX3/HP1γ is a chromatin remodeling factor
implicated in euchromatin silencing in embryonic stem cells (82)
and in transcription elongation by RNA polymerase II on hete-
rochromatic genes (83). CBX3/HP1γ has shown overexpression
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Haley et al. Epigenetic and transcription networks in NSCLC EMT

Table 4 |Time course of cell cycle regulator RNA expression, comparing H358 mesenchymal–epithelial RNA abundance (log2 ratios).

Gene symbol Name Time (h)

0 1 2 4 6 8 18 24 72 168 500 4500

BTG2 BTG family, member 2 0.00 −0.14 0.09 0.29 0.57 0.33 1.46 1.14 1.45 1.17 0.77 0.82

CCNE1 Cyclin E1 0.00 −0.12 −0.10 −0.22 0.11 0.10 −1.67 −0.79 −1.98 −3.35 −0.65 0.35

CDCA7L Cell division cycle associated 7-like 0.00 0.07 −0.01 −0.42 −0.23 −0.30 −1.48 −0.96 −3.14 −4.34 −1.91 −0.61

E2F1 E2F transcription factor 1 0.00 0.14 0.08 −0.34 −0.13 −0.24 −1.06 −0.64 −5.73 −6.26 −2.71 −0.77

E2F2 E2F transcription factor 2 0.00 0.06 0.09 −0.28 −0.22 −0.30 −1.69 −1.04 −4.77 −5.36 −3.68 −2.20

E2F8 E2F transcription factor 8 0.00 −0.03 0.11 −0.14 −0.11 0.01 −1.25 −0.91 −4.07 −6.14 −3.23 −0.48

MCM2 Minichromosome maintenance

complex component 2

0.00 0.12 0.06 −0.38 −0.04 −0.10 −1.15 −0.69 −3.89 −4.12 −2.10 −0.74

MCM4 Minichromosome maintenance

complex component 4

0.00 0.05 0.04 −0.26 −0.07 −0.13 −1.09 −0.68 −4.34 −4.56 −2.37 −0.94

MCM5 Minichromosome maintenance

complex component 5

0.00 0.08 0.03 −0.38 −0.11 −0.20 −1.12 −0.51 −3.87 −3.36 −2.03 −0.95

MCM6 Minichromosome maintenance

complex component 6

0.00 0.04 0.05 −0.23 −0.10 −0.15 −1.06 −0.49 −2.87 −3.89 −2.75 −0.84

RBL1 Retinoblastoma-like 1 0.00 −0.01 0.17 −0.30 −0.16 −0.15 −1.27 −0.84 −3.62 −2.92 −2.00 −0.71

TGFB1 Transforming growth factor, beta 1 0.00 0.61 0.94 1.10 1.92 2.00 2.80 2.90 3.69 4.82 3.25 4.63

Genes were selected based on expression in 6–8 or 18–24 h time bins. TGFβ1, the doxycycline-induced transgene, served as an internal control. Log2 ratio values

are colored where red denotes increased in the mesenchymal state and green denotes decreased in the mesenchymal state.

in NSCLC (84) as compared with normal adjacent tissue, and
expression was correlated with poor survival rate [p= 0.02; (85)].
Phosphorylation measurements also suggested EMT state may be
regulated in part by increased phosphorylation of CBX3/HP1 at
position S95 (p < 0.001) and likely S93 (p= 0.10; not shown) in
the central region between chromo and chromoshadow domains.
CBX3/HP1 functions as a transcriptional silencer through histone
H3 K9 interaction, where phosphorylation at S93, likely by PKA,
results in a reduction of CBX3/HP1 mediated silencing and tran-
scription elongation (86). Change in phosphorylation of CBX8,
a component of the PRC1 complex, at position S191 within the
atrophin-1 domain also was observed (Table 3). Phosphorylation
of HDAC2 was increased at positions S422 and S424 in the mes-
enchymal state. S422 and S424 are known CK2a sites, associated
with inhibition of deacetylase activity (87). S394 is also a CK2a
phosphosite increased in H358, decreased in A549. The reported
role S394 in activation (88) and inhibition (87) of HDAC2 may be
context dependent through as yet undefined factors.

The PAF1 complex protein CTR9/SH2BP1, which plays a role in
the maintenance of ESC pluripotency showed phosphosite regula-
tion at T925 (A549) and S970 (H358) (Table 3). Additional tran-
scriptional and epigenetic regulators were found to be modified
by phosphorylation, including NCOR2/SMRT, MEF2D, FOXK1,
BRD3, and the PRC1 component PHC3. Decreased phosphoryla-
tion of the bromodomain protein kinase BAZ1B/WSTF at position
S1468, increased phosphorylation of EAF1 at sites S158 and S165
were observed. The phosphorylation of TRIM28/KAP1 S473, likely
by CHK2, inhibits co-repression of CDKN1A/p21 (89), and may
contribute the observed attenuation of cell cycling. ZC3H8 func-
tions as a repressor of GATA3 and shows increased phosphoryla-
tion at position S77 in mesenchymal H358 cells, where GATA3 has
been associated with the TGFβ growth suppression response (90).

EARLY TRANSCRIPTIONAL EVENTS IN THE TRANS-DIFFERENTIATION
OF MUTANT-KRas NSCLC MODELS
We asked whether key transcription factors, highlighted by GSEA
correlations, might show coordinate early expression during mes-
enchymal transition. RNA samples were isolated from the H358
model following TGFβ induction at 0, 1, 2, 4, 8, 16, 24, 72 h, 7 days
(~168 h), 21 days (~500 h), and the long term/steady-state condi-
tion (>4500 h), and duplicate samples sequenced. TGFβ1 served
as an internal control, where expression was observed within 1 h
after addition of doxycycline.

The exchange of cell cycle inhibition with migratory and
invasive gene activation programs is a hallmark of metastable
mesenchymal trans-differentiation. Reduced RNA expression of
cell cycle activators and increased expression of inhibitors was
observed and served as a benchmark (Table 4). Early in the EMT
epigenetic reprograming, inhibition of E2F family, MCM family,
CCNE1 and CDCA7L gene products, and an increase in BTG2
expression was observed. This was accompanied by reduced phos-
phorylation of Histone H1B and H1E at positions S18 and T18,
respectively (Table 3). Both sites are cell cycle sensitive, where T18
is a known CDK1 and CDK2 site.

We then examined changes in RNA abundance for encoded
transcriptional and epigenetic regulators. We identified 81 tran-
scriptional and epigenetic regulators expressed at early time
points in primarily two time bins (6–8 and 18–24 h; Table 5).
ELF3, ATOH8, EAF2, MYC, IRX5, CITED2, and ID2 showed
relatively rapid repression ~8 h after induction, which was con-
tinued at later time points. ELF3 encodes an E74-like domain
transcription factor, which is epithelial-specific. FOXS1, STAT5A,
and HIC1 were increased at the early, continuing on to later
time points. By 18–24 h HR, FOXR2, SOX2, RORA, and VSX1
showed a decrease in RNA abundance, while FOXS1, DMBX1,
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Table 5 |Time course of transcription factor RNA expression, comparing H358 mesenchymal–epithelial RNA abundance (log2 ratios).

Gene

symbol

Name Time (h)

0 1 2 4 6 8 18 24 72 ~168 ~500 >4500

ARID5A AT rich interactive domain 5A

(MRF1-like)

0.00 −0.01 −0.22 −0.41 0.05 −0.04 0.42 0.98 1.04 1.20 1.05 1.33

ATF5 Activating transcription factor 5 0.00 0.26 0.19 −0.19 0.20 0.06 −1.06 −0.55 −1.32 −1.94 −0.52 −1.54

ATOH8 Atonal homolog 8 0.00 −0.12 −0.23 −1.06 −0.66 −0.78 −2.00 −2.35 −3.91 −3.64 −3.91

BHLHE22 Basic helix-loop-helix family, member

e22

0.00 −0.12 −0.16 −0.49 0.10 −0.14 −1.58 −0.64 −2.06 −2.08 −1.12 −2.22

BHLHE40 Basic helix-loop-helix family, member

e40

0.00 −0.26 −0.23 −0.49 −0.17 −0.02 1.22 1.30 2.04 1.89 0.81 1.42

CHAF1A Chromatin assembly factor 1,

subunit A

0.00 0.04 −0.01 −0.31 −0.09 −0.18 −1.34 −0.69 −3.72 −3.74 −1.96 −0.82

CHAF1B Chromatin assembly factor 1,

subunit B

0.00 0.14 0.08 −0.24 −0.07 −0.07 −1.17 −0.64 −4.07 −4.34 −2.64 −1.26

CITED2 Cbp/p300-interacting transactivator 2 0.00 0.24 −0.13 −0.61 −0.23 −0.50 −1.19 −0.76 −0.56 −0.57 −0.53 −1.23

CITED4 Cbp/p300-interacting transactivator 4 0.00 0.20 0.12 −0.41 0.06 0.22 1.73 1.45 2.53 3.83 2.27 −0.18

CREB3L1 cAMP responsive element binding

protein 3-like 1

0.00 0.01 0.12 −0.34 0.07 0.11 1.00 1.46 2.23 1.04 2.04 3.07

DMBX1 Diencephalon/mesencephalon

homeobox 1

0.00 −0.03 0.02 −0.25 −0.21 −0.11 1.84 1.92 3.07 3.31 2.24 1.66

DPF1 D4, zinc and double PHD fingers

family 1

0.00 −0.02 −0.24 −0.62 0.11 0.14 −1.04 −0.27 −1.58 −2.91 −0.50 −0.19

EAF2 ELL associated factor 2 0.00 −0.11 −0.41 −0.48 −0.53 −0.58 −1.43 −0.51 −0.65 −1.86 −2.36 −0.61

ELF3 E74-like factor 3 0.00 0.45 0.00 −0.95 −0.55 −0.93 −1.36 −1.46 −2.34 −1.32 −1.95 −4.68

ELK3 ELK3, ETS-domain protein (SRF

accessory protein 2)

0.00 −0.01 −0.04 −0.24 −0.01 −0.03 0.59 0.92 1.62 1.19 1.00 1.19

FOXR2 Forkhead box R2 0.00 −0.01 −0.04 −0.26 0.06 −0.03 −2.02 −1.13 −4.27 −3.89 −1.12 −1.18

FOXS1 Forkhead box S1 0.00 0.98 0.93 2.19 3.29 5.44 3.47 5.80 6.11

GPS2 G protein pathway suppressor 2 0.00 0.03 −0.08 −0.42 −0.03 −0.08 −1.18 −0.71 −1.03 −0.78 −0.07 −0.18

GRHL3 Grainyhead-like 3 0.00 0.24 0.23 −0.45 −0.06 0.17 −1.13 −0.54 −1.19 −1.07 −1.86 0.41

HIC1 Hypermethylated in cancer 1 0.00 0.26 0.27 −0.31 0.23 0.33 1.45 2.20 2.44 2.04 1.98 2.84

HR Hairless homolog 0.00 0.05 −0.06 −0.50 0.16 0.26 −2.39 −1.20 −2.06 −3.33 −2.27 −1.51

ID2 Inhibitor of DNA binding 2 0.00 0.27 0.16 −0.84 −0.48 −0.46 −1.69 −1.01 −1.11 −1.67 −2.65 2.24

ID3 Inhibitor of DNA binding 3 0.00 −0.06 −0.04 −0.64 −0.27 −0.37 −1.63 −1.07 −2.19 −3.75 −3.35 −0.86

ID4 Inhibitor of DNA binding 4 0.00 0.34 0.17 −0.53 −0.16 −0.29 −1.65 −1.58 −1.06 −0.86 −1.73 −2.46

ING3 Inhibitor of growth family, member 3 0.00 0.12 0.16 −0.29 −0.01 −0.08 −1.01 −0.59 −1.26 −1.21 −0.63 −0.68

IRF6 Interferon regulatory factor 6 0.00 0.01 −0.15 −0.36 −0.17 −0.17 1.20 1.25 2.48 1.55 0.42 0.61

IRX5 Iroquois homeobox 5 0.00 −0.09 0.02 −0.47 −0.23 −0.52 −1.25 −0.66 −1.39 −1.21 −1.84 −3.58

ISL1 ISL LIM homeobox 1 0.00 0.06 −0.15 0.06 0.17 0.21 −1.58 −0.41 −1.08 −1.63 −1.00 0.09

JDP2 Jun dimerization protein 2 0.00 −0.09 −0.14 −0.18 0.28 0.13 1.01 1.70 3.85 3.33 2.35 0.98

JUNB Jun B proto-oncogene 0.00 −0.09 0.03 −0.87 0.06 0.19 1.13 1.58 1.95 2.31 1.46 1.14

KDM5B Lysine (K)-specific demethylase 5B 0.00 −0.06 −0.20 −0.19 −0.12 −0.18 0.57 0.69 1.23 1.24 1.14 1.22

KDM6A Lysine (K)-specific demethylase 6A 0.00 0.02 −0.11 −0.13 −0.15 −0.20 −0.21 0.04 −1.15 −1.70 −1.17 −1.92

KDM6B Lysine (K)-specific demethylase 6B 0.00 −0.18 −0.29 −0.15 0.07 −0.05 0.83 0.91 1.80 2.22 1.27 1.43

LMCD1 LIM and cysteine-rich domains 1 0.00 0.15 0.14 −0.35 −0.04 0.04 0.63 1.39 1.56 1.56 2.47 1.98

MECOM Ecotropic viral integration site 1 0.00 0.08 0.09 −0.35 −0.01 0.02 −1.27 −0.62 −1.08 −1.51 −0.80 −1.22

MYB v-myb Myeloblastosis viral

oncogene homolog

0.00 −0.15 0.09 −0.07 −0.07 −0.22 −1.29 −0.67 −3.44 −3.70 −2.07 −1.04

MYBL2 v-myb Myeloblastosis viral

oncogene homolog-like 2

0.00 0.09 0.07 −0.29 −0.06 −0.09 −1.07 −0.63 −6.49 −8.62 −4.42 −0.89

(Continued)
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Table 5 | Continued

Gene

symbol

Name Time (h)

0 1 2 4 6 8 18 24 72 ~168 ~500 >4500

MYC v-myc Myelocytomatosis viral

oncogene homolog

0.00 0.39 −0.22 −0.77 −0.22 −0.54 −1.06 −0.47 −1.78 −1.65 −0.71 0.95

NCOA5 Nuclear receptor coactivator 5 0.00 0.01 −0.03 −0.46 −0.13 −0.13 −1.32 −0.44 −1.24 −0.88 −0.11 −1.36

NFATC2 Nuclear factor of activated T-cells 1 0.00 0.54 −0.14 −0.27 −0.02 0.26 0.50 1.18 1.57 1.54 1.85 3.17

NFATC4 Nuclear factor of activated T-cells 4 0.00 −0.08 −0.28 −0.27 −0.06 −0.32 1.19 0.89 2.01 2.36 1.08 1.54

NME1 Non-metastatic cells 1, protein

NM23A

0.00 0.09 −0.04 −0.41 −0.07 −0.08 −1.08 −0.60 −2.51 −2.78 −1.13 −0.75

NR4A1 Nuclear receptor subfamily 4, group

A, member 1

0.00 −0.29 −0.23 −0.01 0.24 0.16 0.88 1.35 2.27 1.94 0.32 2.33

NRL Neural retina leucine zipper 0.00 0.45 0.29 −0.19 0.22 0.10 −1.36 −0.86 −1.33 −0.71 −0.78 −0.81

PKNOX2 PBX/knotted 1 homeobox 2 0.00 −0.24 −0.32 −0.81 −0.25 −0.29 1.29 0.84 2.05 1.68 −1.99 −3.37

PPARD Peroxisome proliferator-activated

receptor delta

0.00 0.04 −0.15 −0.43 −0.06 −0.18 0.92 1.12 2.90 2.77 1.70 1.76

PPARGC1A PPAR gamma, coactivator 1 alpha 0.00 −0.16 −0.02 −0.53 −0.07 −0.16 −1.46 −1.27 −0.56 0.09 −0.23 0.89

PRDM13 PR domain containing 13 0.00 0.12 0.03 −0.81 −0.20 −0.11 −1.61 −0.83 −2.42 −2.54 −1.42 −0.93

PSMC3 Proteasome 26S subunit, ATPase, 3 0.00 0.11 0.03 −0.33 −0.02 −0.01 −0.83 −0.45 −1.08 −1.26 −0.75 −0.44

PSMC3IP PSMC3 interacting protein 0.00 0.08 0.00 −0.40 0.05 −0.08 −1.12 −0.66 −4.29 −3.67 −1.48 −0.27

RORA RAR-related orphan receptor A 0.00 −0.32 −0.23 −0.24 −0.02 −0.15 −1.70 −1.38 −1.65 −2.14 1.25

RORC RAR-related orphan receptor C 0.00 0.58 0.47 −0.33 0.32 0.26 1.55 1.93 3.88 2.64 2.30 −0.67

RUNX3 Runt-related transcription factor 3 0.00 0.07 −0.02 −0.35 0.31 0.27 1.27 1.63 2.37 1.80 1.04 7.04

SAP30 Sin3A-associated protein, 30 kDa 0.00 0.14 0.04 −0.17 0.10 0.02 −1.02 −0.68 −1.76 −1.81 −0.81 −0.47

SIRT4 Sirtuin 0.00 0.01 −0.48 −0.20 0.17 0.12 1.18 1.00 3.10 2.87 2.01 2.45

SIVA1 SIVA1, apoptosis-inducing factor 0.00 0.02 −0.10 −0.54 −0.11 −0.11 −1.10 −0.56 −1.43 −2.25 −0.95 −1.51

SKIL SKI-like oncogene 0.00 −0.09 0.13 −0.48 −0.21 −0.02 1.16 1.04 2.10 2.52 1.23 1.47

SMAD7 SMAD family member 7 0.00 0.23 −0.05 −0.76 −0.14 0.04 0.80 1.03 2.04 2.13 1.38 0.93

SOX2 SRY -box 2 0.00 −0.02 −0.29 −0.36 −0.15 −0.44 −1.75 −1.37 −3.08 −2.71 −3.41 −2.02

SP6 Sp6 transcription factor 0.00 0.58 0.15 −0.04 0.18 −0.29 1.14 1.06 2.14 1.64 1.39 2.83

STAT5A Signal transducer and activator of

transcription 5A

0.00 −0.15 0.27 0.55 0.24 0.44 2.19 1.02 3.78 3.75 1.30 3.64

TADA2A Transcriptional adaptor 2 -like 0.00 −0.16 0.03 −0.41 −0.15 −0.10 −1.13 −0.56 −1.33 −1.53 −0.78 −0.52

TCF19 Transcription factor 19 0.00 0.00 −0.01 −0.30 −0.02 −0.02 −1.10 −0.44 −3.62 −4.45 −2.23 −0.99

TFAP4 Transcription factor AP-4 0.00 −0.08 −0.17 −0.35 −0.06 −0.11 −1.13 −0.67 −1.29 −1.74 −1.01 −0.57

TGFB1 Transforming growth factor, beta 1 0.00 0.61 0.94 1.10 1.92 2.00 2.80 2.90 3.69 4.82 3.25 4.63

TP53INP1 Tumor protein p53 inducible nuclear

protein 1

0.00 0.08 0.02 −0.14 −0.50 −0.34 1.14 1.14 3.98 4.39 2.37 1.94

TP73 Tumor protein p73 0.00 −0.01 −0.02 −0.31 −0.14 −0.27 0.95 1.33 2.57 2.15 1.98 1.84

UHRF1 Ubiquitin-like with PHD and ring

finger domains 1

0.00 0.06 0.06 −0.32 −0.08 −0.13 −1.20 −0.55 −3.44 −3.82 −1.60 −1.25

VGLL3 Vestigial like 3 0.00 0.05 0.19 −0.31 −0.11 0.03 1.32 1.46 2.53 2.47 2.15 1.74

VSX1 Visual system homeobox 1 0.00 0.15 −0.18 0.02 0.16 −0.20 −1.64 −1.98 −1.58 −1.16 0.51 −1.26

YY2 YY2 transcription factor 0.00 0.04 0.04 −0.24 −0.03 −0.02 −1.12 −0.73 −1.86 −0.72 −0.14 −1.70

ZCCHC12 Zinc finger, CCHC domain containing

12

0.00 −0.12 −0.20 −0.32 −0.27 −0.06 −1.25 −1.00 −2.01 −1.12 −1.03 −2.38

ZFP112 Zinc finger protein 112 homolog 0.00 −0.22 −0.31 −0.21 0.03 −0.17 −1.30 −0.70 −1.70 −1.98 −0.63 0.15

ZFP90 Zinc finger protein 90 homolog 0.00 −0.09 −0.08 −0.24 −0.04 −0.02 −1.40 −0.94 −1.43 −2.11 −1.02 −1.66

ZNF180 Zinc finger protein 180 0.00 −0.05 0.03 −0.26 −0.04 −0.08 −1.01 −0.69 −1.92 −1.60 −0.89 −0.81

ZNF26 Zinc finger protein 26 0.00 0.03 0.07 −0.20 0.11 −0.08 −1.10 −0.53 −1.26 −1.02 −0.22 −0.35

ZNF296 Zinc finger protein 296 0.00 0.16 0.15 −0.59 0.28 0.08 −1.10 −0.39 −1.52 −1.43 −0.48 −1.06

(Continued)
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Table 5 | Continued

Gene

symbol

Name Time (h)

0 1 2 4 6 8 18 24 72 ~168 ~500 >4500

ZNF367 Zinc finger protein 367 0.00 0.32 0.02 −0.57 −0.30 −0.33 −1.39 −0.76 −4.92 −5.78 −3.30 −1.19

ZNF37A zinc finger protein 37A 0.00 −0.09 −0.18 −0.21 0.01 −0.10 −1.05 −0.55 −1.00 −0.83 −0.42 −0.52

ZNF551 Zinc finger protein 551 0.00 0.22 −0.01 −0.47 −0.16 −0.13 −1.07 −0.64 −1.66 −1.55 −0.67 −0.75

ZNF620 Zinc finger protein 620 0.00 −0.13 −0.24 −0.24 −0.10 −0.28 −1.14 −0.96 −2.06 −1.26 −0.78 −0.96

ZNF718 zinc finger protein 718 0.00 −0.11 −0.04 −0.24 −0.03 −0.14 −1.05 −0.69 −1.85 −1.42 −0.86 −1.31

ZNF729 Zinc finger protein 729 0.00 −0.11 0.05 −0.10 0.07 0.04 −1.12 −0.74 −3.69 −3.57 −2.22 −0.59

ZNF775 Zinc finger protein 775 0.00 0.08 0.18 −0.24 0.41 −0.10 0.61 1.01 1.33 1.40 1.11 0.41

ZNF782 Zinc finger protein 782 0.00 −0.14 −0.23 −0.40 −0.14 −0.28 −1.44 −0.86 −2.15 −1.60 −0.48 −1.36

Genes were selected based on expression in 6–8 h or 18–24 h time bins. TGFβ1, the doxycycline-induced transgene, served as an internal control. Log2 ratio values

are colored where red denotes increased in the mesenchymal state and green denotes decreased in the mesenchymal state.

CDMBX1, CITED4, RORC, VGLL3, RUNX3, and BHLHE40
were markedly increased. The homeodomain transcription fac-
tor DMBX1 has been shown to be required for reprograming of
induced pluripotent stem cells, and for midbrain development
(91). Several transcription regulators showed biphasic expres-
sion, where an early decrease in RNA abundance was followed
by an increase at the >6 months steady-state time point for
the helix-loop-helix dominant negative E-box binding inhibitor
ID2 and RAR-related orphan receptor RORA, while the reverse
was true for PBX/knotted 1 homeobox 2 (PKNOX2), which was
increased at early time points and markedly attenuated by 21 days
(Table 5).

Genes from the 6–8 and 18–24 h sets (16,058 genes each) were
used for GSEA correlations using oncogene and curated signature
datasets. The top ranked gene signatures, divided into functional
families and correlating with early and middle time points are
shown in Table 6. The LEF1 and NFκB activation signatures and
BMI1 and EZH2 inhibition signatures were correlated with the
mesenchymal state at early time points. Interestingly, HOXA9 tar-
get gene inhibition also was correlated with the mesenchymal state,
where crosstalk between HOXA9 and BMI1 can impact cell cycling
and senescence programs (92). The positive correlation of the mes-
enchymal state with HIF1 hypoxia signaling, embryonic stem cell
programs, and STAT signaling were observed at the early time
points. A mesenchymal correlation with Myc target inhibition
also was an early event (Table 6). Multiple cell cycle signatures
correlated the mesenchymal state with cell cycle inhibition at early
time points, consistent with previous complete EMT endpoint data
(Tables 1 and 2).

DISCUSSION
A detailed investigation of molecular differences contrasting iso-
genic epithelial and stem-like mesenchymal tumor cell states has
been undertaken in isogenic lung adenocarcinoma cell models
harboring mutant-KRas. Our observations reinforce the impor-
tant role that cancer stemness and EMT can have in driving drug
resistance in tumor cells (7, 8, 12, 17, 93) and highlight the wide
diversity of mechanisms (94) that can be used by tumor cells to
evade targeted- and chemo-therapies. Agents and combinations

successfully targeting mutant-KRas containing tumor cells, in an
epithelial or mesenchymal cell context, would have a marked
impact in the treatment of NSCLC and particularly pancreas can-
cer where trans-differentiation is a frequent event (22). An under-
standing of these mechanisms and molecular contexts will have
important implications in driving combinatorial drug therapy in
cancer patients in the future.

Mutation of the KRas oncoprotein leads to the interaction and
activation of BRaf/CRaf and Mek1/2 kinases and phosphoryla-
tion of Erk1/2 on the activation segment. Erk1/2 phosphorylation
on the loop TXY motif activated Erk1/2 catalytic activity and
leads to downstream cytoplasmic and nuclear pro-survival sub-
strate target phosphorylation. In both A549 and H358 models, a
markedly increased Erk active site phosphorylation was observed
in the mesenchymal state (Table S3 in Supplementary Material).
Similar to the H358 and A549 models described here we have
observed TGFβ mediated induction of EMT in mt-EGFR NSCLC
adenocarcinoma lines HCC4006 and HCC827 (data not shown).
A common feature in both mt-KRas and mt-EGFR models is an
elevated activation of the Erk1/2 kinases. These data support a
hypothesis that chronic Erk activation may contribute to the initi-
ation of EMT, and once EMT has occurred, Erk is further activated
in part through integrin/paxillin/FAK and TGFbetaR1 signaling
networks. Thus we suggest that KRas, through Erk, may act as
both to prime initiation of EMT and to maintain the mesenchymal
state once a transition has occurred. Preliminary RNA interfer-
ence studies indicate enhanced mesenchymal cell sensitivity to
Erk1/2 knockdown. Interestingly, synthetic lethality in multiple
mt-KRas backgrounds has been observed with knockdown of
Snail2/Slug (95).

Though our principle interest is in identifying key survival tar-
gets required for the viability of cells in the mesenchymal state, we
considered that druggable transcriptional or epigenetic regulators
acting early in the EMT process might serve as useful candidates.
Previous studies have highlighted the heterogeneity of distinct
EMT programs and the plethora of potential targets, for example,
FGFR (57), Axl (96), PDGFR (97), JAK-STAT (98, 99), FAK (100),
contributing to the viability of mesenchymal-like tumor cells in
a model specific manner. Given the complex nature of epigenetic
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Table 6 | Gene-set enrichment (GSEA) for RNA showing a close to or greater than twofold change between mesenchymal and epithelial cell

states, by 6–8 h or by 18–24 h time bins.

Phenotype Time bin (h) GSEA dataset Size NES NOM p-value FDR q-value

TRANSCRIPTION

Mes 18–24 LEF1_UP.V1_UP 131 −2.13 0.000 0.000

Mes 6–8 LEF1_UP.V1_UP 131 −1.14 ns ns

Mes 18–24 HINATA_NFKB_TARGETS_KERATINOCYTE_UP 73 −2.57 0.000 0.000

Mes 18–24 BMI1_DN.V1_UP 121 −2.25 0.000 0.000

Mes 6–8 BMI1_DN.V1_UP 121 −2.25 0.000 0.000

Mes 18–24 BMI1_DN_MEL18_DN.V1_UP 121 −2.84 0.000 0.000

Mes 6–8 BMI1_DN_MEL18_DN.V1_UP 121 −2.84 0.000 0.000

Mes 18–24 PRC2_EZH2_UP.V1_DN 146 −2.11 0.000 0.000

Mes 6–8 PRC2_EZH2_UP.V1_DN 146 −2.11 0.000 0.000

Epi 18–24 PRC2_EZH2_UP.V1_UP 145 1.74 0.000 0.003

Epi 6–8 PRC2_EZH2_UP.V1_UP 145 1.74 0.000 0.003

Epi 18–24 HOXA9_DN.V1_DN 168 1.57 0.001 0.023

Epi 6–8 HOXA9_DN.V1_DN 168 1.57 0.001 0.023

Mes 18–24 HOXA9_DN.V1_UP 163 −1.80 0.000 0.001

Mes 6–8 HOXA9_DN.V1_UP 163 −1.80 0.000 0.001

Epi 18–24 ELVIDGE_HYPOXIA_DN 142 2.31 0.000 0.000

Mes 18–24 ELVIDGE_HYPOXIA_UP 158 −2.26 0.000 0.000

Epi 18–24 MANALO_HYPOXIA_DN 285 3.24 0.000 0.000

Mes 18–24 MANALO_HYPOXIA_UP 172 −2.78 0.000 0.000

Mes 18–24 ESC_J1_UP_EARLY.V1_UP 137 −1.92 0.000 0.000

Mes 6–8 ESC_J1_UP_EARLY.V1_UP 137 −1.92 0.000 0.000

Mes 18–24 ESC_J1_UP_LATE.V1_UP 135 −2.16 0.000 0.000

Mes 6–8 ESC_J1_UP_LATE.V1_UP 135 −2.16 0.000 0.000

Epi 18–24 GARCIA_TARGETS_OF_FLI1_AND_DAX1_DN 154 2.79 0.000 0.000

Mes 18–24 GARCIA_TARGETS_OF_FLI1_AND_DAX1_UP 52 −2.22 0.000 0.000

Epi 18–24 GARY_CD5_TARGETS_DN 418 2.62 0.000 0.000

Mes 18–24 GARY_CD5_TARGETS_UP 441 −2.22 0.000 0.000

Epi 18–24 MISSIAGLIA_REGULATED_BY_METHYLATION_DN 119 2.66 0.000 0.000

Mes 18–24 MISSIAGLIA_REGULATED_BY_METHYLATION_UP 112 −2.88 0.000 0.000

Mes 18–24 WIERENGA_STAT5A_TARGETS_GROUP1 106 −2.29 0.000 0.000

Mes 18–24 WIERENGA_STAT5A_TARGETS_GROUP2 45 −2.34 0.000 0.000

Mes 18–24 WIERENGA_STAT5A_TARGETS_UP 170 −2.43 0.000 0.000

Mes 18–24 DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 482 −2.79 0.000 0.000

Epi 18–24 DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 305 3.29 0.000 0.000

Mes 18–24 MYC_UP.V1_DN 134 −2.33 0.000 0.000

Mes 6–8 MYC_UP.V1_DN 134 −2.33 0.000 0.000

Epi 18–24 MYC_UP.V1_UP 158 2.45 0.000 0.000

Epi 6–8 MYC_UP.V1_UP 158 2.45 0.000 0.000

CELL CYCLE

Mes 18–24 RB_DN.V1_DN 114 −2.01 0.000 0.000

Mes 6–8 RB_DN.V1_DN 114 −2.01 0.000 0.000

Epi 18–24 RB_DN.V1_UP 125 1.54 0.008 0.027

Epi 6–8 RB_DN.V1_UP 125 1.54 0.008 0.027

Epi 18–24 RB_P107_DN.V1_UP 119 2.22 0.000 0.000

Epi 6–8 RB_P107_DN.V1_UP 119 2.22 0.000 0.000

Mes 18–24 E2F1_UP.V1_DN 164 −2.17 0.000 0.000

Mes 6–8 E2F1_UP.V1_DN 164 −2.17 0.000 0.000

Epi 18–24 E2F1_UP.V1_UP 171 1.87 0.000 0.001

Epi 6–8 E2F1_UP.V1_UP 171 1.87 0.000 0.001

Mes 18–24 CHANG_CORE_SERUM_RESPONSE_DN 194 −3.22 0.000 0.000

(Continued)
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Table 6 | Continued

Phenotype Time bin (h) GSEA dataset Size NES NOM p-value FDR q-value

Epi 18–24 CHANG_CORE_SERUM_RESPONSE_UP 208 2.26 0.000 0.000

Mes 18–24 CSR_LATE_UP.V1_DN 136 −2.84 0.000 0.000

Mes 6–8 CSR_LATE_UP.V1_DN 136 −2.84 0.000 0.000

Epi 18–24 CSR_LATE_UP.V1_UP 149 2.36 0.000 0.000

Epi 6–8 CSR_LATE_UP.V1_UP 149 2.36 0.000 0.000

Epi 18–24 MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_DN 56 2.60 0.000 0.000

Mes 18–24 MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_UP 56 −2.23 0.000 0.000

Signatures enriching from transcriptional regulation (top panel) and cell cycle regulation (bottom panel) are shown. Individual GSEA signatures are defined in detail at

http:// www.broadinstitute.org/ gsea/ msigdb/ index.jsp.

changes occurring as cells transition from epithelial to mesenchy-
mal states, we specifically defined networks, which can modulate
epigenetic states. The rationale is that pharmacological modu-
lation of epigenetic regulators can alter the expression of many
potential mesenchymal drug targets, potentially overcoming the
redundancy and heterogeneity of mesenchymal therapeutic tar-
gets. Here, we have identified multiple epigenetic regulatory net-
works, for example, the PRC1 complex, HP1γ, and BAF/Swi-Snf
complex, which can contribute to the formation and maintenance
of epithelial and mesenchymal tumor cell states. Overlapping tran-
scriptional programs also were observed, for example, the redun-
dant loss of epithelial state transcription (GRHL2, TRAPC2, EHF,
and OSR2) and splicing (ESRP1 and ESRP2) factors. This theme
of modulation of overlapping or redundant network components
was also observed for enhancers of the mesenchymal cell state (e.g.,
overlapping Zeb1/2, Snail1/2, Twist) and chromatin reprograming
machinery. Synthetic lethality and therapeutic reprograming of
the mt-KRas NSCLC models can be investigated by future RNAi
or CRISPR approaches and/or cDNA overexpression studies, using
the transcriptional and epigenetic nodes defined.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Journal/10.3389/fonc.2014.
00344/abstract

Table S1 | Excel format table of RSEM normalized H358 and A549 genes
from RNA-Seq, edited where any read is non-zero.

Table S2 | Excel file of H358 and A549 phosphopeptides identified at 95%
confidence from ProteinPilot v4.0, where individual peptide spectra were
acquired four or more times.

Table S3 | Excel file of concordant phosphopeptide changes in the H358
and A549 models (where N ≥4).

Table S4 | Concordant protein changes between A549 and H358 models. All
proteins were identified at >95% confidence with two or more unique
peptides to conform to recommendations of Bradshaw et al. (38). Protein
isoform abundance was measured by LC-MS/MS of SILAC labeled peptides and
ratios between mesenchymal and epithelial cell states log2 linear scaled. Log2

ratio values in italics reflect p < 0.05. The number of unique peptides identified
at 95% confidence, not shared with related proteins, are shown.

Table S5 | Expected benchmark GSEA and pathway prediction signatures
(IPA) for stemness,TGFβ signaling, and mutant-KRas signaling in H358 and
A549 KRas NSCLC models comparing isogenic epithelial and mesenchymal
cell states. These correlations serve as expected benchmarks for (A) stemness
(Mani, Thomson ref), active TGFβ signaling (EMT inducer in both models) and (B)
KRas signaling (KRas oncogene in both models). KRas signatures were
enhanced in the mesenchymal cell state relative to the isogenic epithelial state,
consistent with enhanced phospho-Erk in mesenchymal A549 and H358 cell
states (23, 57). Individual GSEA signatures are defined in detail at
http://www.broadinstitute.org/gsea/msigdb/index.jsp.

Table S6 | Reference RNA expression of transcriptional inducers of EMT
(top panel) and potential markers of stemness (bottom panel).

Table S7 | GSEA and pathway prediction analysis (IPA) shows statistically
significant enrichment of BMI1 target genes altered with EMT state.
Manual analysis of BMI1 target RNA expression indicating divergence in the
direction of signaling between H358 and A549 and divergence within each
model, suggesting while BMI1 target genes are enriched and differentially
expressed with changing EMT state, the direction is not uniform and other
factor(s) likely contribute along with BMI1.

Figure S1 | Immunoblot staining for fibronectin, E-cadherin, vimentin, the
doxycycline-inducedTGFβ1 transgene, and actin (control) in the
H358-dox-TGFβ model in epithelial (−dox) or mesenchymal (+dox) states
(5 days on doxycycline).

REFERENCES
1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science

(2011) 331(6024):1559–64. doi:10.1126/science.1203543
2. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell (2006)

127(4):679–95. doi:10.1016/j.cell.2006.11.001
3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell

(2011) 144(5):646–74. doi:10.1016/j.cell.2011.02.013
4. Kalluri R,Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin

Invest (2009) 119(6):1420–8. doi:10.1172/JCI39104
5. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev

Cancer (2002) 2(6):442–54. doi:10.1038/nrc822
6. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transi-

tions in development and disease. Cell (2009) 139(5):871–90. doi:10.1016/j.
cell.2009.11.007

7. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias
P, et al. Genotypic and histological evolution of lung cancers acquiring resis-
tance to EGFR inhibitors. Sci Transl Med (2011) 3(75):75ra26. doi:10.1126/
scitranslmed.3002003

8. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, et al. Epithelial
to mesenchymal transition is a determinant of sensitivity of non-small-cell

Frontiers in Oncology | Molecular and Cellular Oncology December 2014 | Volume 4 | Article 344 | 20

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00344/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00344/abstract
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://dx.doi.org/10.1126/science.1203543
http://dx.doi.org/10.1016/j.cell.2006.11.001
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1172/JCI39104
http://dx.doi.org/10.1038/nrc822
http://dx.doi.org/10.1016/j.cell.2009.11.007
http://dx.doi.org/10.1016/j.cell.2009.11.007
http://dx.doi.org/10.1126/scitranslmed.3002003
http://dx.doi.org/10.1126/scitranslmed.3002003
http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haley et al. Epigenetic and transcription networks in NSCLC EMT

lung carcinoma cell lines and xenografts to epidermal growth factor receptor
inhibition. Cancer Res (2005) 65(20):9455–62. doi:10.1158/0008-5472.CAN-
05-1058

9. Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell
polarity in EMT and cancer. Oncogene (2008) 27(55):6958–69. doi:10.1038/
onc.2008.346

10. Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell
Biol (2005) 17(5):559–64. doi:10.1016/j.ceb.2005.08.002

11. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating can-
cer stem cells – an integrated concept of malignant tumour progression. Nat
Rev Cancer (2005) 5(9):744–9. doi:10.1038/nrc1694

12. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-
mesenchymal transition generates cells with properties of stem cells. Cell
(2008) 133(4):704–15. doi:10.1016/j.cell.2008.03.027

13. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, et al. KRAS mutations
and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS
Med (2005) 2(1):e73. doi:10.1371/journal.pmed.0020073

14. Sun JM, Hwang DW, Ahn JS, Ahn MJ, Park K. Prognostic and predictive value
of KRAS mutations in advanced non-small cell lung cancer. PLoS One (2013)
8(5):e64816. doi:10.1371/journal.pone.0064816

15. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and
Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness
of epithelial tumor cells. Genes Dev (1996) 10(19):2462–77. doi:10.1101/gad.
10.19.2462

16. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and
YAP1 converge to regulate EMT and tumor survival. Cell (2014) 158(1):171–84.
doi:10.1016/j.cell.2014.06.004

17. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al.
Residual breast cancers after conventional therapy display mesenchymal as well
as tumor-initiating features. Proc Natl Acad Sci U S A (2009) 106(33):13820–5.
doi:10.1073/pnas.0905718106

18. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D, et al.
Comparative oncogenomics identifies breast tumors enriched in functional
tumor-initiating cells. Proc Natl Acad Sci U S A (2012) 109(8):2778–83.
doi:10.1073/pnas.1018862108

19. Domingo-Domenech J,Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn
SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resis-
tance in prostate cancer through depletion of notch- and hedgehog-dependent
tumor-initiating cells. Cancer Cell (2012) 22(3):373–88. doi:10.1016/j.ccr.2012.
07.016

20. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-
mesenchymal transition gene signature predicts resistance to EGFR and PI3K
inhibitors and identifies Axl as a therapeutic target for overcoming EGFR
inhibitor resistance. Clin Cancer Res (2013) 19(1):279–90. doi:10.1158/1078-
0432.CCR-12-1558

21. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, et al. The
transcriptional repressor Snail promotes mammary tumor recurrence. Cancer
Cell (2005) 8(3):197–209. doi:10.1016/j.ccr.2005.07.009

22. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT
and dissemination precede pancreatic tumor formation. Cell (2012) 148(1–
2):349–61. doi:10.1016/j.cell.2011.11.025

23. Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, et al. A
systems view of epithelial-mesenchymal transition signaling states. Clin Exp
Metastasis (2010) 28(2):137–55. doi:10.1007/s10585-010-9367-3

24. Argast GM, Krueger JS, Thomson S, Sujka-Kwok I, Carey K, Silva S, et al.
Inducible expression of TGFbeta, snail and Zeb1 recapitulates EMT in vitro
and in vivo in a NSCLC model. Clin Exp Metastasis (2011) 28(7):593–614.
doi:10.1007/s10585-011-9394-8

25. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al.
Transforming growth factor-beta1 mediates epithelial to mesenchymal trans-
differentiation through a RhoA-dependent mechanism. Mol Biol Cell (2001)
12(1):27–36. doi:10.1091/mbc.12.1.27

26. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and
metastasis. Cell (2010) 141(1):39–51. doi:10.1016/j.cell.2010.03.014

27. Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM, et al. Genome
and transcriptome sequencing of lung cancers reveal diverse mutational
and splicing events. Genome Res (2012) 22(12):2315–27. doi:10.1101/gr.
140988.112

28. Gossen M, Bonin AL, Freundlieb S, Bujard H. Inducible gene expression sys-
tems for higher eukaryotic cells. Curr Opin Biotechnol (1994) 5(5):516–20.
doi:10.1016/0958-1669(94)90067-1

29. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics (2011) 12:323.
doi:10.1186/1471-2105-12-323

30. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated tran-
scripts and isoform switching during cell differentiation. Nat Biotechnol (2010)
28(5):511–5. doi:10.1038/nbt.1621

31. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al.
Stable isotope labeling by amino acids in cell culture, SILAC, as a simple
and accurate approach to expression proteomics. Mol Cell Proteomics (2002)
1(5):376–86. doi:10.1074/mcp.M200025-MCP200

32. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, et al. Immunoaffinity
profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol (2005)
23(1):94–101. doi:10.1038/nbt1046

33. Petti F, Thelemann A, Kahler J, McCormack S, Castaldo L, Hunt T, et al. Tempo-
ral quantitation of mutant kit tyrosine kinase signaling attenuated by a novel
thiophene kinase inhibitor OSI-930. Mol Cancer Ther (2005) 4(8):1186–97.
doi:10.1158/1535-7163.MCT-05-0114

34. Thelemann A, Petti F, Griffin G, Iwata K, Hunt T, Settinari T, et al. Phos-
photyrosine signaling networks in epidermal growth factor receptor overex-
pressing squamous carcinoma cells. Mol Cell Proteomics (2005) 4(4):356–76.
doi:10.1074/mcp.M400118-MCP200

35. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, et al. The
paragon algorithm, a next generation search engine that uses sequence temper-
ature values and feature probabilities to identify peptides from tandem mass
spectra. Mol Cell Proteomics (2007) 6(9):1638–55. doi:10.1074/mcp.T600050-
MCP200

36. Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating,
and storing protein identification data. J Proteome Res (2004) 3(6):1234–42.
doi:10.1021/pr049882h

37. Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE,
et al. Increased malignancy of Neu-induced mammary tumors overexpressing
active transforming growth factor beta1. Mol Cell Biol (2003) 23(23):8691–703.
doi:10.1128/MCB.23.23.8691-8703.2003

38. Bradshaw RA, Burlingame AL, Carr S, Aebersold R. Reporting protein iden-
tification data: the next generation of guidelines. Mol Cell Proteomics (2006)
5(5):787–8. doi:10.1074/mcp.E600005-MCP200

39. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M.
BioGRID: a general repository for interaction datasets. Nucleic Acids Res (2006)
34(Database issue):D535–9. doi:10.1093/nar/gkj109

40. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B,
et al. PhosphoSitePlus: a comprehensive resource for investigating the struc-
ture and function of experimentally determined post-translational modifica-
tions in man and mouse. Nucleic Acids Res (2012) 40(Database issue):D261–70.
doi:10.1093/nar/gkr1122

41. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, et al. Epithe-
lial mesenchymal transition traits in human breast cancer cell lines paral-
lel the CD44(hi/)CD24 ( lo/-) stem cell phenotype in human breast cancer.
J Mammary Gland Biol Neoplasia (2010) 15(2):235–52. doi:10.1007/s10911-
010-9175-z

42. Buck E, Eyzaguirre A, Barr S, Thompson S, Sennello R, Young D, et al. Loss
of homotypic cell adhesion by epithelial-mesenchymal transition or mutation
limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer
Ther (2007) 6(2):532–41. doi:10.1158/1535-7163.MCT-06-0462

43. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Sto-
chastic state transitions give rise to phenotypic equilibrium in populations of
cancer cells. Cell (2011) 146(4):633–44. doi:10.1016/j.cell.2011.07.026

44. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, et al.
Targeted RNA sequencing reveals the deep complexity of the human transcrip-
tome. Nat Biotechnol (2012) 30(1):99–104. doi:10.1038/nbt.2024

45. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular speci-
ficity and functional flexibility. Nat Rev Mol Cell Biol (2007) 8(12):970–82.
doi:10.1038/nrm2297

46. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G. The tran-
scription factor snail induces tumor cell invasion through modulation of

www.frontiersin.org December 2014 | Volume 4 | Article 344 | 21

http://dx.doi.org/10.1158/0008-5472.CAN-05-1058
http://dx.doi.org/10.1158/0008-5472.CAN-05-1058
http://dx.doi.org/10.1038/onc.2008.346
http://dx.doi.org/10.1038/onc.2008.346
http://dx.doi.org/10.1016/j.ceb.2005.08.002
http://dx.doi.org/10.1038/nrc1694
http://dx.doi.org/10.1016/j.cell.2008.03.027
http://dx.doi.org/10.1371/journal.pmed.0020073
http://dx.doi.org/10.1371/journal.pone.0064816
http://dx.doi.org/10.1101/gad.10.19.2462
http://dx.doi.org/10.1101/gad.10.19.2462
http://dx.doi.org/10.1016/j.cell.2014.06.004
http://dx.doi.org/10.1073/pnas.0905718106
http://dx.doi.org/10.1073/pnas.1018862108
http://dx.doi.org/10.1016/j.ccr.2012.07.016
http://dx.doi.org/10.1016/j.ccr.2012.07.016
http://dx.doi.org/10.1158/1078-0432.CCR-12-1558
http://dx.doi.org/10.1158/1078-0432.CCR-12-1558
http://dx.doi.org/10.1016/j.ccr.2005.07.009
http://dx.doi.org/10.1016/j.cell.2011.11.025
http://dx.doi.org/10.1007/s10585-010-9367-3
http://dx.doi.org/10.1007/s10585-011-9394-8
http://dx.doi.org/10.1091/mbc.12.1.27
http://dx.doi.org/10.1016/j.cell.2010.03.014
http://dx.doi.org/10.1101/gr.140988.112
http://dx.doi.org/10.1101/gr.140988.112
http://dx.doi.org/10.1016/0958-1669(94)90067-1
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1074/mcp.M200025-MCP200
http://dx.doi.org/10.1038/nbt1046
http://dx.doi.org/10.1158/1535-7163.MCT-05-0114
http://dx.doi.org/10.1074/mcp.M400118-MCP200
http://dx.doi.org/10.1074/mcp.T600050-MCP200
http://dx.doi.org/10.1074/mcp.T600050-MCP200
http://dx.doi.org/10.1021/pr049882h
http://dx.doi.org/10.1128/MCB.23.23.8691-8703.2003
http://dx.doi.org/10.1074/mcp.E600005-MCP200
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1093/nar/gkr1122
http://dx.doi.org/10.1007/s10911-010-9175-z
http://dx.doi.org/10.1007/s10911-010-9175-z
http://dx.doi.org/10.1158/1535-7163.MCT-06-0462
http://dx.doi.org/10.1016/j.cell.2011.07.026
http://dx.doi.org/10.1038/nbt.2024
http://dx.doi.org/10.1038/nrm2297
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haley et al. Epigenetic and transcription networks in NSCLC EMT

the epithelial cell differentiation program. Cancer Res (2005) 65(14):6237–44.
doi:10.1158/0008-5472.CAN-04-3545

47. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour pro-
gression: an alliance against the epithelial phenotype? Nat Rev Cancer (2007)
7(6):415–28. doi:10.1038/nrc2131

48. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al.
The transcriptional repressor ZEB1 promotes metastasis and loss of cell polar-
ity in cancer. Cancer Res (2008) 68(2):537–44. doi:10.1158/0008-5472.CAN-
07-5682

49. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al.
Interleukin-6 induces an epithelial-mesenchymal transition phenotype in
human breast cancer cells. Oncogene (2009) 28(33):2940–7. doi:10.1038/onc.
2009.180

50. Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G. Tumor pro-
gression induced by the loss of E-cadherin independent of beta-catenin/ Tcf-
mediated Wnt signaling. Oncogene (2007) 26(16):2290–8. doi:10.1038/sj.onc.
1210029

51. Kim K, Daniels KJ, Hay ED. Tissue-specific expression of beta-catenin in nor-
mal mesenchyme and uveal melanomas and its effect on invasiveness. Exp Cell
Res (1998) 245(1):79–90. doi:10.1006/excr.1998.4238

52. Hinata K, Gervin AM, Jennifer Zhang Y, Khavari PA. Divergent gene regula-
tion and growth effects by NF-kappa B in epithelial and mesenchymal cells of
human skin. Oncogene (2003) 22(13):1955–64. doi:10.1038/sj.onc.1206198

53. Dolled-Filhart M, McCabe A, Giltnane J, Cregger M, Camp RL, Rimm DL.
Quantitative in situ analysis of beta-catenin expression in breast cancer shows
decreased expression is associated with poor outcome. Cancer Res (2006)
66(10):5487–94. doi:10.1158/0008-5472.CAN-06-0100

54. Birchmeier W, Weidner KM, Behrens J. Molecular mechanisms leading to loss
of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl
(1993) 17:159–64. doi:10.1242/jcs.1993.Supplement_17.23

55. Schön M, Wienrich BG, Kneitz S, Sennefelder H, Amschler K, Vöhringer V,
et al. KINK-1, a novel small-molecule inhibitor of IKKbeta, and the suscepti-
bility of melanoma cells to antitumoral treatment. J Natl Cancer Inst (2008)
100(12):862–75. doi:10.1093/jnci/djn174

56. Kim HD, Meyer AS, Wagner JP, Alford SK, Wells A, Gertler FB, et al. Sig-
naling network state predicts twist-mediated effects on breast cell migra-
tion across diverse growth factor contexts. Mol Cell Proteomics (2011)
10(11):M111008433. doi:10.1074/mcp.M111.008433

57. Thomson S, Petti F, Sujka-Kwok I, Epstein D, Haley JD. Kinase switching
in mesenchymal-like non-small cell lung cancer lines contributes to EGFR
inhibitor resistance through pathway redundancy. Clin Exp Metastasis (2008)
25(8):843–54. doi:10.1007/s10585-008-9200-4

58. Brown MS, Diallo OT, Hu M, Ehsanian R,Yang X,Arun P, et al. CK2 modulation
of NF-kappaB, TP53, and the malignant phenotype in head and neck cancer
by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules.
Clin Cancer Res (2010) 16(8):2295–307. doi:10.1158/1078-0432.CCR-09-3200

59. Lee SO, Jin UH, Kang JH, Kim SB, Guthrie AS, Sreevalsan S, et al. The orphan
nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic retic-
ulum stress in pancreatic cancer cells. Mol Cancer Res (2014) 12(4):527–38.
doi:10.1158/1541-7786.MCR-13-0567

60. Wilson AJ, Liu AY, Roland J, Adebayo OB, Fletcher SA, Slaughter JC, et al.
TR3 modulates platinum resistance in ovarian cancer. Cancer Res (2013)
73(15):4758–69. doi:10.1158/0008-5472.CAN-12-4560

61. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et al.
Restoring E-cadherin expression increases sensitivity to epidermal growth fac-
tor receptor inhibitors in lung cancer cell lines. Cancer Res (2006) 66(2):944–50.
doi:10.1158/0008-5472.CAN-05-1988

62. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L, et al. Epithelial
versus mesenchymal phenotype determines in vitro sensitivity and predicts
clinical activity of erlotinib in lung cancer patients. Clin Cancer Res (2005)
11(24 Pt 1):8686–98. doi:10.1158/1078-0432.CCR-05-1492

63. Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr
S, et al. Feedback mechanisms promote cooperativity for small molecule
inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res
(2008) 68(20):8322–32. doi:10.1158/0008-5472.CAN-07-6720

64. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, et al. RAC1 acti-
vation mediates Twist1-induced cancer cell migration. Nat Cell Biol (2012)
14(4):366–74. doi:10.1038/ncb2455

65. Wiederschain D, Chen L, Johnson B, Bettano K, Jackson D, Taraszka J, et al.
Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblas-
toma pathogenesis. Mol Cell Biol (2007) 27(13):4968–79. doi:10.1128/MCB.
02244-06

66. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping
of polycomb target genes unravels their roles in cell fate transitions. Genes Dev
(2006) 20(9):1123–36. doi:10.1101/gad.381706

67. Silva J, García JM, Peña C, García V, Domínguez G, Suárez D, et al. Implica-
tion of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of
p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carci-
nomas. Clin Cancer Res (2006) 12(23):6929–36. doi:10.1158/1078-0432.CCR-
06-0788

68. Kurklu B, Whitehead RH, Ong EK, Minamoto T, Fox JG, Mann JR, et al.
Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune
component of gastric cancer. Oncogene (2014). doi:10.1038/onc.2014.233

69. Hor YT, Voon DC, Koo JK, Wang H, Lau WM, Ashktorab H, et al. A role
for RUNX3 in inflammation-induced expression of IL23A in gastric epithelial
cells. Cell Rep (2014) 8(1):50–8. doi:10.1016/j.celrep.2014.06.003

70. Li H, Zhou RJ, Zhang GQ, Xu JP. Clinical significance of RUNX2 expression in
patients with nonsmall cell lung cancer: a 5-year follow-up study. Tumour Biol
(2013) 34(3):1807–12. doi:10.1007/s13277-013-0720-4

71. Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, et al.
Transcription factor Runx2 is a regulator of epithelial-mesenchymal transi-
tion and invasion in thyroid carcinomas. Lab Invest (2012) 92(8):1181–90.
doi:10.1038/labinvest.2012.84

72. Mercado-Pimentel ME, Hubbard AD, Runyan RB. Endoglin and Alk5 regulate
epithelial-mesenchymal transformation during cardiac valve formation. Dev
Biol (2007) 304(1):420–32. doi:10.1016/j.ydbio.2006.12.038

73. Boregowda RK, Olabisi OO, Abushahba W, Jeong BS, Haenssen KK, Chen W,
et al. RUNX2 is overexpressed in melanoma cells and mediates their migration
and invasion. Cancer Lett (2014) 348(1–2):61–70. doi:10.1016/j.canlet.2014.
03.011

74. Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression corre-
lations in human cancer cell lines define molecular interaction networks for
epithelial phenotype. PLoS One (2014) 9(6):e99269. doi:10.1371/journal.pone.
0099269

75. Cieply B, Farris J, Denvir J, Ford HL, Frisch SM. Epithelial-mesenchymal tran-
sition and tumor suppression are controlled by a reciprocal feedback loop
between ZEB1 and Grainyhead-like-2. Cancer Res (2013) 73(20):6299–309.
doi:10.1158/0008-5472.CAN-12-4082

76. Woodfield GW, Chen Y, Bair TB, Domann FE, Weigel RJ. Identification of pri-
mary gene targets of TFAP2C in hormone responsive breast carcinoma cells.
Genes Chromosomes Cancer (2010) 49(10):948–62. doi:10.1002/gcc.20807

77. Ruiz M, Troncoso P, Bruns C, Bar-Eli M. Activator protein 2alpha transcrip-
tion factor expression is associated with luminal differentiation and is lost in
prostate cancer. Clin Cancer Res (2001) 7(12):4086–95.

78. Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield GW,
et al. TFAP2C governs the luminal epithelial phenotype in mammary develop-
ment and carcinogenesis. Oncogene (2014). doi:10.1038/onc.2013.569

79. Spanheimer PM, Askeland RW, Kulak MV, Wu T, Weigel RJ. High TFAP2C/ low
CD44 expression is associated with an increased rate of pathologic complete
response following neoadjuvant chemotherapy in breast cancer. J Surg Res
(2013) 184(1):519–25. doi:10.1016/j.jss.2013.04.042

80. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2
are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell (2009)
33(5):591–601. doi:10.1016/j.molcel.2009.01.025

81. Kawai S, Amano A. Negative regulation of odd-skipped related 2 by TGF-beta
achieves the induction of cellular migration and the arrest of cell cycle. Biochem
Biophys Res Commun (2012) 421(4):696–700. doi:10.1016/j.bbrc.2012.04.064

82. Kwon SH, Workman JL. The heterochromatin protein 1 (HP1) family: put
away a bias toward HP1. Mol Cells (2008) 26(3):217–27.

83. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methy-
lation and HP1gamma are associated with transcription elongation through
mammalian chromatin. Mol Cell (2005) 19(3):381–91. doi:10.1016/j.molcel.
2005.06.011

84. Han SS, Kim WJ, Hong Y, Hong SH, Lee SJ, Ryu DR, et al. RNA sequencing
identifies novel markers of non-small cell lung cancer. Lung Cancer (2014)
84(3):229–35. doi:10.1016/j.lungcan.2014.03.018

Frontiers in Oncology | Molecular and Cellular Oncology December 2014 | Volume 4 | Article 344 | 22

http://dx.doi.org/10.1158/0008-5472.CAN-04-3545
http://dx.doi.org/10.1038/nrc2131
http://dx.doi.org/10.1158/0008-5472.CAN-07-5682
http://dx.doi.org/10.1158/0008-5472.CAN-07-5682
http://dx.doi.org/10.1038/onc.2009.180
http://dx.doi.org/10.1038/onc.2009.180
http://dx.doi.org/10.1038/sj.onc.1210029
http://dx.doi.org/10.1038/sj.onc.1210029
http://dx.doi.org/10.1006/excr.1998.4238
http://dx.doi.org/10.1038/sj.onc.1206198
http://dx.doi.org/10.1158/0008-5472.CAN-06-0100
http://dx.doi.org/10.1242/jcs.1993.Supplement_17.23
http://dx.doi.org/10.1093/jnci/djn174
http://dx.doi.org/10.1074/mcp.M111.008433
http://dx.doi.org/10.1007/s10585-008-9200-4
http://dx.doi.org/10.1158/1078-0432.CCR-09-3200
http://dx.doi.org/10.1158/1541-7786.MCR-13-0567
http://dx.doi.org/10.1158/0008-5472.CAN-12-4560
http://dx.doi.org/10.1158/0008-5472.CAN-05-1988
http://dx.doi.org/10.1158/1078-0432.CCR-05-1492
http://dx.doi.org/10.1158/0008-5472.CAN-07-6720
http://dx.doi.org/10.1038/ncb2455
http://dx.doi.org/10.1128/MCB.02244-06
http://dx.doi.org/10.1128/MCB.02244-06
http://dx.doi.org/10.1101/gad.381706
http://dx.doi.org/10.1158/1078-0432.CCR-06-0788
http://dx.doi.org/10.1158/1078-0432.CCR-06-0788
http://dx.doi.org/10.1038/onc.2014.233
http://dx.doi.org/10.1016/j.celrep.2014.06.003
http://dx.doi.org/10.1007/s13277-013-0720-4
http://dx.doi.org/10.1038/labinvest.2012.84
http://dx.doi.org/10.1016/j.ydbio.2006.12.038
http://dx.doi.org/10.1016/j.canlet.2014.03.011
http://dx.doi.org/10.1016/j.canlet.2014.03.011
http://dx.doi.org/10.1371/journal.pone.0099269
http://dx.doi.org/10.1371/journal.pone.0099269
http://dx.doi.org/10.1158/0008-5472.CAN-12-4082
http://dx.doi.org/10.1002/gcc.20807
http://dx.doi.org/10.1038/onc.2013.569
http://dx.doi.org/10.1016/j.jss.2013.04.042
http://dx.doi.org/10.1016/j.molcel.2009.01.025
http://dx.doi.org/10.1016/j.bbrc.2012.04.064
http://dx.doi.org/10.1016/j.molcel.2005.06.011
http://dx.doi.org/10.1016/j.molcel.2005.06.011
http://dx.doi.org/10.1016/j.lungcan.2014.03.018
http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haley et al. Epigenetic and transcription networks in NSCLC EMT

85. Zhou J, Bi H, Zhan P, Chang C, Xu C, Huang X, et al. Overexpression of
HP1gamma is associated with poor prognosis in non-small cell lung cancer
cell through promoting cell survival. Tumour Biol (2014). doi:10.1007/s13277-
014-2182-8

86. Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the exis-
tence of an HP1-mediated subcode within the histone code. Nat Cell Biol (2006)
8(4):407–15. doi:10.1038/ncb1383

87. Adenuga D, Rahman I. Protein kinase CK2-mediated phosphorylation of
HDAC2 regulates co-repressor formation, deacetylase activity and acetylation
of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys (2010)
498(1):62–73. doi:10.1016/j.abb.2010.04.002

88. Tsai SC, Seto E. Regulation of histone deacetylase 2 by protein kinase CK2. J
Biol Chem (2002) 277(35):31826–33. doi:10.1074/jbc.M204149200

89. Shaltiel IA, Aprelia M, Saurin AT, Chowdhury D, Kops GJ, Voest EE, et al.
Distinct phosphatases antagonize the p53 response in different phases of the
cell cycle. Proc Natl Acad Sci U S A (2014) 111(20):7313–8. doi:10.1073/pnas.
1322021111

90. Chu IM, Lai WC, Aprelikova O, El Touny LH, Kouros-Mehr H, Green JE.
Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells
induces a growth inhibitory response to TGFss. PLoS One (2013) 8(4):e61125.
doi:10.1371/journal.pone.0061125

91. Ohtoshi A, Behringer RR. Neonatal lethality, dwarfism, and abnormal brain
development in Dmbx1 mutant mice. Mol Cell Biol (2004) 24(17):7548–58.
doi:10.1128/MCB.24.17.7548-7558.2004

92. Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J, et al. Functional
crosstalk between Bmi1 and MLL/ Hoxa9 axis in establishment of normal
hematopoietic and leukemic stem cells. Cell Stem Cell (2011) 8(6):649–62.
doi:10.1016/j.stem.2011.05.004

93. Creighton CJ, Massarweh S, Huang S, Tsimelzon A, Hilsenbeck SG,
Osborne CK, et al. Development of resistance to targeted therapies trans-
forms the clinically associated molecular profile subtype of breast tumor
xenografts. Cancer Res (2008) 68(18):7493–501. doi:10.1158/0008-5472.CAN-
08-1404

94. Berx G, Raspé E, Christofori G, Thiery JP, Sleeman JP. Pre-EMTing metasta-
sis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis
(2007) 24(8):587–97. doi:10.1007/s10585-007-9114-6

95. Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role
for transcriptional repressor Snail2 in transformation by oncogenic RAS in

colorectal carcinoma cells. Oncogene (2010) 29(33):4658–70. doi:10.1038/onc.
2010.218

96. Gjerdrum C, Tiron C, Høiby T, Stefansson I, Haugen H, Sandal T, et al.
Axl is an essential epithelial-to-mesenchymal transition-induced regulator of
breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A (2010)
107(3):1124–9. doi:10.1073/pnas.0909333107

97. Matei D, Emerson RE, Lai YC, Baldridge LA, Rao J, Yiannoutsos C, et al.
Autocrine activation of PDGFRalpha promotes the progression of ovarian can-
cer. Oncogene (2006) 25(14):2060–9. doi:10.1038/sj.onc.1209232

98. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, et al. Mutations
in the EGFR kinase domain mediate STAT3 activation via IL-6 produc-
tion in human lung adenocarcinomas. J Clin Invest (2007) 117(12):3846–56.
doi:10.1172/JCI31871

99. Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, et al. TGF-beta IL-6
axis mediates selective and adaptive mechanisms of resistance to molecular tar-
geted therapy in lung cancer. Proc Natl Acad Sci U S A (2010) 107(35):15535–40.
doi:10.1073/pnas.1009472107

100. Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C, Conigliaro A,
et al. TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling.
Exp Cell Res (2008) 314(1):143–52. doi:10.1016/j.yexcr.2007.09.005

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 29 September 2014; paper pending published: 26 October 2014; accepted: 17
November 2014; published online: 08 December 2014.
Citation: Haley JA, Haughney E, Ullman E, Bean J, Haley JD and Fink MY
(2014) Altered transcriptional control networks with trans-differentiation of isogenic
mutant-KRas NSCLC models. Front. Oncol. 4:344. doi: 10.3389/fonc.2014.00344
This article was submitted to Molecular and Cellular Oncology, a section of the journal
Frontiers in Oncology.
Copyright © 2014 Haley, Haughney, Ullman, Bean, Haley and Fink. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org December 2014 | Volume 4 | Article 344 | 23

http://dx.doi.org/10.1007/s13277-014-2182-8
http://dx.doi.org/10.1007/s13277-014-2182-8
http://dx.doi.org/10.1038/ncb1383
http://dx.doi.org/10.1016/j.abb.2010.04.002
http://dx.doi.org/10.1074/jbc.M204149200
http://dx.doi.org/10.1073/pnas.1322021111
http://dx.doi.org/10.1073/pnas.1322021111
http://dx.doi.org/10.1371/journal.pone.0061125
http://dx.doi.org/10.1128/MCB.24.17.7548-7558.2004
http://dx.doi.org/10.1016/j.stem.2011.05.004
http://dx.doi.org/10.1158/0008-5472.CAN-08-1404
http://dx.doi.org/10.1158/0008-5472.CAN-08-1404
http://dx.doi.org/10.1007/s10585-007-9114-6
http://dx.doi.org/10.1038/onc.2010.218
http://dx.doi.org/10.1038/onc.2010.218
http://dx.doi.org/10.1073/pnas.0909333107
http://dx.doi.org/10.1038/sj.onc.1209232
http://dx.doi.org/10.1172/JCI31871
http://dx.doi.org/10.1073/pnas.1009472107
http://dx.doi.org/10.1016/j.yexcr.2007.09.005
http://dx.doi.org/10.3389/fonc.2014.00344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive

	Altered transcriptional control networks with trans-differentiation of isogenic mutant-KRas NSCLC models
	Introduction
	Materials and methods
	Cell culture conditions
	RNA-Seq
	Preparation of cell extracts and phosphorylation directed affinity chromatography
	Peptide identification and quantification by LC-tandem MS
	Functional analysis and performance parameters
	Reporter plasmid transfection
	Immunblot and immunofluorescence

	Results
	Characterization and validation of H358 and A549 mutant-KRas models
	Integration of RNA, protein, and phosphoprotein EMT state-specific measurements
	Functional annotation of transcription and epigenetic networks
	Altered TCF/LEF and NFκB networks with the mesenchymal cell state
	Altered transcription and epigenetic networks
	Early transcriptional events in the trans-differentiation of mutant-KRas NSCLC models

	Discussion
	Acknowledgments
	Supplementary material
	References


