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Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal
cells, phosphoregulation is tightly controlled by a network of protein kinases counterbal-
anced by several protein phosphatases. Deregulation of this delicate balance is widely
recognized as a central mechanism by which cells escape external and internal self-
limiting signals, eventually resulting in malignant transformation. A large fraction of hema-
tologic malignancies is characterized by constitutive or unrestrained activation of oncogenic
kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or
constitutive activation of upstream kinase regulators, in part by inactivation of their anti-
oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large
family of cellular serine/threonine phosphatases with suspected tumor suppressive func-
tions. In this review, we highlight our current knowledge about the complex structure and
biology of these phosphatases in hematologic cells, thereby providing the rationale behind
their diverse signaling functions. Eventually, this basic knowledge is a key to truly under-
stand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational
development of therapeutic strategies targeting PP2A.
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INTRODUCTION
With 518 kinases encoded by the human genome and up to 70% of
all eukaryotic proteins undergoing phosphorylation on a Ser, Thr,
or Tyr residue, nearly every cellular process is controlled by this key
modification (1). The covalent attachment of the bulky, negatively
charged phosphoryl moiety to a protein markedly affects protein
function through conformational changes that alter catalytic activ-
ity (for enzymes), affinity for ligands, subcellular localization, or
stability (2). Several decades of biochemical and genetic studies
have revealed crucial roles for protein kinases in the processes
leading to tumor cell proliferation, survival, and migration in
hematologic and other malignancies. In particular, genetic alter-
ations that lead to constitutive activation of kinases, uncoupled
from extracellular regulatory inputs, are well-characterized drivers
of cancer development, a knowledge, which has emerged in the
development of small-molecule kinase inhibitors for anti-cancer
therapy (3). Kinase inhibitors have been extremely successful in
the treatment of cancers driven by a single oncogenic kinase,
such as chronic myeloid leukemia (CML) (4), but several chal-
lenges remain, including the development of drug resistance, lack
of inhibitor selectivity or efficacy, and difficulty in drug target val-
idation, particularly in cancers that do not exhibit such oncogenic
kinase addiction (5).

Obviously, because protein phosphatases antagonize the action
of protein kinases, they should be considered as equally impor-
tant players in maintaining the correct phosphorylation bal-
ance of a given protein. Nonetheless, persistent misconceptions

regarding the supposed lack of specificity and regulation of protein
phosphatases as opposed to protein kinases, have contributed to a
general underestimation of their critical role in the regulation of
signal transduction (6, 7). Hence, much less is known about their
role in cancer development and progression. Research over the
past decade has begun to highlight the importance of the tumor
suppressive activities of protein phosphatases, which, upon func-
tional inactivation, contribute to persistent kinase or oncogene
activation, and perhaps even more importantly, to drug resistance
development (8, 9). Therefore, protein phosphatases may repre-
sent valuable novel drug targets for alternative cancer therapies,
either in their own right or as part of combination therapies with
kinase inhibitors (10–13).

Protein phosphatase 2A (PP2A) represents the prototype of a
highly regulated phosphatase family with suspected critical tumor
suppressive properties in several human tissues (14–16). Recent
reports have demonstrated that modulation of PP2A activity can
be beneficial for the treatment of cancer, particularly of hemato-
logic malignancies (17, 18). Increasing evidence from cellular and
clinical studies has indeed underscored the tumor suppressive role
of PP2A in leukemogenesis, although the complex biology of these
enzymes in hematologic cells remains incompletely understood.
Here, we will provide insights into the basics of PP2A structure
and regulation in hematologic cells and tissues, and highlight how
proper PP2A function or activity is affected in hematologic malig-
nancies. This knowledge is not only imperative to understand
the protective role of PP2A in leukemogenesis but also equally
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FIGURE 1 | Structure of PP2A holoenzymes. The majority of PP2A enzymes
have a heterotrimeric structure and consist of one catalytic C subunit, one
scaffolding A subunit, and one regulatory B-type subunit. Owing to the
existence of various isoforms of each of these subunits – in human tissues,
two C (encoded by PPP2CA and PPP2CB), two A (encoded by PPP2R1A and

PPP2R1B), and 23 B-type isoforms (encoded by 15 different genes) – 92
different PP2A trimeric complexes can be assembled, each characterized by
its own catalytic properties, substrate specificities, tissue or cell-specific
expression, and subcellular localization. In addition, about one-third of PP2A
occurs as a dimer of one A and one C subunit (four holoenzymes).

important to allow for rational design of PP2A-directed drugs, and
thus, to fully exploit PP2A as anti-cancer target in these devastating
diseases.

PP2A FAMILY
PP2A ENZYMES: STRUCTURAL AND FUNCTIONAL CENTIPEDES
“PP2A” refers to a large, highly conserved family of ubiquitously
expressed Ser/Thr phosphatases that, together with PP1, consti-
tutes the bulk of Ser/Thr phosphatase activity in a given cell or
tissue (19). The prototypic PP2A holoenzyme is a heterotrimeric
complex of a catalytic C subunit, a scaffolding A subunit, and
a regulatory B-type subunit (Figure 1). In human cells, B-type
subunits are encoded by 15 different genes, which give rise to
23 different isoforms through use of alternative gene promoters,
alternative splicing events, or alternative translation (20). Based
on sequence homology, they are divided into four distinct fam-
ilies, called B (or B55, or PR55, or by gene name: PPP2R2), B′

(or B56, or PR61, or by gene name: PPP2R5), B′′ (or PR72, or by
gene name: PPP2R3), and B′′′ (or the striatins, STRN ) (Figure 1).
The B-type subunits are true “regulatory” subunits, in the sense
that they dictate substrate specificity of the associated PP2A C
subunit and can directly modulate PP2A catalytic activity. They
are often expressed in a cell- or tissue-specific way, and can be
found at distinct subcellular locations (cytoplasm, nucleus, plasma
membrane, mitochondria, Golgi apparatus, endoplasmic reticu-
lum, and cytoskeleton), thus, restricting PP2A activity to cell- or
tissue-specific substrates present at specific subcellular sites (20,
21). Also, the C and A subunits are encoded by two different
genes each, giving rise to two nearly identical Cα and Cβ isoforms
(encoded by PPP2CA and PPP2CB), and two highly related Aα

and Aβ isoforms (encoded by PPP2R1A and PPP2R1B). Despite
an extremely high degree of sequence identity, there is evidence
that these isoforms, remarkably, do not serve redundant functions
(22–25). Besides their assembly into trimeric PP2A complexes,
A and C subunits can form active A–C heterodimers (Figure 1),
which are estimated to represent about one-third of cellular PP2A
in a given cell (26).

The combinatorial assembly of one C and one A, or one C, one
A, and one B-type subunit can theoretically give rise to 4 different
heterodimers and 92 different heterotrimers (Figure 1), all exhibit-
ing potentially different physiological functions. Thus, the broad
diversity in PP2A composition creates specificity and constitutes

the basis for the highly diverse and multiple cellular and physi-
ological functions of these phosphatases. PP2A has indeed been
implicated in a wide range of signaling pathways, many of which
are involved in the control of cell proliferation and death (16, 27),
cell division (28, 29), differentiation (28), adhesion and migration
(30), and metabolism (31, 32). Besides function, PP2A composi-
tion also largely defines regulation by upstream factors, including
specific second messengers (cAMP, Ca2+-ions, lipids) (20), cellular
PP2A inhibitors (33) (see further), and phosphorylation by spe-
cific kinases (20). Most of these regulatory inputs are again largely
determined by the nature of the specific B-type subunit present in
the complex.

This being said, it should come of little surprise that “PP2A”
(i.e., the large family of distinct PP2A complexes) may exert col-
laborating as well as opposing functions within a given signaling
pathway by acting at different levels in the cascade. This is, for
instance, the case in growth factor-induced ERK signaling, TGFβ

signaling, or in canonical and non-canonical Wnt signaling (16,
27, 34). In addition, different PP2A complexes may dephosphory-
late the same substrate, even on the same site, depending on the
regulatory stimulus involved, the cell type or the broader phys-
iological context (35–37). In contrast, functional redundancies,
particularly between PP2A complexes harboring a B-type subunit
from the same subfamily, have also been reported (38), further
illustrating the complexity of PP2A holoenzyme function and sub-
strate selection. It is clear though that in order to fully understand
the role and regulation of “PP2A” in any (patho)physiological
context, it is of utmost importance to identify which particular
holoenzymes are involved in a non-redundant way. Nonetheless,
and despite their general importance in PP2A biology, the spe-
cific PP2A regulatory subunits controlling dephosphorylation of a
given substrate in a given mammalian cell or tissue remain poorly
defined, particularly in the physiological context of a whole organ-
ism (39–41). Additional “PP2A” knockout mice are eagerly being
awaited to overcome this lack of in vivo knowledge, and eventually,
to advance the rational development of PP2A as a druggable target
in the relevant cancer types.

EXPRESSION OF PP2A SUBUNITS IN SPLEEN, THYMUS, AND BONE
MARROW
To truly understand the biology of “PP2A”in hematologic cells and
tissues, one should ideally know which PP2A complexes occur in
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FIGURE 2 | Microarray expression profiles of PP2A subunit encoding
genes in mouse tissues. Spleen, thymus, bone marrow, brain cortex, and
heart were hand-dissected from 10- to 12-week-old C57Bl6 mice. Total RNA
was extracted, labeled, and hybridized to the Affymetrix mouse MOE 430
2.0 array (44). Scanning, quality control, data processing, and statistical
analysis of the data were as described (44). Shown is the mean mRNA
expression signal ±SD of three (spleen, thymus, brain, and heart) or four
(bone marrow) biological replicate experiments. (A) Expression the PP2A
core subunit encoding genes. (B) Expression of the genes encoding PP2A
regulatory B-type subunits. Expression of Ppp2r3d could not be analyzed
because it was not present on the array used.

these tissues. Because of general lack of sufficient isoform-specific
antibodies and because only fragmented relevant information can
be found in the currently available PP2A literature, we have ana-
lyzed, for the purpose of this review, mRNA expression of all
PP2A subunit genes via microarray in mouse spleen (n= 3), thy-
mus (n= 3), and bone marrow (n= 4) (Figure 2). Brain cortex
(n= 3) and heart (n= 3) were included as “controls” (Figure 2)
as in these tissues, expression of most PP2A subunits has been
investigated and reported before. If we presume that hybridiza-
tion of the PP2A mRNAs to their respective gene probes on the
chip occurs with comparable efficiency, we find overall signif-
icantly higher expression of the α isoforms of both C and A
subunits as opposed to their respective β isoforms (Figure 2A),
fully in accordance with published data (19, 24). When consider-
ing expression of B-type subunits, most of them are expressed in
all three hematologic tissues, except Ppp2r2b and Ppp2r2c (encod-
ing Bβ and Bγ), which were reported to be exclusively expressed
in brain (42), Ppp2r3a (encoding B′′α), which was reported to be
predominantly expressed in heart (43), and Ppp2r5b (encoding

B′β) whose hematologic expression is extremely low (Figure 2B).
Highest expression is seen for Ppp2r5a and Ppp2r5c (encoding
B′α and B′γ), followed by Ppp2r5e (encoding B′ε), Strn3 (encod-
ing B′′′/SG2NA), Ppp2r3c (encoding B′′γ/G5PR), Ppp2r2a, and
Ppp2r2d (encoding Bα and Bδ). Lowest expression is seen for
Ppp2r5d (encoding B′δ), Strn, and Strn4 (encoding B′′′/striatin
and B′′′/zinedin) (Figure 2B). Expression of Ppp2r3d could not be
analyzed because it was not represented on the microarray chip.
For most PP2A subunits present in these tissues, expression is
comparable between spleen, thymus, and bone marrow, except
for Ppp2r2a (Bα), which is approximately two times more abun-
dant in spleen and thymus as opposed to bone marrow, and for
Ppp2r5a (B′α), Ppp2r5d (B′δ), and Strn4 (B′′′/zinedin), which are
least abundant in spleen as opposed to thymus and bone marrow
(Figure 2B). Thus, these data illustrate in a qualitative and semi-
quantitative way the repertoire of PP2A B-type subunits expressed
in the three main hematologic tissues in mice.

INACTIVE PP2A COMPLEXES AND PP2A HOLOENZYME ASSEMBLY
Besides the prototypical PP2A holoenzymes described above, sev-
eral“atypical”PP2A complexes have been identified that can occur
within cells as catalytically inactive PP2A complexes. For exam-
ple, the interaction between the C subunit and the α4 protein
(encoded by IGBP1) stabilizes the C subunit as a latent, inac-
tive form (45, 46), although there is also some evidence that this
complex might be active toward very specific cellular substrates
[reviewed in Ref. (47)]. Another example is the catalytically inac-
tive complex between the C subunit, the A subunit, and PME-1
(PP2A Methyl Esterase 1, encoded by PPME1) (Figure 3A) that has
been estimated to represent up to 25% of the cellular PP2A C pool
(48, 49). It is thought that these atypical, inactive PP2A complexes
constitute intermediate, but stable complexes during the process
of PP2A holoenzyme biogenesis (47) or holoenzyme disassem-
bly (45). Interestingly, increased expression of α4 or PME-1 has
been found in several human cancers [hepatocellular carcinoma
(50), lung carcinoma (50, 51), breast cancer (50), glioma (52), and
endometrial cancer (53)], indicative for a relative increase in inac-
tive PP2A complexes as opposed to active holoenzymes in these
transformed cells.

The precise mechanism of assembly of active PP2A holoenzyme
is still incompletely understood (47). A major insight came from
the finding that the PP2A C subunit is synthesized/translated as an
inactive enzyme (54) that is subsequently activated in a way that
is strictly coupled to its incorporation into the complete holoen-
zyme (55). Like that, promiscuous and unregulated phosphatase
activity of the free C subunit can be avoided (54, 55). There is
evidence that proteins such as α4 and PME-1 can stabilize such
inactive PP2A C subunits within cells, either in the absence (for
α4) (46) or the presence (for PME-1) of the A subunit (47). To
generate active PP2A holoenzymes from these inactive complexes,
at least two additional PP2A regulating enzymes are needed. First,
PTPA (or “PP2A Activator,” encoded by PPP2R4) may activate the
PME-1-bound PP2A complex in the presence of ATP/Mg2+ as
necessary cofactors (Figure 3A) (49). In accordance, in vivo data
in yeast have shown that PTPA-dependent generation of active
C subunit requires a functional interaction with the A subunit
and is regulated by PME-1 (55). Crystallographic data suggested
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FIGURE 3 | Regulators of PP2A holoenzyme biogenesis and assembly.
(A) Simplified schematic of the roles of PME-1, PTPA, and LCMT1 in the
biogenesis of active PP2A trimers. The PP2A methylesterase PME-1 serves
to stabilize the inactive PP2A C subunit in a complex with the A subunit, at
the same time preventing PP2A C methylation. With ATP/Mg2+ as
necessary cofactors, PTPA promotes folding of PP2A C in an active
conformation, and thereby, indirectly, PP2A C carboxymethylation by
LCMT1. The latter modification is absolutely required for binding of B
subunits, facilitates interaction of all B′ subunits but the δ isoform, is of no
apparent importance for binding of B′δ and the B′′ subunits, and is disliked
by the striatin subunits. α4 (not depicted here) is another regulator that
stabilizes PP2A C in a latent form. It is currently unclear if and how this
inactive α4–C complex might become activated by similar mechanisms (47).
(B) Expression of PP2A biogenesis regulators in hematologic tissues, brain,
and heart. The mean mRNA expression signal ±SD for Ppme1 (PME-1),
Lcmt1 (LCMT1), Igbp1 (α4), and Ppp2r4 (PTPA) is shown of three (spleen,
thymus, brain, and heart) or four (bone marrow) biological replicate
experiments.

that PTPA may act as an ATP/Mg2+-dependent prolyl-peptidyl
cis/trans isomerase of a single prolyl-peptidyl bond in PP2A C
(56), as well as an ATP/Mg2+-dependent chaperone promoting the
incorporation of catalytic metal ions into the PP2A C active site
(57). Regardless of its precise mechanism-of-action, several in vivo
studies have underscored the importance of PTPA as a physiolog-
ical activator of PP2A [reviewed in Ref. (47)]. The second enzyme
important in PP2A biogenesis is LCMT1 (leucine carboxyl methyl
transferase 1, encoded by LCMT1), an S-adenosylmethionine-
dependent methyltransferase catalyzing the carboxymethylation
of the PP2A C subunit (58). This unusual post-translational mod-
ification of PP2A C is reversible through the presence of PME-1,
the PP2A methylesterase (59), which may thus serve a dual func-
tion. Interestingly, PP2A C carboxymethylation requires an active
PP2A C conformation (60), is facilitated by the presence of the A

subunit (61), and enhances the affinity of the core dimer for PP2A
regulatory subunits (Figure 3A). Specifically, PP2A C methylation
is an absolute prerequisite to bind subunits of the B family, it facili-
tates interaction of all members but the δ isoform of the B′ family, is
of no apparent importance for binding of B′δ and the B′′ subunits,
and is disliked by the B′′′ subunits [reviewed in Ref. (62)]. Intrigu-
ingly, all regulators involved in PP2A holoenzyme biogenesis (α4,
PME-1, PTPA, and LCMT1) are indispensable for mammalian
survival (63–65, unpublished work), indicative for their physio-
logical importance. In accordance, they are all expressed in spleen,
thymus, and bone marrow, the three hematologic tissues analyzed
here by microarray (Figure 3B). Our data also show a relatively
higher expression of PME-1 and LCMT1 in brain, as opposed to
other tissues analyzed (Figure 3B).

CELLULAR PP2A INHIBITORY PROTEINS
Although the first cellular PP2A inhibitors were discovered almost
two decades ago (66), their role in direct regulation of PP2A activ-
ity has only during the recent years come into considerable focus,
not the least because some of them commonly suppress PP2A
activity in hematologic and other cancers, and thus, may constitute
novel therapeutic targets (33). These inhibitors either directly bind
to the PP2A catalytic subunit or target very specific PP2A holoen-
zymes, thereby preventing dephosphorylation of a large variety of
PP2A substrates (Figure 4A).

ANP32a AND SET
PP2A inhibitor 1 (also called ANP32a, or by gene name: ANP32a)
and inhibitor 2 (also called TAF-Iβ, or PHAP1, or by gene name:
SET ) were originally de novo purified from bovine kidney as
two potent, heat-stable PP2A-specific inhibitors (66) and subse-
quently cloned from cDNA libraries (67, 68). ANP32a belongs to a
large family of at least nine members (ANP32a–h), of which only
ANP32a and ANP32e show PP2A inhibitory ability in an in vitro
phosphatase assay (69, 70). Free PP2A C subunit, the core A–C
dimer and a trimeric PP2A complex with B subunit were inhib-
ited in this assay, suggestive for direct binding of ANP32a to the
C subunit, and thus, for no specific holoenzyme selectivity. Essen-
tially, the same observations were made for SET in in vitro PP2A
phosphatase assays (68). SET exists as two splice variants (SETα

and β) that are both capable of inhibiting PP2A (71). ANP32a/e
and SET are all phosphoproteins and can be found in the nucleus
as well as the cytoplasm. Tyrosine phosphorylation of ANP32a
releases its binding to PP2A and relieves PP2A inhibition toward
MEK (72). In SETα, Ser9, Ser24, Ser93, and Ser171 have been iden-
tified as phosphorylation sites of functional importance (73–75).
Phosphorylation of Ser9 functionally disrupts a nuclear localiza-
tion signal and promotes SET retention in the cytoplasm (76,
77), while Ser171 phosphorylation decreases its PP2A inhibitory
potential (74) and Ser9/Ser93 phosphorylation increases its abil-
ity to inhibit PP2A (75). Proteolytic cleavage of SET, either by
Granzyme A at K176 (78) or by asparaginyl endopeptidase at N175
(79) is another mechanism that promotes its translocation into the
cytoplasm (80), while the SET-binding protein SETBP1 stabilizes
full-length SET inside the nucleus (81). Several PP2A substrates
are known to be affected by SET, either directly or indirectly,
including ERK1/2 (82), Akt (82–84), PTEN (83), Mcl-1 (85, 86),
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FIGURE 4 | Cellular PP2A inhibitors. (A) Schematic representation of
known cellular PP2A inhibitors, highlighting their potential regulation by
(yellow) or dependence on (blue) phosphorylation, their holoenzyme
specificity (if known), and the PP2A substrates they affect. Best
characterized so far, in terms of phosphorylation dependence and
holoenzyme specificity, are the mitotic inhibitors ENSA, ARPP-19, and Bod1.
Both I1 (ANP32a, e) and I2 (SET) are established phosphoproteins, but
depending on the specific site of modification, these phosphorylations may
increase as well as decrease their PP2A inhibitory abilities.
Phosphoregulation of CIP2A or TIPRL has not yet been described. I1, I2,
and TIPRL are thought to interact with PP2A complexes through the C
subunit, while holoenzyme specificity of CIP2A-mediated inhibition remains
undefined. PBD: polo-box domain. (B) Expression of cellular PP2A inhibitors
in hematologic tissues, brain, and heart. The mean mRNA expression signal
±SD for the eight indicated cellular PP2A inhibitory proteins is shown of
three (spleen, thymus, brain, and heart) or four (bone marrow) biological
replicate experiments.

c-Myc (82, 84, 87), c-jun (88), and pRb (82), just to name a few
(Figure 4A).

CIP2A
CIP2A (or cancerous inhibitor of PP2A, or by gene name
KIAA1524) is an oncoprotein, originally identified as a novel co-
precipitating partner of the PP2A A subunit (89). CIP2A is barely
detectable in normal cells, but becomes specifically upregulated in
a large variety of human cancers, hence its name [reviewed in Ref.
(90)]. CIP2A knockout mice show no overt phenotypes, except
for a defect in spermatogenesis (91). In cancer cells, CIP2A upreg-
ulation is mediated by several oncogenic transcription factors,
including Ets (92), Myc (93), and E2F (94), and often correlates

with cancer aggressiveness and poor prognosis (90). At the sig-
naling level, increased CIP2A expression has been associated
with increased c-Myc stability and Ser62 phosphorylation (89),
increased Akt signaling (95), inhibition of dependence receptor-
dependent apoptosis (96), and more recently, with changes in
regulation of cell cycle kinases such as Plk1 (97) and NEK2 (98),
and activation of the TOR pathway (99, 100) (Figure 4A). The
biochemistry of CIP2A remains, however, largely undefined; in
particular, it remains to be determined which PP2A complexes it
may specifically inhibit and how this is achieved.

TIPRL1
TIPRL1 (also called TIP, or two A inhibitory protein, gene name
TIPRL) is a ubiquitously expressed PP2A inhibitory protein that
has been shown to inhibit free PP2A C and the PP2A A–C dimer
by an allosteric mechanism (101, 102). TIPRL1 directly interacts
with PP2A C, as well as with the C subunits of the PP2A-like
phosphatases PP4 and PP6 (103). Notably, TIPRL1 may play an
important role in DNA damage and repair signaling as it regulates
PP2A enzymes that oppose ATM/ATR-dependent phosphoryla-
tion events (101). In addition, it may facilitate mTORC1 signaling
and increase protein translation by sustaining phosphorylation of
the mTORC1 substrates S6K1 and 4E-BP1 (104). In cancer cells,
highly elevated TIPRL1 expression was reported in hepatocellular
carcinoma, correlating with decreased pro-apoptotic MKK7/JNK
signaling and contributing to resistance to TRAIL-induced apop-
tosis (105). The physiological role of TIPRL1 remains, however,
undefined.

MITOTIC PP2A INHIBITORS: ENSA, ARPP-19, AND Bod1
cAMP-regulated phosphoproteins ARPP-16 and ARPP-19 are
splice variants and members of an evolutionary conserved pro-
tein family, to which ENSA (α-endosulfine) is closely related.
ENSA and ARPP-19 are mitotic PP2A inhibitors that promote
the G2/M transition and the mitotic state (106, 107). Intriguingly,
they strongly bind to Bα and Bδ, but no other B-type subunits,
dimeric PP2A or monomeric PP2A C, suggestive for a strong
PP2A holoenzyme specificity (106–108) (Figure 4A). Moreover,
these proteins require prior phosphorylation by the mitotic Great-
wall/MASTL kinase, the Cdk1/cyclinB kinase, or potentially other
mitotic kinases to exert their PP2A inhibitory effects (106, 107, 109,
110). Phosphorylation of ARPP-19 by cAMP-dependent kinase
(PKA) serves to keep oocytes arrested in prophase (111), but
how this may affect PP2A inhibition is unknown. More recently,
yet another mitotic PP2A inhibitor was identified: Bod1, a pro-
tein required for proper chromosome alignment at mitosis. Bod1
shares sequence similarity with ENSA and ARPP-19, but intrigu-
ingly, specifically inhibits kinetochore- and centrosome-associated
PP2A-B′ holoenzymes. Again, a phosphorylation of Bod1 by
Cdk1/cyclinB is required to promote interaction with and inhi-
bition of PP2A-B′ (112). Although many more needs to be dis-
covered about the biochemistry and physiological roles of these
mitotic PP2A inhibitors, they currently represent an exemplary
mechanism of holoenzyme (family)-specific PP2A inhibition.

EXPRESSION OF PP2A INHIBITORS IN HEMATOLOGIC TISSUES
As for the PP2A subunits (Figure 2) and the regulators of PP2A
holoenzyme assembly (Figure 3B), we have analyzed mRNA
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expression of the above PP2A inhibitors in mouse spleen (n= 3),
thymus (n= 3), and bone marrow (n= 4) (Figure 4B). Expres-
sion of SET, CIP2A, and ANP32e appears significantly higher in
all three hematologic tissues analyzed, as opposed to terminally
differentiated brain and heart tissues. In fact, CIP2A expression
is completely undetectable in brain and heart, consistent with
the idea that its expression is tightly coupled to cell prolifera-
tion, and potentially, stemness (90). Bod1 expression shows the
opposite behavior and is significantly less expressed in spleen,
thymus, and bone marrow as opposed to brain and heart, while
TIPRL1, ANP32a, ENSA, and ARPP-19 expression is comparable
in all tissues analyzed (Figure 4B).

PP2A ABERRATIONS IN HEMATOLOGIC MALIGNANCIES
Several mechanisms of PP2A dysfunction in hematologic malig-
nancies have been reported, including changes in expression of
PP2A subunits and inhibitors (by epigenetic or other mecha-
nisms), genomic alterations in PP2A subunit and regulator encod-
ing genes (including mutations, deletions, splicing errors, chromo-
somal translocations), and alterations in subunit modifications
affecting PP2A activity.

ALTERATIONS IN PP2A SUBUNITS
Although both PPP2R1A (Aα) and PPP2R1B (Aβ) have been iden-
tified as genuine tumor suppressor genes in solid cancers (17, 25),
few reports have currently documented their inactivation in hema-
tologic malignancies. Decreased A subunit expression is observed
in myeloid cells expressing activated c-KIT mutants (113), while
loss of Aβ function occurs with low frequency in ALL (G90D
mutation, 3/150) (114), B-CLL (exon skipping and reduced mRNA
expression) (115, 116), and AML (117). Decreased expression of
Cα is one of the hallmarks of del(5q) myelodysplastic syndromes
(MDS) and AML, and interestingly, predicts a favorable therapy
response to lenalidomide (118), suggestive for its use as a stratifica-
tion marker. Increased Y307 phosphorylation of PP2A C occurred
in 29/37 AML cases, correlating with significantly decreased PP2A
activity toward Akt and ERK (117).

PP2A B-type subunit alterations occur more frequently, partic-
ularly in AML. Reduced expression of Bα in AML blasts, correlat-
ing with increased Akt, p70S6K, and PKCα phosphorylation and
deregulated expression of specific microRNAs (miRs), is associated
with significantly reduced complete remission duration (119, 120).
In c-KIT mutant AML, reduced expression of Bα is observed, along
with decreased expression of several B′ subunits (α,γ,δ), correlat-
ing with overall decreased PP2A activity (113). Genomic deletion
of PPP2R5B/C (B′β,γ) (117) and downregulation of B′ε by an
elusive non-genomic mechanism (121) do also frequently occur
in AML, correlating with increased oncogenicity of the leukemic
cells. In lymphocytic leukemia, PPP2R5C (B′γ) downregulation is
a hallmark of progressive as opposed to stable B-CLL (122), while
in Notch-induced T-ALL, PPP2R5E (B′ε) was identified as one of
the targets for miR-19, an oncomiR that promotes leukemogene-
sis in vivo (123). In childhood T-ALL and B-ALL, PPP2R3A (B′′α)
is epigenetically inactivated by increased methylation with high
frequency (69 and 82%, respectively) (124). Genomic deletion of
PPP2R2A/B (Bα, β) is sporadically observed in primary plasma
cell leukemia and multiple myeloma (125, 126).

ALTERATIONS IN PP2A REGULATORS
The large majority of PP2A aberrations in hematologic malignan-
cies involve abnormalities (overexpression, genetic modifications)
in the proto-oncogenic PP2A inhibitors CIP2A and SET.

The first time deregulated CIP2A expression was linked to
blood cancer development was through the discovery of a chro-
mosomal translocation, resulting in an MLL-KIAA1524 fusion
protein in an isolated case of infant AML (127). In this fusion,
exons 1–10 of MLL are coupled in frame to exons 17–21 of CIP2A,
encompassing the CIP2A coiled coil domain. In addition, CIP2A
overexpression occurs frequently in newly diagnosed AML (54/70)
and relapsed AML (11/14) (128). In CML, a positive feedback
loop between CIP2A and BCR/ABL has been described, implying
that CIP2A overexpression may promote CML pathogenesis (129,
130). Importantly, and in contrast to expression of SET, CIP2A
expression is a clear determinant of disease progression to blast
crisis (129) and thus confers a poor prognosis in these patients.
Mechanistically, high-CIP2A levels in primary CML correlate with
high levels of S62-phosphorylated c-Myc (129) and increased resis-
tance to bortezomib-induced apoptosis (131). Analysis of CIP2A
expression levels in a panel of 105 B-cell lymphomas further
demonstrated a link with clinical aggressiveness of the subtypes,
with weak or absent CIP2A expression in indolent B-cell lym-
phomas and strongly positive signals in the more aggressive diffuse
large B-cell and Burkitt lymphoma subtypes (132).

Increased SET expression is found in CML, where it correlates
with blast crisis and resistance to therapeutic BCR/ABL tyro-
sine kinase inhibitors (TKI) (82), in Philadelphia chromosome-
positive (Ph)-ALL (133), (c-KIT positive) AML (113, 134), and
B-CLL (85). In AML and B-CLL, its expression is associated with
disease severity and poor outcome. In leukemic progenitors, PP2A
activity is substantially impaired as a result of SET overexpression
(82). In CML and Ph-ALL, induction of SET expression is con-
trolled by BCR/ABL (82), while in AML, overexpression of EVl1 or
downregulation of miR199b may contribute (134). Restoration of
PP2A activity in leukemic cells results in decreased phosphoryla-
tion of pRb, c-Myc, Stat5, ERK1/2, Akt, Bad, and Jak2, and induc-
tion of SHP1-mediated BCR/ABL inactivation and degradation
(82, 135). In atypical CML, lacking the BCR/ABL fusion, recur-
rent SETBP1 mutations are found in 17/70 cases, some of which
abrogate a site for ubiquitination, resulting in increased amounts
of SETBP1 and SET protein, lower PP2A activity, and higher
proliferation rates (136). In AML, overexpression of SETBP1 pre-
dicts poor outcome in elderly AML patients (81). Finally, SET is
recurrently involved in chromosomal rearrangements and translo-
cations, in particular, with the nucleoporin-encoding Nup214 gene
(also called CAN ) in AML, T-ALL, and acute undifferentiated
leukemia (137–140).

PP2A (RE)ACTIVATION AS A NOVEL THERAPEUTIC
STRATEGY IN HEMATOLOGIC MALIGNANCIES
The above findings, highlighting several mechanisms of PP2A
inactivation in patients with hematologic malignancies, substan-
tially underscore the tumor suppressor activities of (specific)
PP2A holoenzymes and the proto-oncogenic properties of PP2A
inhibitors CIP2A and SET. Importantly, some of these mecha-
nisms may serve as biomarkers to improve current therapies (118),
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or may be directly amenable for therapeutic intervention. Sev-
eral recent preclinical studies have shown that pharmacological
restoration of PP2A tumor suppressor activity by PP2A-activating
drugs (PADs) indeed effectively antagonizes cancer development
and progression [reviewed in Ref. (17)]. Because PP2A complexes
have so many cellular targets, these therapies may have the addi-
tional advantage, not to target just a single oncogene, but rather
many different oncogenic pathways, contributing to their thera-
peutic efficacy. On the other hand, it is obvious that not all mecha-
nisms of PP2A inhibition are suitable for restoration, particularly
when subunit mutations are involved. Likewise, the development
of small-molecule protein–protein interaction inhibitors target-
ing PP2A–SET or PP2A–CIP2A complexes remains, although
attractive, extremely challenging.

Neviani et al. were the first to highlight the therapeutic rel-
evance of using PP2A activators, such as FTY720 and forskolin,
to target leukemia cells (82, 133). These observations prompted
many others to test these compounds successfully in their own
leukemic models (85, 113, 117, 141, 142). Treatment of AML
patients with forskolin, in combination with standard induction
therapy, gave an additive effect, highlighting therapeutic potential
of PP2A activators in combination with standard chemotherapy
(117). The mechanism of PP2A activation by these compounds
remains somewhat obscure, but may involve direct binding of
FTY720 to a ceramide-binding domain of SET (143, 144), resulting
in SET dissociation from PP2A (143, 145). FTY720 also reduces
SET Ser phosphorylation (144) and promotes SET nuclear local-
ization (145), suggesting that its therapeutic effect may be largely
attributable to restoration of cytoplasmic PP2A activity. The cell
penetrating SET antagonistic peptides COG112 and OP449 (for-
merly COG449) directly bind SET to prevent SET–PP2A inter-
action and enhance PP2A activity (84). Like FTY720, they show
significant therapeutic potential as PADs, as they induce apopto-
sis of human B-cell non-Hodgkin lymphoma and B-CLL in vitro
and in vivo, without any discernable effects on normal B cells (85,
146). In models of human CML and AML (147) and canine T-cell
lymphomas (148), OP449 also shows anti-tumoral effects, espe-
cially in combination with ABL TKI (147). The latter demonstrates
the added benefit of combining TKIs and PADs for anti-leukemic
therapy (17). Very recently, yet another class of FDA-approved
drugs, the phenothiazines, were shown to act as PADs in models
of T-ALL (149). These compounds induce rapid dephosphoryla-
tion of multiple PP2A targets, resulting in suppressed growth and
increased apoptosis of T-ALL cells in vitro and in vivo. Mecha-
nistically, a direct interaction with the Aα subunit is involved, but
how this results in increased PP2A activity should still be further
explored.

Together, these findings strongly encourage the inclusion of
pharmacological PP2A activators with major anti-cancer activi-
ties and good safety profiles into current anti-cancer protocols
in hematologic malignancies. The partially overlapping effects of
existing drugs and PP2A stimulation predict that the inclusion of
PADs in combination therapies with TKIs or other conventional
therapeutics would represent particularly attractive therapeutic
strategies to improve therapeutic outcome in these devastating
malignancies. In the meantime, additional efforts to improve the
potency and selectivity of existing PADs, and to identify alternative

PP2A-activating strategies should be undertaken, in order to
achieve their eventual use in the clinic.
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