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EMT or EMT-promoting transcription factors, where to
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The epithelial-to-mesenchymal transition
(EMT) is commonly considered as a main
driving force of the metastatic cascade. An
impressive series of experiments and obser-
vations worldwide supports its pivotal role
in promoting cancer cell dissemination at
the invasive fronts of tumors, intravasation,
cell survival in fluids, and extravasation,
with secondary site colonization being the
only step requiring a return to an epithelial
phenotype (1). Beyond this, commitment
of epithelial cells into an EMT program has
been associated with resistance to chemo-
, radio-, and hormono-therapies, defini-
tively extending the interest of studying
EMT from the embryologist community to
the oncology and medical fields. Obviously,
EMT turns out to constitute a transdiffer-
entiation program, allowing epithelial cells
to escape from numerous stresses, includ-
ing mechanical constrains, hypoxia, nutri-
ent depletion, and unfortunately therapeu-
tic treatments (1). EMT is orchestrated by a
restricted number of transcription factors
mainly the three Snail, Twist, and Zeb fam-
ilies (EMT-TFs). With inclusion of miR-
NAs, these factors constitute a complex
interactome, able to sensor multiple signals
received from the proximal microenviron-
ment and relay them onto gene expression
(2, 3).

Generally undetectable in adult epithe-
lial cells in homeostatic conditions, EMT-
TFs were found to be recurrently expressed
in various types of cancers including multi-
ple carcinomas, an expression often associ-
ated with a high metastatic risk. An out-
standing amount of work has been per-
formed over the last years evaluating their

relative contribution to the initiation and
maintenance of the EMT process, with a
significant impact on the prognostic value
occurring following to their detection in
primary tumors or in disseminated cancer
cells (4, 5). Does this mean that the onco-
genic potential of these factors in epithe-
lial cells only rely on their ability to pro-
mote EMT or does their oncogenic activity
extend further than EMT induction?

By performing in vitro functional assays,
we and others firstly demonstrated that
several of these embryonic transcrip-
tion factors, including the TWIST pro-
teins, alleviated fail-safe program induc-
tion. Through this, they were shown to
cooperate with mitogenic oncoproteins
such as RAS and N-MYC in promot-
ing cell transformation in vitro, as well
as in lung and breast carcinoma devel-
opment in transgenic mouse models (4,
6–9). The underlying mechanisms have
been largely explored. The TWIST1 pro-
tein was found to directly interact with p53
and to destabilize the oncosuppressive pro-
tein by altering specific post-translational
modifications (10). Furthermore, TWIST1
alleviates induction of cyclin-dependent
kinase inhibitors (CDKN1A,CDKN2A, and
CDKN2B), thereby sustaining cell prolif-
eration (8, 11). These pleiotropic prop-
erties probably provide TWIST proteins
unique properties. As TWIST proteins
experimentally are inefficient in triggering
EMT as compared with SNAIL and ZEB
proteins, their main functions may con-
sist in protecting cells from fail-safe pro-
grams during the EMT-associated genetic
reprograming. In this respect, they might

be considered as survival factors rather
than EMT inducers. Although SNAIL and
ZEB proteins, unlike the TWIST transcrip-
tion factors, fail to prevent HRASG12V-
induced senescence in murine embryonic
fibroblasts (B. Gras, unpublished data), we
obviously cannot exclude that they facil-
itate the escape from oncogene-induced
fail-safe programs in other cellular set-
tings and/or experimental conditions. In
support of this assumption, ZEB proteins
were indeed reported to protect lung can-
cer cells from EGFR-induced senescence
through their ability to down-modulate
CDKN1A and CDKN2B (12). In line with
this observation, ZEB1 was demonstrated
to be positioned downstream of RB and
to contribute to fibroblast immortalization
induced by RB and RB-like protein deple-
tion (13). Enforced expression of SNAIL
or ZEB proteins in non-transformed mam-
mary epithelial cells, and the consequent
activation of RAS-downstream pathways,
predominantly triggers EMT. Nonetheless,
it also accidentally promotes the commit-
ment of cells into a senescence program,
unveiled by their SA-β-galactosidase activ-
ity (B Gras and SA, unpublished data).
This observation is consistent with the
reported anti-proliferative properties of
SNAIL and ZEB proteins in epithelial cells
(14) and with the recognized antagonism
between cell proliferation and dissemina-
tion. It additionally gives a rationale to
the restricted staining of these transcrip-
tion factors to the tumor-stromal interface,
stabilized by microenvironmental EMT-
permissive conditions (15–17). The need
to maintain ZEB and SNAIL proteins at
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a basal level to sustain epithelial cell pro-
liferation is difficult to reconcile with a
role in fail-safe program escape. Nonethe-
less, the fact that the EMT-promoting and
fail-safe program inhibition induced by
ZEB1 requires different levels of protein
expression (18) suggests that a low protein
level (and likely not always detectable by
immunohistochemistry) is not incompat-
ible with such a function. Most of these
transcription factors are particularly unsta-
ble, subjected to post-translational modifi-
cations and thereby transiently stabilized
and activated. Knockdown experiments,
rather than stable enforced expression, are
thus warranted to gain further insight into
their functions. Such an approach has suc-
cessfully been employed to emphasize the
temporally distinct functions of SNAIL1
and TWIST1 during the TGFβ-driven EMT
(19). Interestingly, human sarcomas were
recently shown to display high SNAIL1
expression and SNAIL1 was demonstrated
to control the tumorigenic properties of
mesenchymal cells (20). In this tumor pro-
gression model, the anti-apoptotic proper-
ties of SNAIL proteins may provide cells a
survival advantage, which would enhance
their potential to undergo neoplastic trans-
formation. Additionally, the SNAIL1 pro-
tein has been reported to alleviate the dif-
ferentiation of multipotent mesenchymal
stem cells (21), the cells of origin of certain
sarcomas [reviewed in Ref. (22)].

By facilitating the escape from fail-safe
programs, TWIST proteins may not only
contribute to facilitate tumor initiation but
also provide cancer cells with prolifera-
tion and survival advantages. Obviously,
numerous cancer cell lines from various
tumor types including breast and lung car-
cinoma, sarcoma, and neuroblastoma were
found to remain dependent on TWIST1
for their survival (7, 8, 11). As already
mentioned, ZEB1 was similarly shown to
abrogate latent EGFR-induced senescence
in lung carcinoma cells (12). The addic-
tion to a specific embryonic transcription
factor may be determined by the nature of
the original insult, e.g., in murine pancre-
atic epithelial cells, TWIST1 is induced in
response to K-RAS activation and, avoids
replicative senescence by turning-down
Cdkn2A (23).

As an interconnected transcriptional
network, expression of SNAIL, TWIST, and
ZEB proteins induces a profound genetic

reprograming of cells,with the correspond-
ing consequences upon epithelial integrity
undoubtedly constituting only a single
facet of this remodeling. A brief overview
of the induced genetic changes unambigu-
ously highlights profound metabolic modi-
fications and in support of this observation,
SNAIL1 was shown to favor glycolysis, glu-
cose uptake, maintenance of ATP produc-
tion in hypoxic conditions and to reduce
ROS production (24, 25). An additional
consequence of this genetic reprograming
is to afford cells a “plastic” configuration,
with an exacerbated adaptability to hos-
tile environments and an ability to quickly
respond to their needs. As an example,
enforced expression of TWIST1 in mam-
mary epithelial cells poorly impacts on cell
morphology but significantly accelerates
their commitment to EMT when submit-
ted to TGFβ, an EMT-promoting cytokine
(9). Cell plasticity similarly determines the
ability of EMT-committed cells to return
to an epithelial phenotype in a restrictive
microenvironment, promoting their capa-
bility to colonize secondary sites (26, 27).
In this regard, neither epithelial nor mes-
enchymal cells, the two end points of the
process, are likely to constitute the most
aggressive cells, with the partially repro-
gramed and semi-committed cells being
the most likely to switch between an inva-
sive and proliferative status.

Partial reprograming driven by the
embryonic transcription factors likely
places cells at the intersection of different
destinies, their outcomes being likely dic-
tated by intrinsic properties, and/or genetic
events. When combined with key regula-
tors of cell determination, such as the SOX9
transcription factors, cells further commit
to a dedifferentiation process (28). Dedif-
ferentiation also takes place, at least to some
extent, when the embryonic transcription
factors are combined with mitogenic acti-
vations, leading to the reacquisition of
some stem-cell-like properties, including a
self-renewal potential (9, 29). In support
of this assumption, combined expression
of TWIST1 and an activated version of
RAS in murine luminal committed mam-
mary epithelial cells invariably leads to the
development of carcinomas of a particu-
lar subtype referred as “claudin-low” (9):
a group of tumors with enriched EMT and
stem-cell features and originally believed to
arise from mammary stem cells (30). The

link between embryonic transcription fac-
tors and stemness has been further exem-
plified by the detection of ZEB1 specifically
in poorly differentiated pancreatic carci-
nomas and the demonstration of its role
in maintaining stemness through repres-
sion of stemness-inhibiting miRNAs (31).
Combined EMT and stemness induction at
the invasive fronts of tumors has been pro-
posed as a first rationale to explain the dis-
semination of single cancer stem cells, able
to colonize distant sites and yield secondary
tumors with full heterogeneity (32).

Strikingly, partial commitment into
EMT (and presumably the transition to
this plastic state) was also demonstrated
as sufficient to accelerate epithelial cell
transformation. Presumably, the genetic
reprograming impacts on multiple mito-
genic (e.g., activation of the RAS path-
way) and oncosuppressive (e.g., down-
modulation of the activity of the phos-
phatase PP2A) pathways (9, 33). Whether
cell dedifferentiation contributes to the
oncogenic properties of these embry-
onic transcription factors in non-epithelial
cells remains poorly investigated, with the
exception of melanocytes. These neural-
crest derived cells endogenously express
SNAIL2 and ZEB2, both of which acti-
vate MITF transcription and induce down-
stream target genes to promote cell survival
and proliferation. Following activation of
the NRAS/BRAF pathway, a driver muta-
tion in melanomagenesis, a redistribu-
tion of the embryonic transcription factors
takes place, with SNAIL2 and ZEB2 being
replaced by ZEB1 and TWIST1. These two
embryonic transcription factors display
opposite functions to SNAIL2 and ZEB2,
by turning-down MITF expression and
silencing the downstream differentiation
program to rather favor cell migration (34,
35). Strikingly, modulation of the MITF
rheostat is determinant for melanocyte
transformation (36). The reversible redis-
tribution of these embryonic transcription
factors furthermore regulates the equilib-
rium between the proliferative and inva-
sive states of melanoma cancer cells, and
thereby dictates their ability to complete
the metastatic process. In support of this
expectation, ZEB2 was identified as essen-
tial for secondary site colonization (37). It
is actually very likely that the ability to alle-
viate differentiation programs or to induce
cell dedifferentiation will turn, in the near
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FIGURE 1 | As a mother trying to identify which of hers two sons broke the vase, scientists need
to precisely determine the contribution of EMT and EMT-TFs in tumor development.

future, to be one of the main oncogenic
functions of these embryonic transcription
factors, with dedifferentiation being regu-
larly associated with, and likely an integral
part of, neoplastic transformation (29, 38,
39). In this regard, the recent demonstra-
tion of a pivotal role of SNAIL1 in sarco-
magenesis and its functions in preventing
mesenchymal stem cell differentiation (20)
likely reflects this behavior.

Resistance to therapeutic treatments in
carcinoma cancer cells has also recur-
rently been associated with EMT. While
this resistance might result from mul-
tiple mechanisms, including metabolic
changes impacting on pro-drug activa-
tion and drug exclusion through trans-
porters, recent observations also suggest
that embryonic transcription factors might
directly be involved in the emergence
of such resistant cells, independently of
their EMT-promoting functions, through
various mechanisms. In a recent study,
Zhang and co-workers have demonstrated
that the ZEB1 transcription factor triggers
radioresistance in an EMT-independent
manner. Stabilized through phosphoryla-
tion by ATM, ZEB1 interacts with USP7

and enhances its ability to deubiquitini-
late and stabilize CHK1, thereby favor-
ing recombination-dependent DNA repair
(40). In line with this observation, ZEB2
was shown to prevent ATM/ATR activa-
tion in response to a genotoxic stress in an
EMT-independent manner and constitutes
a factor of poor prognosis in bladder can-
cer patients treated with radiotherapy (41).
TWIST1 was also previously demonstrated
to trigger chemoresistance in an EMT-
independent manner through its ability to
induce AKT2 expression and to differently
modulate the ratio between pro- and anti-
apoptotic members of the BCL-2 family
[reviewed in Ref. (42)]. Lastly, SNAIL1 and
SNAIL2 proteins protect kidney epithe-
lial cells and hematopoietic precursor cells,
respectively, from radiation-induced apop-
tosis by interfering with p53-target gene
activation (43, 44).

The relative contribution of EMT and
EMT inducers to tumor development is like
the chicken and the egg question. Nonethe-
less, these observations collectively high-
light numerous specific EMT-independent
functions of these transcription factors,
which likely merit consideration in line

with the EMT-driven program that pro-
motes carcinogenesis (Figure 1). This
non-exhaustive list of functions of the
EMT inducers likewise reflects only the
emerged part of the iceberg. As previously
mentioned, the EMT-promoting and fail-
safe program inhibition induced by ZEB1
requires different levels of protein expres-
sion (18). Furthermore, ZEB1 depletion
in SNAIL1-expressing cells radio-sensitizes
cells without affecting their commitment
into an EMT process (40), likely unveil-
ing a yet underestimated level of complex-
ity. No doubt novel functions involving
EMT-unrelated genetic programs induced
in different cellular settings and protein
expression levels will soon emerge as an
additional oncogenic weapon of these fac-
tors. Their common denomination as EMT
inducers will then be obsolete.
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