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Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide.
Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metas-
tasis to the bone and what causes osteoblastic lesions remain unanswered. A major
contributor to PCa metastasis is the host microenvironment. Here, we address how the
primary tumor microenvironment influences PCa metastasis via integrins, extracellular
proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progres-
sion, invasion, and metastasis. We discuss how the bone-microenvironment influences
metastasis; where chemotactic cytokines favor bone homing, adhesion molecules pro-
mote colonization, and bone-derived signals induce osteoblastic lesions. Animal models
that fully recapitulate human PCa progression from primary tumor to bone metastasis are
needed to understand the PCa pathophysiology that leads to bone metastasis. Better delin-
eation of the specific processes involved in PCa bone metastasize is needed to prevent
or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment
could add to the PCa pharmacopeia.
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FOREWARD
Prostate cancer (PCa), one of the most common non-skin cancers,
results in the death of over a quarter million men annually world-
wide (1) and 2.7% American men are estimated to die from this
disease in their lifetime (2). The majority of PCa deaths are due to
the development of metastatic disease, 80% of which is primarily
localized in the bone (3). Furthermore, PCa induces an osteoblas-
tic reaction within the bone, which is rarely observed with other
bone-metastatic cancers.

For the patient who presents with metastatic disease, as evi-
denced by bone lesions detected by X-ray or it is suspected based
on a high Gleason score, the first line of treatment after surgical
removal of the primary tumor is androgen-deprivation therapy
(ADT). The majority of prostate tumors require androgen for
their growth and survival (4). Thus, the initial metastatic tumor
burden in a patient can be essentially eliminated and they appear
to enter remission. But the unfortunate fact is that some subpop-
ulation of these cells either harbor or develop resistance to ADT
and the tumor rapidly regrows.

Despite lack of evident dependence on circulating androgen,
these castration-resistant tumors are still highly addicted to andro-
gen and/or its cognate receptor, AR (5–8). Evidence for this is pro-
vided by several observations. First, second generation enhanced
anti-androgen therapies, such as Enzalutamide, are effective, even
if only for a while, in patients who failed the first round of ADT
(5). Second, recent evidence indicates the tumor itself turns on

androgen synthesis, so it no longer needs circulating androgen (9,
10). The successful use of drugs, such as Abiraterone (11), that tar-
get enzymes in the androgen synthetic pathway are also effective,
again albeit for a short time, in patients who failed ADT. Third,
the retention, mutation, and amplification of AR that accompanies
ADT-resistant tumors indicate a heavy dependence on AR for the
survival and continued persistence of these tumors. Several muta-
tions in AR are known to confer enhanced function and include
binding to other steroids or deletion of the ligand binding domain
resulting in constitutive activation (12, 13). Fourth,AR could inde-
pendently enhance invasion and metastasis through non-classical
steroid receptor signaling mechanisms (14, 15). Currently, there
are no approved therapies available that address these latter two
events.

Development of additional therapeutic regimes to target
metastatic tumors remains severely limited by the lack of knowl-
edge about (1) what triggers PCa metastasis in the first place, (2)
why it displays such a predilection for the bone, and (3) why it
induces an osteoblastic bone phenotype. The molecular events
thought to be involved in these three processes share a common
theme; i.e., interactions with the host, often referred to as the
tumor microenvironment. Current approved therapies are highly
focused on targeting events occurring intrinsically in the tumor
and do not fully consider the contributions of the host. Thus, bet-
ter understanding of the host and tumor interactions that trigger
and drive metastatic processes could provide additional avenues
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for therapeutic intervention. In this review, we will discuss various
possible strategies by which PCa cell interactions with the sur-
rounding tumor microenvironment influence the development
of metastases, homing toward the bone, and the development of
osteoblastic lesions.

TUMOR MICROENVIRONMENT IN PROMOTING PROSTATE
CANCER METASTASIS
INTRODUCTION
It is widely accepted that the tumor microenvironment, or stromal
compartment, is biologically heterogeneous, consisting of various
cell types, such as fibroblasts, endothelial cells, and immune cells,
along with growth factors and cytokines, and numerous extra-
cellular matrix (ECM) components. Paracrine signals from these
factors released by the tumor activate signaling and gene expres-
sion in the neighboring cells and vice versa, ultimately setting up a
cycle of reinforcement and continued signal propagation. Interac-
tions between the cancer cells and this stromal compartment are
required for invasion, angiogenesis, and metastasis of cancer cells
to ectopic sites (16–18). The factors thought to drive the metastatic
progression of PCa and to play an important role in the interaction
of the tumor with its microenvironment are discussed below.

Olumi et al. (18), was the first to demonstrate the depen-
dency of PCa development on the underlying fibroblasts. It was
recognized that fibroblasts found near tumors, i.e., carcinoma-
associated fibroblasts (CAFs), were fundamentally different from
those in non-tumorigenic samples (19, 20). When CAFs isolated
from human PCa patients were mixed with initiated human non-
tumorigenic prostate epithelial cells, this was sufficient to initiate
tumorigenesis. Normal fibroblasts lacked this capacity, implicating
the importance of tumor-induced fibroblast effects feeding back
on the initiated tumor cells. In another study, prostate stromal
cells could replace Matrigel in LNCaP subcutaneous xenografts
to promote tumor growth. One effect of the stromal cells was
to promote angiogenesis (21). The stromal compartment of the
normal prostate gland is full of smooth muscle cells. However, in
PCa lesions, there was a dramatic loss of smooth muscle cells
that were replaced by cells displaying myofibroblast character-
istics, i.e., expression of Vimentin and increased production of
matrix remodeling enzymes like Collagen I and Tenascin (22).
This remodeling of the ECM and invasion of tumor cells into
the surrounding stromal compartment define a cancerous lesion,
as opposed to benign disease. The interaction of the prostate
tumor cells with the remodeled matrix and the contribution of
the tumor cells themselves to this process are critical first steps in
the movement of tumor cells out of their normal niche.

INTEGRINS IN PCa PROGRESSION
Integrins are a large family of cell-surface glycoproteins, which
form heterodimeric adhesion receptors. Integrins bind to a num-
ber of ECM components and regulate cytoskeletal organization
to maintain cell shape and facilitate migration. These interac-
tions also regulate cell survival, proliferation, adhesion, migration,
and invasion (23, 24). PCa initiation and progression is accom-
panied by preferential expression of integrin α6β1, reduction in
integrin α3β1, and complete loss of integrin β4 (25). Integrin α6,
a laminin receptor is associated with poor patient prognosis and

increased metastasis in a wide range of cancers (26, 27). In the nor-
mal prostate, integrin α6 complexed with integrin β4 is present at
the basal cell/stromal interface; however, loss of integrin polar-
ity occurs during progression of PIN to invasive cancer where
basal cells are lost and integrin α6 complexed with integrin β1
abnormally appears in the luminal-like compartment (28).

Integrin α6β1 was shown to play two major roles in PCa, pro-
moting cell survival and facilitating invasion and metastasis (28–
30). Within the normal prostate epithelium, integrin expression
is limited to the basal cells, being absent from the AR-expressing
luminal cells. However, during PCa development, integrin α6β1
becomes co-expressed with AR in the tumor cells (31). AR directly
binds the integrin α6 promoter and induces the expression of inte-
grin α6β1, while simultaneously decreasing integrin β4 expression
(29). Adhesion of PCa tumor cells to laminin to engage α6β1 pro-
moted AR-dependent survival of the cells. Survival was mediated
through AR-induced integrin α6β1 and subsequent activation of
NF-κB and Bcl-xL expression (29). This AR/α6β1 pathway was
active in metastatic cell lines, and elevated in castration-resistant
cells. Laminins are abundant in the bone microenvironment, with
Laminin-10 being the most highly expressed (32, 33), thus provid-
ing a mechanism for activating the integrin α6β1 survival pathway
in the bone. Elevated NF-κB activity plays a critical role in PCa
progression (34, 35). Another study demonstrated that secretory
proteins from prostate neuroendocrine cells activate NF-κB sig-
naling in the tumor cells, which in turn transcriptionally activates
AR in the tumor cells to promote castration-resistant cell growth
(36). The potential role of integrin α6β1 in this process remains to
be determined. It was previously shown that the integrin β1a vari-
ant is expressed in PCa tumors, while the β1c variant is present in
normal tissue (37). Signaling through the β1c variant was shown to
suppress p27kip, a major negative cell cycle regulator and tumor
suppressor known to be disregulated in PCa. Thus, a potential
α6β1a variant may contribute to PCa proliferation.

Integrin α6 remains the primary integrin expressed in lymph
node and soft tissue metastases, indicating high retention and
selection for this integrin during metastasis (38). Cleavage of
integrin α6 by uPA is associated with invasive PCa, the cleavage
product is detected in tumors but not in normal prostate tissue,
and promotes PCa cell invasion and migration on laminin (39, 40).
Furthermore, inhibiting integrin α6-mediated adhesion or cleav-
age delayed experimental lung metastasis (28, 41), reduced bone
growth in mouse femurs, and increased responses of metastatic
PCa cells to ionizing radiation (42, 43).

Laminin integrins like α6β1 and α3β1 associate with trans-
membrane scaffold and membrane organizing molecules called
tetraspanins (44). Tetraspanin KAI/CD82 was first identified as
a metastasis suppressor in PCa (45). Loss of CD82 in human
PCa correlates with poor prognosis, but by itself is not suffi-
cient to predict metastasis (46). Studies in PCa cell lines in vitro
demonstrate that CD82 is capable of suppressing integrin-based
functions including signaling, migration, and invasion (47–50).
CD82 regulates the internalization and turnover of integrins and
suppress integrin signaling through Met and Src (47, 48). Its role
in suppressing integrin functions was further validated in KO
mice. However, the dependency on integrins for its metastasis sup-
pressive functions did not prove to be valid (CKM, unpublished
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data). Furthermore, while restoration of CD82 to metastatic cells
suppresses metastasis, it loss in primary PCa is not sufficient to
induce metastasis in genetically engineered mice (CKM, unpub-
lished data). Thus, additional factors or as yet unidentified mecha-
nism is involved in CD82 suppression of metastasis. A more likely
target is its role in promoting cell–cell adhesion (51), discussed
further in the EMT section.

The importance of integrin α2β1 in PCa metastasis is also
emerging (31). Integrin α2β1 binds collagen, another major com-
ponent of the prostate basement membrane and bone microenvi-
ronment. Manipulation of integrin α2 expression in LNCaP cells
demonstrated a direct correlation between integrin α2 expression
and the ability to grow in the bone (52). RANKL expression in PCa
cells enhances bone metastasis. Integrin α2 integrin expression and
function was stimulated in PCa cells overexpressing RANKL (53).

Thus, many studies support the importance of integrins in PCa
development and progression by promoting, survival, prolifer-
ation, invasion, and metastasis. Targeting specific integrins and
their matrix interactions may provide a way to prevent metastatic
bone PCa.

PROTEASES IN PCa TUMOR INVASION AND METASTASIS
Breakdown of the basement membrane surrounding the prosta-
tic ducts and invasion of prostate cells into the stromal com-
partment defines the pathology of prostate adenocarcinoma.
Proteases that mediate basement membrane and stromal ECM

degradation are crucial for this process and represent the first
steps toward metastatic dissemination (Figure 1). Penetration
into and out of the vasculature and lymphatics similarly requires
proteases (54, 55).

Type II transmembrane serine proteases, like Matriptase and
Hepsin, which are important for normal epithelial tissue devel-
opment and repair, contribute to the breakdown of the basement
membrane in PCa (56). Hepsin is dramatically up-regulated in
PCa and represents one of the most highly overexpressed proteins
in PCa microarrays (57). Elevated Hepsin expression is associ-
ated with high Gleason score and poor clinical outcome (55, 58,
59). Hepsin overexpression in the prostate epithelium causes dis-
organization of the basement membrane and its overexpression
in PCa cell lines promotes lymph node metastasis (57). Hepsin
reportedly cleaves and activates pro-HGF produced by activated
fibroblasts within the stroma, thereby activating the receptor tyro-
sine kinase Met signaling pathway; a known activator of epithelial
cell scattering, migration, and invasion (60). However, it was also
reported that another Hepsin target is Laminin-5, a major com-
ponent of the prostatic basement membrane, which is lost during
PCa development (61).

Matriptase is expressed in many cancers and increased expres-
sion is seen in primary prostate tumors and metastatic lesions
(62–64). One of its reported targets is Laminin-5, deposited in the
prostatic duct basement membrane primarily by the basal epithe-
lial cells. Laminin-5 expression is lost in PCa, coinciding with the

FIGURE 1 | Interactions of PCa cells with an extracellular matrix
that is remodeled by cancer-associated fibroblasts, and soluble
factors and proteases released within the tumor microenvironment
induce EMT and subsequent invasion and dissemination of cancer
cells. In the primary tumor microenvironment, the epithelial cancer cells
are surrounded by the cancer-associated fibroblasts (CAF), pericytes,
and various extracellular matrix (ECM) proteins. This tumor

microenvironment produces various factors like TNFα, TGFβ, Wnt, and
HIF-1α which promote EMT via up-regulation of specific transcription
factors. EMT programing leads to a mesenchymal phenotype of the
cancer cells and with the help of various proteases (MMPs, Matriptase,
Hepsin), the cancer cells cleave the ECM, break away from the tumor
microenvironment and intravasate into the blood vesicles to travel to
distal organs.
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loss of its primary receptor, integrin β4 (65). Active degradation
combined with loss of secretion within the emerging PCa cells
likely accounts for the lack of Laminin-5 in PCa tumors. Whether
Laminin-10, another component of the prostate basement mem-
brane, which is not lost during PCa development, is also cleaved
by Matriptase or Hepsin is not known.

While Hepsin expression is apparently not controlled by AR,
both Matriptase expression and its cleavage is highly controlled by
androgen signaling (66). Rapid cleavage within minutes of andro-
gen stimulation, mediated by Src signaling, is followed by a more
long term increase in new Matriptase mRNA, thus providing a
mechanism for replenishing depleted pools. Because Matriptase
is essential for detachment of epithelial suprabasal cells during
skin differentiation (67), and the AR-positive luminal cells also
must detach upon differentiation, it is highly likely that Matrip-
tase is also important in prostate epithelial differentiation. That
AR, within the newly emerging luminal cells, can control integrin
expression and a protease that degrades basement membrane has
interesting implications about how AR contributes to preserving
a luminal phenotype and may promote loss of basal cells during
PCa development (68).

Two other proteases, which are known direct AR transcrip-
tional targets, PSA and TMPRSS2, are normally secreted into the
lumens of prostatic ducts (69, 70). However, due to loss of epithe-
lial polarization and invasion into stromal areas, these enzymes
are now also present within the tumor microenvironment (71).
Their relative importance in PCa development or progression has
remained largely undetermined.

The most extensively studied proteases linked with invasion
and metastasis are the matrix-metalloproteinases (MMP). MMPs
are involved in the degradation of the stromal ECM components
such as Collagen and Fibronectin (72, 73). In normal tissues,
MMPs play a major role in ECM remodeling involved in develop-
ment and tissue repair. Their misregulation contributes to many
disease states, including rheumatoid arthritis, pulmonary emphy-
sema, and tumor invasion and metastasis (74–77). Active MMPs
are secreted mainly from the cells in the tumor microenvironment,
such as connective tissue, fibroblasts, endothelial cells, osteoblasts,
macrophages, and neutrophils but also by cancer cells. Active
MMPs are used by cancer cells to invade the stromal compartment
both at the primary site and at metastatic sites (75, 76).

In PCa, MMP-2 and -9 are considered useful prognostic mark-
ers and these MMPs promote invasion and metastasis of PCa
cells (78, 79). Elevated levels of MMP-2/9 in serum or plasma
are correlated with high Gleason score (78–80). Overexpression of
MMP-1 promoted PCa cell invasion and experimental metastasis,
and inhibition of MMP-1 activity decreased PCa tumor growth in
mice, indicating the importance of MMP-1 in regulating PCa inva-
sion and metastasis (81). Induction of PCa invasion by MMP-9 is
mediated through cleavage and subsequent inactivation of the ser-
pin protease nexin-1 (PN-1). PN-1 is known to inhibit urokinase
plasminogen activator (uPA) and thus inhibits PCa progression
and metastasis (82). uPA and its receptor (uPAR) promote PCa
metastasis, as down regulation of uPA or uPAR inhibited PCa
cell invasion and metastasis (83, 84). When this is coupled with
the reported role of uPA in cleaving integrin α6 (39), it becomes
apparent how concerted efforts of proteases and integrin-based
cell adhesion work together to promote invasion and metastasis.

Attempts to therapeutically target the MMPs, as a whole class,
failed in clinical trials; resulting in worse outcomes (85). The lack
of specificity to specific MMPs and the unforeseen protective role
of some MMPs are thought to have contributed to the failure.
Thus, there has been much resistance to trying to identify specific
MMP inhibitors. On the other hand, preclinical testing of a small
molecule Hepsin inhibitor demonstrated it blocked PCa metas-
tasis in a genetic mouse model (57). Curcumin has the capacity
to inhibit androgen induced Matriptase activation and displays
anti-metastatic properties (86). Antibodies that block Matriptase
cleavage have been reported (87), and a natural protein product
produced by bacteria, Ecotin, is a natural Matriptase inhibitor
(88), either of which may offer a therapeutic advantage. More
work in defining the protease targets and mechanisms for inducing
invasion and metastasis is clearly warranted.

EPITHELIAL-MESENCHYMAL TRANSITION IN PROMOTING PCa
METASTASIS
The steps that lead to PCa metastasis (Figure 1) include degrada-
tion of the ECM, detachment of the cancer cells from the ECM as
well as their detachment from each other, migration toward and
subsequent entry into the blood or lymphatic system (89–91). The
machinery and signaling pathways used in these invasive events are
part of the normal wound healing response of epithelial tissues.
Upon tissue damage, a host of growth factors and cytokines are
released from the blood stream that activate the stromal fibroblasts
(PDGF, TGF-β), endothelial cells (VEGF, FGF, IL8), and epithelial
cells (HGF, TGF-β) to repair the tissue and fill in the wound (92).
Through these signals epithelial cells are forced to loosen their
matrix adhesions via activation of proteases and integrin signal-
ing, and are induced to migrate across matrix being remodeled by
the stroma. Some may even detach from each other to facilitate
filling in the wound. It is this latter event, loss of cell–cell adhesion
and depolarization of epithelial cells that is thought to trigger the
final conversion of primary cancer cells into metastatic ones. Once
loosened from the matrix and from each other, these cells are now
free to roam if they have acquired the proper mutations that allow
them to survive as non-adherent cells.

This process is referred to as epithelial–mesenchymal transition
(EMT), where the loosened epithelial cells take on the physical
properties of mesenchymal fibroblast-like cells (92). The clas-
sical marker of EMT is cadherin switching; where E-Cadherin
expression is lost and N-Cadherin is gained (89, 90). E-cadherin,
which promotes homotypic binding between two adjacent epithe-
lial cells, prevents the cancer cells from breaking away from each
other and reinforces tight junctions to preserve epithelial barrier
function and apical/basal polarity (90, 93). The metastasis sup-
pressor, tetraspanin CD82, promotes E-cadherin-based cell–cell
adhesion, and suppresses integrin-based migration (51). Loss of
this crucial regulator reduces cell–cell adhesion, while at the same
time promoting enhanced migration; thus, its loss would strongly
facilitate an EMT-like phenotype. Decreased CD82, E-Cadherin,
or β-catenin (the anchoring protein for E-cadherin) is associated
with poor PCa prognosis (23, 46, 94, 95). TGF-β is the most classi-
cal inducer of EMT, signaling through Smad family transcription
factors to induce the expression of the EMT-regulating tran-
scription factors Snail, Slug, Zeb-1, and/or Twist (96–100). These
EMT-associated transcription factors, through interactions with
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epigenetic regulators, control expression of genes involved in cell
polarity, cell–cell contact, cytoskeleton structure, and ECM degra-
dation (Figure 1), including repression of the E-cadherin gene
(101).

While EMT is well-established in several other epithelial cancer
types, its specific role in PCa remains controversial. This is com-
plicated by the histological data demonstrating that PCa remains
very epithelial-like in both primary tumors and in metastatic tis-
sues; expressing E-cadherin and other classical prostate epithelial
markers (94, 102). Yet, a few isolated tumor cell lines, especially
those that have lost AR expression, readily adapt EMT pheno-
types and are relatively invasive and metastatic (102–104). The
necessary presence of AR in PCa tumors, which drives a luminal
differentiation phenotype may make the conversion to EMT a rel-
atively difficult process (103). It might explain the long latency for
conversion of primary PCa to metastatic disease (105). The het-
erogeneous display of EMT phenotypes in PCa and other human
tumor samples, has fueled the hypothesis that EMT is a transient
process necessary for escape and dissemination, that reverses back,
i.e., MET (mesenchymal epithelial transition) when cells reach
their distant sites. A study that tested this hypothesis using a Tet-
inducible model, demonstrated that transient induction of EMT
was required for the migration of squamous carcinoma cells out
of the skin into the blood stream, and subsequent shut off was
required to establish metastatic tumors in the lung (106). If this
happens in PCa is not clear, and the factors that drive it are even
less clear.

The soluble factors that are secreted into a wound by physical
disruption are the same factors present in the tumor microen-
vironment. Transforming growth factor-β (TGF-β) is a potent
inducer of EMT and is released by many cellular components of the
tumor microenvironment. However, the ability of primary tumors
to respond to TGF-β is hindered by the normal growth inhibitory
effects of TGF-β signaling, and thus the tumor cells typically block
this pathway. So the cells must find ways to reactive some aspect
of TGF-β signaling that doesn’t cause growth suppression or find
other indirect ways to stimulate EMT. One study suggested that
direct cell–cell contact between tumor cells and platelets synergis-
tically cooperated with TGF-β, to directly activate NF-κB signaling
in the tumor cell to promote EMT and metastasis (107).

Inflammation induced during wound healing and in tumors
also impacts the behavior of tumor cells. Many studies have
demonstrated that wounding is a tumor-promoting event, espe-
cially chronic wounding where inflammation is high (92). The
role of inflammation in PCa initiation was originally identified
histologically by the presence of prostate inflammatory atrophy
(PIA) in tumor samples (108). Recent mouse studies demon-
strate that prostatic inflammation induced by prostitis, enhances
basal-to-luminal differentiation and accelerates the initiation of
PCa (109). Two sources for inflammatory signaling in PCa have
been proposed, the stromal cancer-associated fibroblasts (110)
or mesenchymal stem cells (111). A recent study highlighted the
importance of adipocytes in inducing inflammatory responses in
PCa cells within the bone through the lipid chaperone FABP4,
triggering IL-1β expressing and oxidative stress protein HMOX-
1 (112). Other studies proposed the inflammatory responses in
PCa are mediated through NF-κB signaling (113). Inflammatory

cytokines like TNFα and interleukins produced by both tumor
cells and surrounding cells (114) activate NF-κB signaling and
one consequence of this is the release of TGF-β (115, 116).

Non-TGF-β pathways can also activate EMT. TNFα can act
independently of TGF-β to induce EMT by repressing GSK-
3β, activating the AKT pathway, and stabilizing Snail (117–119).
Wnt signaling also stimulates EMT in PCa cells. Expression of
SOX2 induces EMT, and this was shown to be mediated by
SOX2 binding to and activating β-catenin (120). The PCa-specific
fusion and oncogene, TMPRSS2-Erg, enhances cell invasion (121,
122). Manipulation of the fusion gene in VCaP cells, altered
Frizzled4 (Fzd4) expression (123). Fzd4 signaling promoted cell
adhesion-related EMT phenotypes in VCaP cells. HIF1α, acti-
vated under hypoxic conditions, promotes aggressive tumor cell
invasion and metastasis (124, 125). Overexpression of HIF1α in
some PCa tumor cell lines promoted EMT that was dependent on
β-catenin (126).

Further demonstration that EMT/MET phenotypic conver-
sions are essential for the progression and metastasis of PCa to the
bone is highly warranted. While current mouse models have been
effective at defining specific molecular events occurring within
the primary tumor or bone-resident tumors, the process whereby
a confined prostate tumor is converted to a metastatic bone tumor
has not been adequately modeled. The models do not currently
reflect what is observed in human patients; i.e.,AR-positive epithe-
lial cells that migrate to and take up residence in the bone to
induce an osteoblastic bone reaction. Understanding the specific
genetic and epigenetic alterations that promote EMT-like phe-
notypes in PCa will be important to understanding the switch
between indolent and lethal PCa, improving staging and prognosis
of PCa patients and preventing over treatment.

TUMOR MICROENVIRONMENT IN PROSTATE CANCER BONE
HOMING AND COLONIZATION
SECRETED FACTORS IN PCa BONE HOMING
Different types of cancers develop metastases in very specific
organs. Several secreted factors have been proposed to promote
organ-specific homing (Figure 2). A few of these chemotactic
signals can attract cancer cells toward the bone. Conditioned
media from osteoblasts differentiated in vitro served to induce
migration and invasion of breast and melanoma cells, indicating
osteoblasts secrete potent factors that can induce metastasis to the
bone (127, 128). Osteonectin, a purified active factor from the
bone, promoted invasion of bone-metastatic cancer cells, but not
the non-bone-metastatic cancer cells indicating that bone possess
chemotactic factors that can promote tissue-specific homing of
cancer cells (129). It was demonstrated that osteoblast conditioned
media containing higher amounts of TGF-β promoted chemotaxis
and invasion of PC3 cells. Given the abundance of TGF-β in the
bone environment, it could act as a chemo-attractant of PCa cells
to the bone (130).

Chemokines and cytokines have chemo-attractant properties
that play an important role in the cancer cell proliferation, sur-
vival, and gene transcription. Chemokine receptors are involved
in many processes of cancer metastasis (131, 132). Mice bear-
ing autoimmune arthritis have higher incidence of breast cancer
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FIGURE 2 | PCa cells home to bone by chemo-attractants and
colonize through direct association with osteoblasts, where the PCa
cells secrete factors that promote osteoblastic responses and the
osteoblasts reinforce tumor cell survival and growth. Expression of
various chemo-attractants (Osteonectin, TGFβ, CXCL12, VEGF) guide PCa
cells to extravasate and home toward the bone. Once in the

bone-microenvironment the cancer cells interact with bone-forming
osteoblasts via Cadherin-11. Factors like BMP, ET-1, Wnt, or PDGF,
secreted from the cancer cells promote the proliferation and
differentiation of osteoblasts. In turn the bone-microenvironment
secretes soluble factors like FGF, IGF, and TGFβ to promote tumor cell
survival and proliferation.

metastasis to the bone, which was proposed to be due to the pres-
ence of higher amounts of circulating levels of pro-inflammatory
cytokines in these autoimmune arthritic mice (133).

The chemokine receptor, CXCR4, and its ligand CXCL12/SDF
are widely studied in PCa bone metastasis (134, 135). In bone mar-
row, CXCL12 is expressed in osteoblasts, fibroblasts, and endothe-
lial cells (136). Blocking CXCR4 in PCa cells using neutralizing
antibody inhibited the dissemination and colonization of PCa cells
in mice tibia following intra-cardiac injection (135). Akt1 report-
edly induces the expression of CXCR4 in PTEN-null PCa cells, and
overexpression of Akt-1 promoted intra-tibial tumor growth of
PCa cells (137). These results indicate that Akt-1 might be induc-
ing the CXCR4/CXCL12 axis and thus promoting PCa metastasis.
PCa cells home toward areas in the bone marrow rich in osteoblasts
where the hematopoietic stem cell (HSC) niche resides. In fact,
PCa cells can bind to and displace mouse HSCs from the niche.
Furthermore, the cancer cells egress out of the HSC niche into
the blood when CXCR4 signaling is blocked by AMD3100 (138).
These findings suggested that the CXCL12/CXCR4 axis is impor-
tant for chemotaxis of PCa cells to the bone. However, inhibiting
CXCR4 with CTCE-9908, a drug approved by FDA for osteosar-
coma, inhibited spleen, liver, and lymph node metastasis of PCa
cells, indicating CXCR4 may be a common metastatic factor, rather
than one that is bone specific.

ECTOPIC SITE PRE-REMODELING
The famous “Seed and Soil” hypothesis, put forward more than
100 years ago by Dr. Stephen Paget, was used to explain why differ-
ent types of cancer preferentially metastasize to different specific
tissues. The theory proposed that distant organs, like the bone,pro-
vide a preferred “fertile soil” for cancer cells, and the cancer cells
were preferentially attracted to that tissue. However, Isaiah Fidler’s
group demonstrated that tumor cells were present in vasculature
of all the organs, yet metastasis only developed in certain organs

but not in others (139, 140). David Lyden’s group put forward the
pre-metastatic niche model, where remodeling of only the pre-
ferred ectopic site(s) for metastasis occurs much earlier, before the
cancer cells even break away from the primary tumor (139).

The niche remodeling events, mediated by soluble factors acting
on non-cancer cells, govern the route of dissemination of can-
cer cells to a specific microenvironment. They demonstrated that
bone marrow-derived hematopoietic progenitor cells expressing
VEGF receptor 1 (VEGFR-1), homed to the specific metastatic
sites through integrin α4β1. At the same time, the tumor cells
secrete factors that induce the fibroblasts within the pre-metastatic
niche to secrete Fibronectin, an α4β1 ECM ligand. The VEGFR1-
positive cells then promote chemo-attraction and adherence of
circulating tumor cells (141). Consistent with this idea, Hirut-
suka et al. (142) demonstrated in a mouse model of melanoma
metastasis that VEGF-A, TGF-β, and TNF-α released from the pri-
mary tumors induced the expression of chemokines in the lung
parenchyma but not in other organs. In another study, persis-
tent STAT3 activation was detected in distant organs such as the
lung before tumor cell arrival. S1PR1–STAT3 up-regulation in
tumor cells induced S1PR1–STAT3 at these distant sites and in
myeloid cells. Ablation of STAT3 in the myeloid compartment
inhibited STAT3 activity in the lungs, inhibited formation of pre-
metastatic niche, and inhibited lung metastasis (143). Whether a
similar pre-metastatic niche remodeling and non-tumor cell sig-
naling governs PCa bone metastasis is not known. However, a
past study demonstrated enhanced bone metastasis of orthotopic
xenografted human cell lines upon androgen ablation (144). ADT
in human PCa patients induces bone loss that is often corrected by
bisphosphonates (145). Similarly, castrated mice lose bone mass
(146). The full contribution of ADT to pre-metastatic niche con-
ditioning, bone metastasis, osteoblastic reactions, or emergence of
castration-resistant disease, as a result of bone-microenvironment
interactions needs further investigation.
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ADHESION MOLECULES IN PCa COLONIZATION
Several studies have suggested that the choice of metastatic organ
is not necessarily dictated at the time tumor cells escape the tumor
and end up in the circulation. Circulating tumor cells can be
found in patients who do not have or do not develop metasta-
tic disease (147). Furthermore, tumor cell entry is not restricted
to specific organs, majority of circulating tumor cells extrude
into tissues (147, 148). A PCa study demonstrated that 50% of
the patients with primary tumors had circulating tumor cells as
well as tumor cells lodged in the bone (149), yet only 12–13%
of these patients ever develop metastatic disease. Thus, additional
events are required for the tumor cells to grow and colonize the
metastatic site.

Cadherin-11, commonly known as osteoblast cadherin, is pri-
marily found in osteoblasts, with very low but detectable expres-
sion in brain, testis, and lung (150, 151). It is an adhesion molecule
that mediates many steps of osteoblast maturation (150, 151).
Cadherin-11 expression is increased in metastatic PCa compared
to primary tumors but is not present in normal prostate tissue.
Furthermore, elevated Cadherin-11 was found in human PCa
bone metastasis relative to lymph node metastasis (152), indi-
cating cadherin-11 is specifically associated with bone metastasis.
Cadherin-11 may mediate the binding of cancer cells to osteoblasts
(Figure 2). Such binding might also promote cross talk between
cancer cells and osteoblasts and induce osteoblastic lesions. Intra-
cardiac injection of PC3 cells expressing Cadherin-11-specific
shRNA displayed a significant decrease in bone metastasis com-
pared to the control cells (152). PCa cells derived from bone
express high levels of cadherin-11, and expression of cadherin-
11 in PCa cells promoted PCa cell invasion and migration and
increased the adhesion and intercalation between osteoblasts in
an in vitro culture model (153). Another group demonstrated
that bone-tropic MDA-MB-231 breast cancer cells also express
high levels of cadherin-11 compared to brain-tropic MDA-MB-
231 cells. Thus, cadherin-11 is likely an important determinant of
bone-tropism in cancer cells (154).

TUMOR MICROENVIRONMENT IN PROMOTING
OSTEOBLASTIC LESIONS
Breast cancer metastasis is usually osteolytic (bone degrading);
however, PCa is osteoblastic, i.e., leading to new bone formation
(155, 156). It has been reported that some colon and cervical can-
cers are also osteoblastic (157). The exact mechanisms by which
osteoblastic versus osteolytic metastases occur is still unclear.
However, the differences are likely to reside in the differential inter-
action of tumor cells with the bone microenvironment. Bone,
a dynamic connective tissue is constantly remodeling during an
individual’s lifetime. The process of remodeling is dependent on
two cells types, osteoblasts and osteoclasts, both of which work in
harmony to maintain the normal bone. Osteoblasts derived from
mesenchymal stem cells in the bone marrow, make new bone.
Whereas osteoclasts, which are modified macropages derived from
monocytes, degrade bone (84). During osteoblastic metastasis, the
bone remodeling favors bone formation over resorption.

FACTORS THAT INDUCE OSTEOBLASTIC BONE METASTASIS
The number of osteoblasts surrounding PCa cells is increased in
osteoblastic bone metastasis (155). However, the newly formed

bone is weak and fragile, lacking mechanical strength. These
bones are composed of randomly orientated and loosely packed
collagen bundles, resulting in weak bone strength and fre-
quent fracture (158). Furthermore, the excessive bone growth
disrupts the bone marrow compartment, reducing immune
function. Many factors can induce the growth and differen-
tiation of osteoblasts and their precursors (Figure 2). Tumor
cells secrete many of these factors, and thus may actively pro-
mote osteoblastogenesis.

Bone morphogenetic proteins
Bone morphogenetic proteins are members of the TGF-β super-
family and various isoforms of BMP promote both prostate and
breast cancer metastasis (159, 160). One major source of BMP
expression appears to be from the tumor cells. Elevated expres-
sion of both mRNA and BMP-6 protein is detected in primary
PCa tissues and in PCa cell lines (161, 162). BMPs could influ-
ence metastasis by acting directly on the tumor cells or through
their effects on the bone microenvironment. For instance, BMP-2
induces resistance to apoptosis due to hypoxia (163) and promotes
breast cancer cell invasion and migration (164); whereas, BMP-6
promotes migration and invasion of PCa cells (161). BMP-2 and -7
stimulated cellular migration and invasion of PCa cells (165), and
BMP-6 acting through Smad signaling directly induced the tran-
scription of extracellular proteases such as MMP-1 and 9, required
for invasion (159).

Findings from genetically modified mice demonstrate that the
normal role of BMPs in the bone is to induce the differentia-
tion of osteoblasts (166, 167). For example, BMP-7 knockout mice
have smaller skeletons and reduced mineralized bone (168). The
ability of BMP-7 to control bone mineralization or osteoblast dif-
ferentiation can be attributed to the induced expression of crucial
differentiation factors, Runx2 and Osterix, in bone stromal cell
precursors (169, 170). High BMP-7 expression was detected in
PCa-induced bone lesions, while its expression in primary tumors
is low (155, 171). However, its exact role in promoting osteoblastic
vs. osteolytic lesions remains controversial. Nonetheless, BMP-7
produced by tumor cells has the potential to impact osteoblast dif-
ferentiation within PCa bone lesions. The most intriguing aspect
of BMP-7 is that while its expression is controlled by androgen and
it is required for normal prostate development, the most elevated
BMP-7 expression was observed in castration-resistant tumors
within the bone (171). However, BMP-7 expression in prostate
bone tumors appears to be largely growth suppressive and may
promote PCa cell dormancy (172).

Elevated BMP-6 expression is also associated with PCa bone
metastasis (159). BMP-6 produced by cancer cells was able to
induce mineralization of M3T3 pre-osteoblasts, and blocking
BMP-6 activity reduced osteolastic lesion formation by LuCaP 23.1
cells in vivo (161). Two studies demonstrated that Wnt5a or Wnt3a,
generated by bone stroma cells, induces the expression of BMP-6 in
PCa cells (173, 174). This was mediated by non-canonical JNK and
canonical β-catenin signaling pathways, respectively (174). The
induction of BMP-6 by Wnt5A secretion occurred in the absence
of androgen and promoted androgen-independent growth of
the tumor cells (173). Interestingly, in a recent patient-derived
bone xenograft model, transplantation of human bone-metastatic

www.frontiersin.org December 2014 | Volume 4 | Article 364 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

tumors into the bone, but not in the skin, resulted in castration-
resistant tumor growth (175). Thus, the bone microenvironment
has a high capacity to influence PCa treatment. The BMPs secreted
by PCa cells through Wnt signaling, in turn induce the differ-
entiation of osteoblasts. For instance, BMP-4 produced by PCa
cells promoted osteoblast differentiation of mouse stromal cells,
as measured by the production of alkaline phosphatase, osteocal-
cin, and collagen type II. At the same time, BMP-4 also stimulated
the production of sonic hedgehog (Shh) by the tumor cells (176).
Shh stimulated Smad1 and BMP receptor expression in the mouse
stromal cells, which enhanced their response to BMP-4. The ability
of Shh to induce osteoblast differentiation was promoted by colla-
gen production and was Gil1-dependent, but Runx2-independent
(177, 178). Thus, BMPs and Shh cooperatively provided cues for
the growth of PCa cells and the differentiation of bone stromal
cells. All these results indicate that BMPs and Shh from the PCa
cells play an important role in inducing osteoblast differentiation
from bone stromal cells, and thus likely contribute to osteoblastic
bone phenotypes.

Endothelin 1
Endothelin 1, a potent vasoconstrictor along with other family
members ET-2 and ET-3, is produced by the vascular endothe-
lium. Plasma levels of ET-1 are elevated in several types of cancers,
including PCa (179). ET-1 inhibits PCa cell apoptosis via enhanced
Bcl-2 family member expression and PI3K/Akt activation (180). In
ovarian carcinoma cell lines, ET-1 promotes invasion via the acti-
vation of extracellular proteases like MMP-1 (181). In addition
to promoting cancer metastasis, ET-1 promotes osteogenic prop-
erties; ET-1 null mice exhibit hypoplasia of facial bones (182).
ET-1 is a potent mitogenic factor of osteoblasts and patients with
osteoblastic bone lesions have increased serum levels of ET-1 (171,
183). Elevated ET-1 might contribute to osteoblast proliferation
and differentiation (184–186).

In clinical trials, atrasentan (endothelin A receptor antagonist)
suppressed bone remodeling in castration-resistant metastatic
patients (187). However, atrasentan in combination with doc-
etaxel, a chemotherapeutic agent, did not improve progression-
free survival in castration-resistant bone-metastatic patients (188).
One of the potent pathways by which ET-1 promotes osteoblast
activity is through the activation of Wnt signaling via the
inhibition of the Wnt suppressor DKK1 (189). ET-1 inhib-
ited DKK-1 expression, but also increased the expression of
Type 1 collagen, a predominant protein constituent of bone
matrix (185, 189).

Wnt
Wnts constitute a family of 19 secreted glycoproteins, whose dys-
regulation plays an important role in the progression of many
cancers including breast, gastric, prostate, melanoma, and glioblas-
toma (190, 191). Wnt ligands bind to a seven-pass transmembrane
receptor composed of Lrp5/6 and frizzled genes to transduce sig-
nals to the cytoplasmic protein Disheveled (Dsh). Dsh blocks
GSK-β to inhibit β-catenin phosphorylation, by disrupting the
β-catenin/Axin complex, leading to β-catenin stabilization, and
its nuclear translocation to interact with TCF/LEF transcrip-
tion factors (192, 193). Loss of APC activates the Wnt pathway

by stabilizing β-catenin. Loss-of-function of APC mutations is
common in many cancers (193–195). Increased nuclear β-catenin
expression correlated with advanced, metastatic, and hormone-
refractory prostate carcinoma (196). Upregulation of the Wnt
pathway by means of increased Wnt secretion, decreased expres-
sion of inhibitors such as APC, sFRP, DKK1, or Wif1, or constitu-
tive activation of β-catenin, induces the activation of downstream
target genes like c-Myc, c-Jun, and various other genes important
in both cancer development and metastasis (91, 192, 193). MMP-
14, which promotes invasion and metastasis of cancer cells, is also
a direct target of β-catenin/TCF signaling (197). The exact mech-
anisms that lead to elevated β-catenin in PCa are not clear, but it
is not usually due to APC mutation (194).

Within the bone, Wnt signaling promotes osteoblast differenti-
ation by directly stimulating Runx2 expression in osteoblasts both
in vivo and in vitro (198). Wnt signaling also stimulates BMP-2
expression, inducing the trans-differentiation of non-osteogenic
cells into osteoblasts (199). Wnt signaling may contribute to the
osteoblastic phenotype. Blocking DDK1 expression in PC3 cells,
which releases the block on Wnt signaling, switched the normal
osteolytic phenotype induced by PC3 cell to osteoblastic. Con-
versely, overexpressing DKK-1 in C4-2B cells converted the normal
mixed lesion to an osteolytic lesion (200). Thus, Wnt signaling
contributes to PCa osteoblastic bone lesions. Further investiga-
tions in the specific components of the Wnt pathway involved,
and determining if they also contribute to metastasis per se will be
important.

Platelet-derived growth factor
Platelet-derived growth factor, a potent growth factor which plays
an important role in tumor progression, consists of disulfide-
bonded homodimer polypeptide chains of A, B, C, D, and het-
erodimer AB (201). Aberrant signaling through PDGF receptors
promotes progression of many tumors, including PCa. PDGFRβ,
which is frequently activated in bone-metastatic PCa patients, is
activated both by PDGF-B and PDGF-D (202). PDGF-D, which
promotes PCa cell proliferation and tumor growth, is overex-
pressed in prostate tumors with increasing Gleason score (203).
Furthermore, PDGF also stimulates the interaction of PCa cells
with bone stromal cells. In the bone microenvironment, PDGF
is synthesized by platelets, macrophages, osteoclasts, endothe-
lial cells, and all cells differentiating from mesenchymal stem
cells, including pericytes, and osteoblasts (204). Thus, PDGF has
the potential to act as a central connector for many interac-
tions within the bone microenvironment that influence tumor
growth. Blocking PDGF receptor signaling inhibits the growth
of human breast and pancreatic cancer in bones (205, 206),
and subsequently reduces bone resorption. However, a phase
I clinical trial with a potent PDGFR inhibitor, imatinib mesy-
late in combination with docetaxel, in castration-resistant PCa
patients with bone metastasis did not show any improvement in
the median progression-free survival of patients, as compared
to docetaxel alone (207). However, imatinib mesylate inhibits
many other kinases, like Abl and c-Kit (208). Whether PDGFR
inhibitors in combination with the second generation anti-
androgens, Enzalutamide or abiraterone, will be more effective
should be investigated.
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FACTORS RELEASED FROM THE BONE MICROENVIRONMENT
Transforming growth factor-β
Transforming growth factor-β is one of the most abundant
cytokines which induces osteoblast proliferation but inhibits its
differentiation (209, 210). The effects of TGF-β on osteoclasts
are controversial. Most of the studies investigating TGF-β in can-
cer bone metastasis have focused on osteolytic bone metastasis
of breast and cancers other than PCa. A “vicious cycle” model
has been proposed to explain TGF-β signaling and osteolytic
bone metastasis. TGF-β, signaling through Gil2, in a Hedge Hog-
independent manner, stimulates the expression of parathyroid
hormone-related protein (PTHrP), which activates osteoclasts
(211). In turn, more TGF-β is released after bone resorption, which
further enhances cancer growth and osteoclast activation, initiat-
ing a “vicious cycle” (212, 213). Inhibition of TGF-β decreases
osteolytic lesions induced by breast and melanoma cancer cells in
mouse tibia (214–216). In the first report on the role of TGF-β in
PCa bone metastasis, it was found that loss of TGF-β responsive-
ness in the fibroblasts induced the up regulation of CXCL16 and
CXCL1, which promoted PCa cells adhesion to the bone matrix,
and promoted mixed (osteoblastic/osteolytic) metastatic lesions
(217). Thus, it will be important to further investigate the cell-
specific role of TGF-β in the bone microenvironment on PCa
osteoblastic bone metastasis.

Insulin-like growth factor
High serum levels of insulin-like growth factor are associated with
higher risk of breast, prostate, and colorectal cancer. Signaling
through IGF1R promotes cell proliferation, apoptosis, and inva-
sion of cancer cells; which are all integral steps in cancer metastasis
(218). For example, inhibition of IGF-1R diminishes the invasion
of PCa cells and also inhibits expression of MMP-2, an extracellu-
lar protease necessary for invasion (219). The ability of IGF-1 to
induce PCa cell proliferation and survival is dependent on loss of
Pten, a tumor suppressor commonly lost in PCa (220). However,
IGF is another important coupling factor in the bone, activat-
ing both bone formation and resorption. IGF, which promotes
proliferation, invasion, and metastasis of cancer cells is released
during bone resorption (84). One interesting study showed that
neutralizing antibody to IGF, but not antibody to TGF-β, FGF, or
PDGF, blocked the breast cancer anchorage-independent growth
induced by resorbed bone extract; further supporting a unique role
for IGF-1 in bridging the cross talk between the bone microenvi-
ronment and the cancer cells (221). Bone-derived IGF promoted
bone metastasis of breast cancer cells by stimulating prolifera-
tion and inhibiting apoptosis of cancer cells (221). Elevated IGF-1
receptor expression in the stroma surrounding clinical PCa sam-
ples correlates with high Gleason score (222). Thus, IGF-1 released
from the bone could stimulate the stroma to support PCa growth.
Indeed, blocking IGF-1 and IGF-1 receptor inhibits PCa growth
in the bone and reduced the osteoblastic bone formation. Thus,
IGF-1 signal inhibition could be strategy for limiting PCa bone
metastasis.

Fibroblast growth factor
Fibroblast growth factor, a family of ubiquitously expressed and
secreted factors, regulates processes like development, wound

healing, and neoplastic transformation through mitogenesis and
angiogenesis. Increased expression of some growth factors from
the FGF family and their receptors are reportedly associated with
PCa progression. Aberrant activation of FGF receptors (FGFR)
induces the activation of downstream targets like PI3K, MAPK,
and STAT3, all of which play an important role in the progression
of PCa (223–225). One of the FGF family members, FGF-1 (acidic
FGF) is expressed in a majority of PCa and its expression is asso-
ciated with high Gleason score (226). Levels of FGF-2 (basic FGF)
and FGF-6 are also elevated in PCa tissues as compared to normal
(227, 228). In one transgenic mouse model, FGFR1 overexpres-
sion led to PIN (229), but in another model, activated FGFR1
promoted adenocarcinoma and metastasis to lymph nodes and
liver (230). FGF may promote PCa metastasis via regulation of cell
survival (231). PCa bone metastases express FGF-8 and/or FGF-9,
and both of these FGFs are reported to promote osteoblast differ-
entiation and new bone formation (232–234). FGF-9 expression
is also associated with high Gleason score and neutralizing anti-
body against FGF-9 inhibited bone formation and bone lesions in
mice (232, 235). On the other hand, other family members, like
FGF-7 and FGF-10, are required for normal differentiation of nor-
mal prostate epithelial cells (236). Nonetheless, overexpression of
FGF-7 in a transgenic mouse prostate epithelium led to PIN (237),
and overexpression of FGF-10 in the mesenchyme in the prostate
regeneration mouse model was sufficient to induce multifocal PIN
had low-grade PCa (238). Thus, the context and level of FGF
signaling may differentially impact PCa development and progres-
sion. The mechanisms that underlie the differential expression of
FGF members and their respective receptors to promote or inhibit
PCa growth in different microenvironments, and the cellular
constituents upon which it acts need to be better resolved in PCa.

CHALLENGES THAT REMAIN
The high dependence of host environmental factors on metasta-
tic processes necessitates the use of animal models to clarify
and demonstrate that dependency. The most commonly used
model is the mouse, which has a physiology and prostate organ
structure that is significantly different from human. Nonethe-
less, valuable insight can be gleaned from the proper models.
Unfortunately, for PCa researchers many of the current mouse
models fail to fully recapitulate human disease progression; i.e., an
AR-dependent tumor growing in the prostate gland that spon-
taneously metastasizes to the bone to from an AR-dependent
osteoblastic cancer.

Models using genetic introduction of known PCa-associated
mutations into the mouse genome, rarely metastasize to the bone.
The few models that do are neuroendocrine or use mutations not
reported to be present in human disease. Nonetheless, one uni-
fying theme in the models that do produce significant metastases
is the abrogation of p53. While p53 loss is reported in <20% of
metastatic PCa tumors, other mutations that indirectly alter p53
function remain a strong possibility. Another tumor suppressor,
Pten, whose homozygous loss strongly correlates with metastatic
progression in human cancer, but whose loss alone in the mouse
does not lead to metastatic bone disease, may also contribute to
metastasis. Interestingly, both p53 and Pten impact chromosomal
stability (239), disruption of which is thought to be necessary
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for the selection of genetic variants within the tumor that even-
tually evolve the capacity to metastasize. Recent studies suggest
that EMT-associated transcription factors suppress p53 signal-
ing and impact DNA repair; thus, linking disease progression by
the tumor microenvironment with chromosomal instability (106).
Identifying the factors that specifically lead to chromosomal insta-
bility, the genetic alterations within PCa that promote metastasis,
and how the tumor microenvironment influences this, has the
potential to significantly increase our understanding of metastatic
conversion in PCa.

Several metastatic PCa cell lines isolated from bone metastases,
either from human samples or mouse xenografts (VCaP, C4–2,
PC3), retain high capacity to grow when implanted directly into
the bone, or in a few cases when injected into the heart. Two
PCa lines, one isolated from the brain, DU145, and one from
ascites, ARCaP, can also grow when implanted in bone; how-
ever, the LNCaP line isolated from a lymph node grows poorly
in the bone. Most of them, when implanted orthotopically in the
prostate, do not metastasize to the bone; though some make it
to the lung. ARCaP was reported to metastasize to the bone after
orthotopic injection (240). This was accompanied by EMT con-
version. Only a few of these, when implanted in the bone, make
osteoblastic lesions (DU145, C4–2, ARCaP). Thus, whatever prop-
erties these cells once had in the human host that permitted their
full metastatic progression in humans has been lost. Furthermore,
at least 3 of these lines, PC3, DU145, and ARCaP express AR at
such low levels they do not use the AR-regulated pathways seen in
over 90% of human PCa metastases. The LuCaP series of human
xenografted and SubQ-passaged tumors (241), isolated primarily
from soft tissue metastases and still expressing AR, can grow and
form osteoblastic lesions when implanted in the bone. Removal
of primary LuCaP tumors following orthotopic injection, allowed
the development of micrometastases to lymph nodes and soft tis-
sues (242), but not bone. Thus, these studies indicate that many
PCa tumor cell lines, whether they originally came from bone or
not, have a high capacity to grow in bone. However, they all lack
the ability to home to bone from the prostate, and their capac-
ity to induce osteoblastic lesions is variable. Developing human
lines or mouse models that can display the full metastatic progres-
sion, either through selection or genetic manipulation, remains the
Holy Grail for understanding PCa metastasis and having models
that can be used for effective therapy development and testing.

CONCLUSION AND PERSPECTIVES
Metastasis is the major cause of PCa death. Understanding how
cancer cells metastasize toward the bone is needed to design drugs
that prevent or interfere with PCa metastasis. Many studies sug-
gest that EMT transcription factors drive the initial phases of
PCa metastasis, although the events, either within the tumor or
contributed by the tumor microenvironment, that trigger EMT
specifically in PCa are still not known. Overexpression of EMT
transcription factors, in conjunction with responses to host-
derived chemotactic factors, might lead to PCa-specific homing
and metastasis to the bone. Once PCa is disseminated in the
bone, the cross talk between the bone microenvironmental fac-
tors and the PCa tumor cells contribute to the establishment of
osteoblastic lesions. The factors mediating this cross talk and their

signaling pathways need to be further delineated to ultimately halt
the progression of metastatic lesions in the bone. The develop-
ment of better animal models that fully recapitulate the metastatic
process as seen in human disease is paramount to deciphering the
molecular events associated with PCa metastasis.

AUTHOR CONTRIBUTIONS
Dr. Sourik S. Ganguly drafted, helped revise, and designed the
figures for the manuscript. Dr. Xiaohong Li revised and pro-
vided intellectual content. Dr. Cindy K. Miranti revised, provided
intellectual content, and finalized the manuscript.

ACKNOWLEDGMENTS
We wish to thank Alexandra Vander Ark for her editorial com-
ments. Writing of this article was supported by the National Cancer
Institute of the National Institutes of Health under award number
CA154835 (Cindy K. Miranti), Department of Defense Prostate
Cancer Research Program Award number W81XWH-12-1-0271
(Xiaohong Li), and by the Van Andel Research Institute and Pro-
gram for Skeletal Disease and Metastasis. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

REFERENCES
1. Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. Inter-

national variation in prostate cancer incidence and mortality rates. Eur Urol
(2012) 61(6):1079–92. doi:10.1016/j.eururo.2012.02.054

2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin
(2013) 63(1):11–30. doi:10.3322/caac.21166

3. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal
morbidity. Clin Cancer Res (2006) 12(20 Pt 2):6243s–9s. doi:10.1158/1078-
0432.CCR-06-0931

4. Hoimes CJ, Kelly WK. Redefining hormone resistance in prostate cancer. Ther
Adv Med Oncol (2010) 2(2):107–23. doi:10.1177/1758834009356433

5. Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after
androgen deprivation therapy: mechanisms of castrate resistance and novel
therapeutic approaches. Oncogene (2013) 32(49):5501–11. doi:10.1038/onc.
2013.206

6. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi
T. Amplification and overexpression of androgen receptor gene in hormone-
refractory prostate cancer. Cancer Res (2001) 61(9):3550–5.

7. Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, Verleun-Mooijman MC,
Trapman J, Brinkmann AO, et al. Androgen receptor status in localized and
locally progressive hormone refractory human prostate cancer. Am J Pathol
(1994) 144(4):735–46.

8. van der Kwast TH, Schalken J, Ruizeveld de Winter JA, van Vroonhoven CC,
Mulder E, Boersma W, et al. Androgen receptors in endocrine-therapy-resistant
human prostate cancer. Int J Cancer (1991) 48(2):189–93. doi:10.1002/ijc.
2910480206

9. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al.
Increased expression of genes converting adrenal androgens to testosterone
in androgen-independent prostate cancer. Cancer Res (2006) 66(5):2815–25.
doi:10.1158/0008-5472.CAN-05-4000

10. Azzouni F, Godoy A, Li Y, Mohler J. The 5 α-reductase isozyme family: a review
of basic biology and their role in human diseases. Adv Urol (2012) 2012:530121.
doi:10.1155/2012/530121

11. Zobniw CM, Causebrook A, Fong MK. Clinical use of abiraterone in the treat-
ment of metastatic castration-resistant prostate cancer. Res Rep Urol (2014)
6:97–105. doi:10.2147/RRU.S29003

12. Eisermann K,Wang D, Jing Y, Pascal LE,Wang Z. Androgen receptor gene muta-
tion, rearrangement, polymorphism. Transl Androl Urol (2013) 2(3):137–47.
doi:10.3978/j.issn.2223-4683.2013.09.15

13. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen
receptor splice variants mediate enzalutamide resistance in castration-resistant

Frontiers in Oncology | Cancer Endocrinology December 2014 | Volume 4 | Article 364 | 10

http://dx.doi.org/10.1016/j.eururo.2012.02.054
http://dx.doi.org/10.3322/caac.21166
http://dx.doi.org/10.1158/1078-0432.CCR-06-0931
http://dx.doi.org/10.1158/1078-0432.CCR-06-0931
http://dx.doi.org/10.1177/1758834009356433
http://dx.doi.org/10.1038/onc.2013.206
http://dx.doi.org/10.1038/onc.2013.206
http://dx.doi.org/10.1002/ijc.2910480206
http://dx.doi.org/10.1002/ijc.2910480206
http://dx.doi.org/10.1158/0008-5472.CAN-05-4000
http://dx.doi.org/10.1155/2012/530121
http://dx.doi.org/10.2147/RRU.S29003
http://dx.doi.org/10.3978/j.issn.2223-4683.2013.09.15
http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

prostate cancer cell lines. Cancer Res (2013) 73(2):483–9. doi:10.1158/0008-
5472.CAN-12-3630

14. Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front
Neuroendocrinol (2008) 29(2):169–81. doi:10.1016/j.yfrne.2007.10.005

15. Migliaccio A, Castoria G, Auricchio F. Analysis of androgen receptor rapid
actions in cellular signaling pathways: receptor/Src association. Methods Mol
Biol (2011) 776:361–70. doi:10.1007/978-1-61779-243-4_21

16. Corn PG. The tumor microenvironment in prostate cancer: elucidating mole-
cular pathways for therapy development. Cancer Manag Res (2012) 4:183–93.
doi:10.2147/CMAR.S32839

17. Alphonso A, Alahari SK. Stromal cells and Integrins: conforming to the
needs of the tumor microenvironment. Neoplasia (2009) 11(12):1264–71.
doi:10.1593/neo.91302

18. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR.
Carcinoma-associated fibroblasts direct tumor progression of initiated human
prostatic epithelium. Cancer Res (1999) 59(19):5002–11.

19. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation
and progression. Nature (2004) 432(7015):332–7. doi:10.1038/nature03096

20. Schauer IG, Sood AK, Mok S, Liu J. Cancer-associated fibroblasts and their
putative role in potentiating the initiation and development of epithelial ovar-
ian cancer. Neoplasia (2011) 13(5):393–405. doi:10.1593/neo.101720

21. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. Stromal cells pro-
mote angiogenesis and growth of human prostate tumors in a differential
reactive stroma (DRS) xenograft model. Cancer Res (2002) 62(11):3298–307.

22. Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progres-
sion. J Urol (2001) 166(6):2472–83. doi:10.1097/00005392-200112000-00126

23. Horvath LG, Henshall SM, Lee CS, Kench JG, Golovsky D, Brenner PC, et al.
Lower levels of nuclear β-catenin predict for a poorer prognosis in localized
prostate cancer. Int J Cancer (2005) 113(3):415–22. doi:10.1002/ijc.20599

24. Frank SB, Miranti CK. Disruption of prostate epithelial differentiation path-
ways and prostate cancer development. Front Oncol (2013) 3:273. doi:10.3389/
fonc.2013.00273

25. Schmelz M, Cress AE, Scott KM, Burger F, Cui H, Sallam K, et al. Different
phenotypes in human prostate cancer: α6 or α3 integrin in cell-extracellular
adhesion sites. Neoplasia (2002) 4(3):243–54. doi:10.1038/sj.neo.7900223

26. Danen EH, van Muijen GN, van de Wiel-van Kemenade E, Jansen KF, Ruiter DJ,
Figdor CG. Regulation of integrin-mediated adhesion to laminin and collagen
in human melanocytes and in non-metastatic and highly metastatic human
melanoma cells. Int J Cancer (1993) 54(2):315–21. doi:10.1002/ijc.2910540225

27. Friedrichs K, Ruiz P, Franke F, Gille I, Terpe HJ, Imhof BA. High expression
level of alpha 6 integrin in human breast carcinoma is correlated with reduced
survival. Cancer Res (1995) 55(4):901–6.

28. Ports MO, Nagle RB, Pond GD, Cress AE. Extracellular engagement of α6 inte-
grin inhibited urokinase-type plasminogen activator-mediated cleavage and
delayed human prostate bone metastasis. Cancer Res (2009) 69(12):5007–14.
doi:10.1158/0008-5472.CAN-09-0354

29. Lamb LE, Zarif JC, Miranti CK. The androgen receptor induces integrin α6β1
to promote prostate tumor cell survival via NF-κB and Bcl-xL Independently
of PI3K signaling. Cancer Res (2011) 71(7):2739–49. doi:10.1158/0008-5472.
CAN-10-2745

30. Sroka IC, Anderson TA, McDaniel KM, Nagle RB, Gretzer MB, Cress AE. The
laminin binding integrin α6β1 in prostate cancer perineural invasion. J Cell
Physiol (2010) 224(2):283–8. doi:10.1002/jcp.22149

31. Bonkhoff H, Stein U, Remberger K. Differential expression of α6 and α2 very
late antigen integrins in the normal, hyperplastic, and neoplastic prostate:
simultaneous demonstration of cell surface receptors and their extracellular
ligands. Hum Pathol (1993) 24(3):243–8. doi:10.1016/0046-8177(93)90033-D

32. Siler U, Rousselle P, Muller CA, Klein G. Laminin γ2 chain as a stromal cell
marker of the human bone marrow microenvironment. Br J Haematol (2002)
119(1):212–20. doi:10.1046/j.1365-2141.2002.03800.x

33. Siler U, Seiffert M, Puch S, Richards A, Torok-Storb B, Muller CA, et al. Charac-
terization and functional analysis of laminin isoforms in human bone marrow.
Blood (2000) 96(13):4194–203.

34. Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, et al. NF-κB gene signa-
ture predicts prostate cancer progression. Cancer Res (2014) 74(10):2763–72.
doi:10.1158/0008-5472.CAN-13-2543

35. Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F. Nuclear local-
isation of nuclear factor-κB transcription factors in prostate cancer: an

immunohistochemical study. Br J Cancer (2005) 93(9):1019–23. doi:10.1038/
sj.bjc.6602796

36. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, et al. The nuclear factor-
kappaB pathway controls the progression of prostate cancer to androgen-
independent growth. Cancer Res (2008) 68(16):6762–9. doi:10.1158/0008-
5472.CAN-08-0107

37. Fornaro M, Tallini G, Zheng DQ, Flanagan WM, Manzotti M, Languino
LR. p27(kip1) acts as a downstream effector of and is coexpressed with the
β1C integrin in prostatic adenocarcinoma. J Clin Invest (1999) 103(3):321–9.
doi:10.1172/JCI4585

38. Pontes-Junior J, Reis ST, Dall’Oglio M, Neves de Oliveira LC, Cury J, Carvalho
PA, et al. Evaluation of the expression of integrins and cell adhesion mole-
cules through tissue microarray in lymph node metastases of prostate cancer.
J Carcinog (2009) 8:3. doi:10.4103/1477-3163.48453

39. Demetriou MC, Pennington ME, Nagle RB, Cress AE. Extracellular α6 integrin
cleavage by urokinase-type plasminogen activator in human prostate cancer.
Exp Cell Res (2004) 294(2):550–8. doi:10.1016/j.yexcr.2003.11.023

40. Pawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE. Integrin alpha6
cleavage: a novel modification to modulate cell migration. Exp Cell Res (2007)
313(6):1080–9. doi:10.1016/j.yexcr.2007.01.006

41. Landowski TH, Gard J, Pond E, Pond GD, Nagle RB, Geffre CP, et al. Target-
ing integrin α6 stimulates curative-type bone metastasis lesions in a xenograft
model. Mol Cancer Ther (2014) 13(6):1558–66. doi:10.1158/1535-7163.MCT-
13-0962

42. Pawar SC, Dougherty S, Pennington ME, Demetriou MC, Stea BD, Dorr
RT, et al. α6 integrin cleavage: sensitizing human prostate cancer to ion-
izing radiation. Int J Radiat Biol (2007) 83(11–12):761–7. doi:10.1080/
09553000701633135

43. King TE, Pawar SC, Majuta L, Sroka IC, Wynn D, Demetriou MC, et al. The role
of α6 integrin in prostate cancer migration and bone pain in a novel xenograft
model. PLoS One (2008) 3(10):e3535. doi:10.1371/journal.pone.0003535

44. Miranti CK. Controlling cell surface dynamics and signaling: how CD82/KAI1
suppresses metastasis. Cell Signal (2009) 21(2):196–211. doi:10.1016/j.cellsig.
2008.08.023

45. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT,
et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromo-
some 11p11.2. Science (1995) 268(5212):884–6. doi:10.1126/science.7754374

46. Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, et al. Down-
regulation of the KAI1 metastasis suppressor gene during the progression of
human prostatic cancer infrequently involves gene mutation or allelic loss.
Cancer Res (1996) 56(19):4387–90.

47. He B, Liu L, Cook GA, Grgurevich S, Jennings LK, Zhang XA. Tetraspanin
CD82 attenuates cellular morphogenesis through down-regulating integrin
α6-mediated cell adhesion. J Biol Chem (2005) 280(5):3346–54. doi:10.1074/
jbc.M406680200

48. Sridhar SC, Miranti CK. Tetraspanin KAI1/CD82 suppresses invasion by
inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases.
Oncogene (2006) 25(16):2367–78. doi:10.1038/sj.onc.1209269

49. Han SY, Lee M, Hong YK, Hwang S, Choi G, Suh YS, et al. Tsp66E, the
Drosophila KAI1 homologue, and Tsp74F function to regulate ovarian fol-
licle cell and wing development by stabilizing integrin localization. FEBS Lett
(2012) 586(22):4031–7. doi:10.1016/j.febslet.2012.09.044

50. Termini CM, Cotter ML, Marjon KD, Buranda T, Lidke KA, Gillette JM.
The membrane scaffold CD82 regulates cell adhesion by altering α4 inte-
grin stability and molecular density. Mol Biol Cell (2014) 25(10):1560–73.
doi:10.1091/mbc.E13-11-0660

51. Abe M, Sugiura T, Takahashi M, Ishii K, Shimoda M, Shirasuna K. A novel
function of CD82/KAI-1 on E-cadherin-mediated homophilic cellular adhe-
sion of cancer cells. Cancer Lett (2008) 266(2):163–70. doi:10.1016/j.canlet.
2008.02.058

52. Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller
ET, et al. Integrin α2β1 (α2β1) promotes prostate cancer skeletal metastasis.
Clin Exp Metastasis (2013) 30(5):569–78. doi:10.1007/s10585-012-9561-6

53. Ziaee S, Chung LW. Induction of integrin α2 in a highly bone metastatic human
prostate cancer cell line: roles of RANKL and AR under three-dimensional sus-
pension culture. Mol Cancer (2014) 13:208. doi:10.1186/1476-4598-13-208

54. Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol (2011)
21(4):228–37. doi:10.1016/j.tcb.2010.12.002

www.frontiersin.org December 2014 | Volume 4 | Article 364 | 11

http://dx.doi.org/10.1158/0008-5472.CAN-12-3630
http://dx.doi.org/10.1158/0008-5472.CAN-12-3630
http://dx.doi.org/10.1016/j.yfrne.2007.10.005
http://dx.doi.org/10.1007/978-1-61779-243-4_21
http://dx.doi.org/10.2147/CMAR.S32839
http://dx.doi.org/10.1593/neo.91302
http://dx.doi.org/10.1038/nature03096
http://dx.doi.org/10.1593/neo.101720
http://dx.doi.org/10.1097/00005392-200112000-00126
http://dx.doi.org/10.1002/ijc.20599
http://dx.doi.org/10.3389/fonc.2013.00273
http://dx.doi.org/10.3389/fonc.2013.00273
http://dx.doi.org/10.1038/sj.neo.7900223
http://dx.doi.org/10.1002/ijc.2910540225
http://dx.doi.org/10.1158/0008-5472.CAN-09-0354
http://dx.doi.org/10.1158/0008-5472.CAN-10-2745
http://dx.doi.org/10.1158/0008-5472.CAN-10-2745
http://dx.doi.org/10.1002/jcp.22149
http://dx.doi.org/10.1016/0046-8177(93)90033-D
http://dx.doi.org/10.1046/j.1365-2141.2002.03800.x
http://dx.doi.org/10.1158/0008-5472.CAN-13-2543
http://dx.doi.org/10.1038/sj.bjc.6602796
http://dx.doi.org/10.1038/sj.bjc.6602796
http://dx.doi.org/10.1158/0008-5472.CAN-08-0107
http://dx.doi.org/10.1158/0008-5472.CAN-08-0107
http://dx.doi.org/10.1172/JCI4585
http://dx.doi.org/10.4103/1477-3163.48453
http://dx.doi.org/10.1016/j.yexcr.2003.11.023
http://dx.doi.org/10.1016/j.yexcr.2007.01.006
http://dx.doi.org/10.1158/1535-7163.MCT-13-0962
http://dx.doi.org/10.1158/1535-7163.MCT-13-0962
http://dx.doi.org/10.1080/09553000701633135
http://dx.doi.org/10.1080/09553000701633135
http://dx.doi.org/10.1371/journal.pone.0003535
http://dx.doi.org/10.1016/j.cellsig.2008.08.023
http://dx.doi.org/10.1016/j.cellsig.2008.08.023
http://dx.doi.org/10.1126/science.7754374
http://dx.doi.org/10.1074/jbc.M406680200
http://dx.doi.org/10.1074/jbc.M406680200
http://dx.doi.org/10.1038/sj.onc.1209269
http://dx.doi.org/10.1016/j.febslet.2012.09.044
http://dx.doi.org/10.1091/mbc.E13-11-0660
http://dx.doi.org/10.1016/j.canlet.2008.02.058
http://dx.doi.org/10.1016/j.canlet.2008.02.058
http://dx.doi.org/10.1007/s10585-012-9561-6
http://dx.doi.org/10.1186/1476-4598-13-208
http://dx.doi.org/10.1016/j.tcb.2010.12.002
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

55. Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin
V. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell
(2004) 6(2):185–95. doi:10.1016/j.ccr.2004.07.008

56. Jung H, Lee KP, Park SJ, Park JH, Jang YS, Choi SY, et al. TMPRSS4 pro-
motes invasion, migration and metastasis of human tumor cells by facilitat-
ing an epithelial-mesenchymal transition. Oncogene (2008) 27(18):2635–47.
doi:10.1038/sj.onc.1210914

57. Tang X, Mahajan SS, Nguyen LT, Beliveau F, Leduc R, Simon JA, et al. Targeted
inhibition of cell-surface serine protease Hepsin blocks prostate cancer bone
metastasis. Oncotarget (2014) 5(5):1352–62.

58. Holt SK, Kwon EM, Lin DW, Ostrander EA, Stanford JL. Association of hep-
sin gene variants with prostate cancer risk and prognosis. Prostate (2010)
70(9):1012–9. doi:10.1002/pros.21135

59. Kim HJ, Han JH, Chang IH, Kim W, Myung SC. Variants in the HEPSIN gene
are associated with susceptibility to prostate cancer. Prostate Cancer Prostatic
Dis (2012) 15(4):353–8. doi:10.1038/pcan.2012.17

60. Kirchhofer D, Peek M, Lipari MT, Billeci K, Fan B, Moran P. Hepsin activates
pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor acti-
vator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett (2005) 579(9):1945–50.
doi:10.1016/j.febslet.2005.01.085

61. Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta
V. Laminin-332 is a substrate for hepsin, a protease associated with prostate
cancer progression. J Biol Chem (2008) 283(45):30576–84. doi:10.1074/jbc.
M802312200

62. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K,
et al. Delineation of prognostic biomarkers in prostate cancer. Nature (2001)
412(6849):822–6. doi:10.1038/35090585

63. Wu SR, Cheng TS, Chen WC, Shyu HY, Ko CJ, Huang HP, et al. Matriptase is
involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol (2010)
177(6):3145–58. doi:10.2353/ajpath.2010.100228

64. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macro-
molecular protease inhibitors to dissect complex biological processes and
identify a membrane-type serine protease in epithelial cancer and normal tis-
sue. Proc Natl Acad Sci U S A (1999) 96(20):11054–61. doi:10.1073/pnas.96.20.
11054

65. Davis TL, Cress AE, Dalkin BL, Nagle RB. Unique expression pattern of the
α6β4 integrin and laminin-5 in human prostate carcinoma. Prostate (2001)
46(3):240–8. doi:10.1002/1097-0045(20010215)46:3<240::AID-PROS1029>
3.3.CO;2-S

66. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, et al. Matrip-
tase activation and shedding with HAI-1 is induced by steroid sex hormones
in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell
Physiol (2006) 291(1):C40–9. doi:10.1152/ajpcell.00351.2005

67. Miller GS, List K. The matriptase-prostasin proteolytic cascade in epithelial
development and pathology. Cell Tissue Res (2013) 351(2):245–53. doi:10.
1007/s00441-012-1348-1

68. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev
(2000) 14(19):2410–34. doi:10.1101/gad.819500

69. Chen YW, Lee MS, Lucht A, Chou FP, Huang W, Havighurst TC, et al.
TMPRSS2, a serine protease expressed in the prostate on the apical sur-
face of luminal epithelial cells and released into semen in prostasomes, is
misregulated in prostate cancer cells. Am J Pathol (2010) 176(6):2986–96.
doi:10.2353/ajpath.2010.090665

70. Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J Clin Oncol
(2003) 21(2):383–91. doi:10.1200/JCO.2003.02.083

71. Lucas JM, True L, Hawley S, Matsumura M, Morrissey C, Vessella R, et al. The
androgen-regulated type II serine protease TMPRSS2 is differentially expressed
and mislocalized in prostate adenocarcinoma. J Pathol (2008) 215(2):118–25.
doi:10.1002/path.2330

72. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and
remodeling in development and disease. Cold Spring Harb Perspect Biol (2011)
3(12):1–24. doi:10.1101/cshperspect.a005058

73. Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression
in tumor invasion. FASEB J (1999) 13(8):781–92.

74. Loo WT, Cheung MN, Chow LW. Production of matrix metalloproteinases
in specific subpopulations of human-patient breast cancer invading in three
dimensional cultural system. Life Sci (2004) 76(7):743–52. doi:10.1016/j.lfs.
2004.06.027

75. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metallo-
proteinases: biologic activity and clinical implications. J Clin Oncol (2000)
18(5):1135–49. doi:10.1016/j.lfs.2004.06.027

76. Benaud C, Dickson RB, Thompson EW. Matrix metalloproteinases in
mammary gland development and cancer. Breast Cancer Res Treat (1998)
50(2):97–116. doi:10.1023/A:1006061115909

77. Ganguly SS, Fiore LS, Sims JT, Friend JW, Srinivasan D, Thacker MA, et al. c-
Abl and Arg are activated in human primary melanomas, promote melanoma
cell invasion via distinct pathways, and drive metastatic progression. Oncogene
(2012) 31(14):1804–16. doi:10.1038/onc.2011.361

78. Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali
S, et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic
(MMP-2, MMP-9) markers of prostate cancer. Urol Res (2005) 33(1):44–50.
doi:10.1007/s00240-004-0440-8

79. Wood M, Fudge K, Mohler JL, Frost AR, Garcia F, Wang M, et al. In situ
hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-
2 expression of human prostate cancer. Clin Cancer Res (1997) 15(3):
246–58.

80. Incorvaia L, Badalamenti G, Rini G, Arcara C, Fricano S, Sferrazza C, et al.
MMP-2, MMP-9 and activin A blood levels in patients with breast cancer
or prostate cancer metastatic to the bone. Anticancer Res (2007) 27(3B):
1519–25.

81. Pulukuri SM, Rao JS. Matrix metalloproteinase-1 promotes prostate
tumor growth and metastasis. Int J Oncol (2008) 32(4):757–65. doi:10.3892/
ijo.32.4.757

82. Xu D, McKee CM, Cao Y, Ding Y, Kessler BM, Muschel RJ. Matrix
metalloproteinase-9 regulates tumor cell invasion through cleavage of pro-
tease nexin-1. Cancer Res (2010) 70(17):6988–98. doi:10.1158/0008-5472.
CAN-10-0242

83. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA
interference-directed knockdown of urokinase plasminogen activator and
urokinase plasminogen activator receptor inhibits prostate cancer cell invasion,
survival, and tumorigenicity in vivo. J Biol Chem (2005) 280(43):36529–40.
doi:10.1074/jbc.M503111200

84. Jin JK, Dayyani F, Gallick GE. Steps in prostate cancer progression that lead to
bone metastasis. Int J Cancer (2011) 128(11):2545–61. doi:10.1002/ijc.26024

85. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors
and cancer: trials and tribulations. Science (2002) 295(5564):2387–92. doi:10.
1126/science.1067100

86. Cheng TS, Chen WC, Lin YY, Tsai CH, Liao CI, Shyu HY, et al. Curcumin-
targeting pericellular serine protease matriptase role in suppression of prostate
cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res (Phila)
(2013) 6(5):495–505. doi:10.1158/1940-6207.CAPR-12-0293-T

87. Ganesan R, Eigenbrot C, Kirchhofer D. Structural and mechanistic insight
into how antibodies inhibit serine proteases. Biochem J (2010) 430(2):179–89.
doi:10.1042/BJ20100634

88. Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, et al. Prometastatic
effect of N-acetylglucosaminyltransferase V is due to modification and stabi-
lization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem
(2002) 277(19):16960–7. doi:10.1074/jbc.M200673200

89. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell
(2011) 144(5):646–74. doi:10.1016/j.cell.2011.02.013

90. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-
mesenchymal transition. Nat Rev Mol Cell Biol (2014) 15(3):178–96. doi:10.
1038/nrm3758

91. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-
mesenchymal transition generates cells with properties of stem cells. Cell
(2008) 133(4):704–15. doi:10.1016/j.cell.2008.03.027

92. Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic
fibrosis, and cancer progression triad. Physiol Genomics (2014) 46(7):223–44.
doi:10.1152/physiolgenomics.00158.2013

93. Adams CL, Chen YT, Smith SJ, Nelson WJ. Mechanisms of epithelial cell-
cell adhesion and cell compaction revealed by high-resolution tracking of
E-cadherin-green fluorescent protein. J Cell Biol (1998) 142(4):1105–19.
doi:10.1083/jcb.142.4.1105

94. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof
GO, et al. Decreased E-cadherin expression is associated with poor prognosis
in patients with prostate cancer. Cancer Res (1994) 54(14):3929–33.

Frontiers in Oncology | Cancer Endocrinology December 2014 | Volume 4 | Article 364 | 12

http://dx.doi.org/10.1016/j.ccr.2004.07.008
http://dx.doi.org/10.1038/sj.onc.1210914
http://dx.doi.org/10.1002/pros.21135
http://dx.doi.org/10.1038/pcan.2012.17
http://dx.doi.org/10.1016/j.febslet.2005.01.085
http://dx.doi.org/10.1074/jbc.M802312200
http://dx.doi.org/10.1074/jbc.M802312200
http://dx.doi.org/10.1038/35090585
http://dx.doi.org/10.2353/ajpath.2010.100228
http://dx.doi.org/10.1073/pnas.96.20.11054
http://dx.doi.org/10.1073/pnas.96.20.11054
http://dx.doi.org/10.1002/1097-0045(20010215)46:3<240::AID-PROS1029>3.3.CO;2-S
http://dx.doi.org/10.1002/1097-0045(20010215)46:3<240::AID-PROS1029>3.3.CO;2-S
http://dx.doi.org/10.1152/ajpcell.00351.2005
http://dx.doi.org/10.1007/s00441-012-1348-1
http://dx.doi.org/10.1007/s00441-012-1348-1
http://dx.doi.org/10.1101/gad.819500
http://dx.doi.org/10.2353/ajpath.2010.090665
http://dx.doi.org/10.1200/JCO.2003.02.083
http://dx.doi.org/10.1002/path.2330
http://dx.doi.org/10.1101/cshperspect.a005058
http://dx.doi.org/10.1016/j.lfs.2004.06.027
http://dx.doi.org/10.1016/j.lfs.2004.06.027
http://dx.doi.org/10.1016/j.lfs.2004.06.027
http://dx.doi.org/10.1023/A:1006061115909
http://dx.doi.org/10.1038/onc.2011.361
http://dx.doi.org/10.1007/s00240-004-0440-8
http://dx.doi.org/10.3892/ijo.32.4.757
http://dx.doi.org/10.3892/ijo.32.4.757
http://dx.doi.org/10.1158/0008-5472.CAN-10-0242
http://dx.doi.org/10.1158/0008-5472.CAN-10-0242
http://dx.doi.org/10.1074/jbc.M503111200
http://dx.doi.org/10.1002/ijc.26024
http://dx.doi.org/10.1126/science.1067100
http://dx.doi.org/10.1126/science.1067100
http://dx.doi.org/10.1158/1940-6207.CAPR-12-0293-T
http://dx.doi.org/10.1042/BJ20100634
http://dx.doi.org/10.1074/jbc.M200673200
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1038/nrm3758
http://dx.doi.org/10.1038/nrm3758
http://dx.doi.org/10.1016/j.cell.2008.03.027
http://dx.doi.org/10.1152/physiolgenomics.00158.2013
http://dx.doi.org/10.1083/jcb.142.4.1105
http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

95. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects
for old challenges. Genes Dev (2010) 24(18):1967–2000. doi:10.1101/gad.
1965810

96. Chaudhry P, Fabi F, Singh M, Parent S, Leblanc V, Asselin E. Prostate apopto-
sis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition.
Cell Death Dis (2014) 5:e1044. doi:10.1038/cddis.2014.7

97. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppres-
sion and cancer progression. Nat Genet (2001) 29(2):117–29. doi:10.1038/
ng1001-117

98. Garg M. Epithelial-mesenchymal transition – activating transcription factors –
multifunctional regulators in cancer. World J Stem Cells (2013) 5(4):188–95.
doi:10.4252/wjsc.v5.i4.188

99. Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, et al. A
SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β medi-
ated epithelial-mesenchymal transition. Nat Cell Biol (2009) 11(8):943–50.
doi:10.1038/ncb1905

100. Zavadil J, Bottinger EP. TGF-β and epithelial-to-mesenchymal transitions.
Oncogene (2005) 24(37):5764–74. doi:10.1038/sj.onc.1208927

101. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcrip-
tion factors. Nat Cell Biol (2014) 16(6):488–94. doi:10.1038/ncb2976

102. Putzke AP, Ventura AP, Bailey AM, Akture C, Opoku-Ansah J, Celiktas
M, et al. Metastatic progression of prostate cancer and e-cadherin regula-
tion by zeb1 and SRC family kinases. Am J Pathol (2011) 179(1):400–10.
doi:10.1016/j.ajpath.2011.03.028

103. Jacob S, Nayak S, Fernandes G, Barai RS, Menon S, Chaudhari UK, et al.
Androgen receptor as a regulator of ZEB2 expression and its implications in
epithelial-to-mesenchymal transition in prostate cancer. Endocr Relat Cancer
(2014) 21(3):473–86. doi:10.1530/ERC-13-0514

104. He H, Yang X, Davidson AJ, Wu D, Marshall FF, Chung LW, et al. Progressive
epithelial to mesenchymal transitions in ARCaP E prostate cancer cells dur-
ing xenograft tumor formation and metastasis. Prostate (2010) 70(5):518–28.
doi:10.1002/pros.21086

105. Etzioni R, Cha R, Feuer EJ, Davidov O. Asymptomatic incidence and dura-
tion of prostate cancer. Am J Epidemiol (1998) 148(8):775–85. doi:10.1093/
oxfordjournals.aje.a009698

106. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation
of epithelial-mesenchymal transition is essential for squamous cell carcinoma
metastasis. Cancer Cell (2012) 22(6):725–36. doi:10.1016/j.ccr.2012.09.022

107. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer
cells induces an epithelial-mesenchymal-like transition and promotes metas-
tasis. Cancer Cell (2011) 20(5):576–90. doi:10.1016/j.ccr.2011.09.009

108. Vral A, Magri V, Montanari E, Gazzano G, Gourvas V, Marras E, et al. Topo-
graphic and quantitative relationship between prostate inflammation, prolif-
erative inflammatory atrophy and low-grade prostate intraepithelial neoplasia:
a biopsy study in chronic prostatitis patients. Int J Oncol (2012) 41(6):1950–8.
doi:10.3892/ijo.2012.1646

109. Kwon OJ, Zhang L, Ittmann MM, Xin L. Prostatic inflammation enhances
basal-to-luminal differentiation and accelerates initiation of prostate cancer
with a basal cell origin. Proc Natl Acad Sci U S A (2014) 111(5):E592–600.
doi:10.1073/pnas.1318157111

110. Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M,
et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1
signaling promotes inflammation and tumorigenesis. Cancer Cell (2014)
26(1):121–35. doi:10.1016/j.ccr.2014.05.004

111. Brennen WN, Denmeade SR, Isaacs JT. Mesenchymal stem cells as a vector
for the inflammatory prostate microenvironment. Endocr Relat Cancer (2013)
20(5):R269–90. doi:10.1530/ERC-13-0151

112. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feld-
mann D, et al. Bone marrow adipocytes promote tumor growth in bone via
FABP4-dependent mechanisms. Oncotarget (2013) 4(11):2108–23.

113. Nguyen DP, Li J, Yadav SS, Tewari AK. Recent insights into NF-κB signalling
pathways and the link between inflammation and prostate cancer. BJU Int
(2014) 114(2):168–76. doi:10.1111/bju.12488

114. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis
A, et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17
in ovarian cancer in mice and humans. J Clin Invest (2009) 119(10):3011–23.
doi:10.1172/JCI39065

115. Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR. TNF-α induces
TGF-β1expression in lung fibroblasts at the transcriptional levelviaAP-1

activation. J Cell Mol Med (2009) 13(8b):1866–76. doi:10.1111/j.1582-4934.
2009.00647.x

116. Bates RC, Mercurio AM. Tumor necrosis factor-α stimulates the epithelial-
to-mesenchymal transition of human colonic organoids. Mol Biol Cell (2003)
14(5):1790–800. doi:10.1091/mbc.E02-09-0583

117. Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is
required for TGFbeta-induced endothelial-mesenchymal transition of embry-
onic stem cell-derived endothelial cells. J Cell Sci (2008) 121(Pt 20):3317–24.
doi:10.1242/jcs.028282

118. Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and
Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction
of single-cell invasion. Biochem Biophys Res Commun (2013) 435(1):58–63.
doi:10.1016/j.bbrc.2013.04.037

119. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, et al. Epithelial-
mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-
3beta-mediated stabilization of snail in colorectal cancer. PLoS One (2013)
8(2):e56664. doi:10.1371/journal.pone.0056664

120. Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T, et al. SOX2 promotes tumor
metastasis by stimulating epithelial-to-mesenchymal transition via regula-
tion of WNT/beta-catenin signal network. Cancer Lett (2013) 336(2):379–89.
doi:10.1016/j.canlet.2013.03.027

121. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA, et al. ERG
oncoprotein expression in prostate cancer: clonal progression of ERG-positive
tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic
Dis (2010) 13(3):228–37. doi:10.1038/pcan.2010.23

122. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al.
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate
cancer. Science (2005) 310(5748):644–8. doi:10.1126/science.1117679

123. Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, et al. FZD4 as a media-
tor of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal
transition in human prostate cancer cells. Cancer Res (2010) 70(17):6735–45.
doi:10.1158/0008-5472.CAN-10-0244

124. Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to
breathe? Cell Cycle (2009) 8(20):3291–6. doi:10.4161/cc.8.20.9741

125. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio
PM. Hypoxia promotes invasive growth by transcriptional activation of the met
protooncogene. Cancer Cell (2003) 3(4):347–61. doi:10.1016/S1535-6108(03)
00085-0

126. Zhao JH, Luo Y, Jiang YG, He DL, Wu CT. Knockdown of β-Catenin through
shRNA cause a reversal of EMT and metastatic phenotypes induced by
HIF-1α. Cancer Invest (2011) 29(6):377–82. doi:10.3109/07357907.2010.
512595

127. Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic
cancer in bone. Endocr Relat Cancer (1999) 6(3):333–47. doi:10.1677/erc.0.
0060333

128. Giunciuglio D, Cai T, Filanti C, Manduca P, Albini A. Effect of osteoblast super-
natants on cancer cell migration and invasion. Cancer Lett (1995) 97(1):69–74.
doi:10.1016/0304-3835(95)03955-V

129. Jacob K,Webber M, Benayahu D, Kleinman HK. Osteonectin promotes prostate
cancer cell migration and invasion: a possible mechanism for metastasis to
bone. Cancer Res (1999) 59:4453.

130. Festuccia C, Bologna M, Gravina GL, Guerra F, Angelucci A, Villanova I, et al.
Osteoblast conditioned media contain TGF-beta1 and modulate the migra-
tion of prostate tumor cells and their interactions with extracellular matrix
components. Int J Cancer (1999) 81(3):395–403. doi:10.1002/(SICI)1097-
0215(19990505)81:3<395::AID-IJC13>3.3.CO;2-M

131. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Can-
cer Res (2010) 16(11):2927–31. doi:10.1158/1078-0432.CCR-09-2329

132. Salazar N, Castellan M, Shirodkar SS, Lokeshwar BL. Chemokines and
chemokine receptors as promoters of prostate cancer growth and pro-
gression. Crit Rev Eukaryot Gene Expr (2013) 23(1):77–91. doi:10.1615/
CritRevEukaryotGeneExpr.2013006905

133. Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE, Mukherjee
P. Breast-cancer-associated metastasis is significantly increased in a model
of autoimmune arthritis. Breast Cancer Res (2009) 11(4):R56. doi:10.1186/
bcr2345

134. Uygur B, Wu WS. SLUG promotes prostate cancer cell migration and invasion
via CXCR4/CXCL12 axis. Mol Cancer (2011) 10:139. doi:10.1186/1476-4598-
10-139

www.frontiersin.org December 2014 | Volume 4 | Article 364 | 13

http://dx.doi.org/10.1101/gad.1965810
http://dx.doi.org/10.1101/gad.1965810
http://dx.doi.org/10.1038/cddis.2014.7
http://dx.doi.org/10.1038/ng1001-117
http://dx.doi.org/10.1038/ng1001-117
http://dx.doi.org/10.4252/wjsc.v5.i4.188
http://dx.doi.org/10.1038/ncb1905
http://dx.doi.org/10.1038/sj.onc.1208927
http://dx.doi.org/10.1038/ncb2976
http://dx.doi.org/10.1016/j.ajpath.2011.03.028
http://dx.doi.org/10.1530/ERC-13-0514
http://dx.doi.org/10.1002/pros.21086
http://dx.doi.org/10.1093/oxfordjournals.aje.a009698
http://dx.doi.org/10.1093/oxfordjournals.aje.a009698
http://dx.doi.org/10.1016/j.ccr.2012.09.022
http://dx.doi.org/10.1016/j.ccr.2011.09.009
http://dx.doi.org/10.3892/ijo.2012.1646
http://dx.doi.org/10.1073/pnas.1318157111
http://dx.doi.org/10.1016/j.ccr.2014.05.004
http://dx.doi.org/10.1530/ERC-13-0151
http://dx.doi.org/10.1111/bju.12488
http://dx.doi.org/10.1172/JCI39065
http://dx.doi.org/10.1111/j.1582-4934.2009.00647.x
http://dx.doi.org/10.1111/j.1582-4934.2009.00647.x
http://dx.doi.org/10.1091/mbc.E02-09-0583
http://dx.doi.org/10.1242/jcs.028282
http://dx.doi.org/10.1016/j.bbrc.2013.04.037
http://dx.doi.org/10.1371/journal.pone.0056664
http://dx.doi.org/10.1016/j.canlet.2013.03.027
http://dx.doi.org/10.1038/pcan.2010.23
http://dx.doi.org/10.1126/science.1117679
http://dx.doi.org/10.1158/0008-5472.CAN-10-0244
http://dx.doi.org/10.4161/cc.8.20.9741
http://dx.doi.org/10.1016/S1535-6108(03)00085-0
http://dx.doi.org/10.1016/S1535-6108(03)00085-0
http://dx.doi.org/10.3109/07357907.2010.512595
http://dx.doi.org/10.3109/07357907.2010.512595
http://dx.doi.org/10.1677/erc.0.0060333
http://dx.doi.org/10.1677/erc.0.0060333
http://dx.doi.org/10.1016/0304-3835(95)03955-V
http://dx.doi.org/10.1002/(SICI)1097-0215(19990505)81:3<395::AID-IJC13>3.3.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0215(19990505)81:3<395::AID-IJC13>3.3.CO;2-M
http://dx.doi.org/10.1158/1078-0432.CCR-09-2329
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006905
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006905
http://dx.doi.org/10.1186/bcr2345
http://dx.doi.org/10.1186/bcr2345
http://dx.doi.org/10.1186/1476-4598-10-139
http://dx.doi.org/10.1186/1476-4598-10-139
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

135. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, et al. Skeletal localiza-
tion and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate
cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res (2005)
20(2):318–29. doi:10.1359/JBMR.041109

136. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK.
Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer
metastasis to bone. Cancer Res (2002) 16(6):1832–7.

137. Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML, Chinni
SR. PTEN loss mediated Akt activation promotes prostate tumor growth
and metastasis via CXCL12/CXCR4 signaling. Mol Cancer (2013) 12(1):85.
doi:10.1186/1476-4598-12-85

138. Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a poten-
tial therapeutic target for bone metastatic tumors. Clin Cancer Res (2011)
17(17):5553–8. doi:10.1158/1078-0432.CCR-10-2505

139. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev
Cancer (2009) 9(4):285–93. doi:10.1038/nrc2621

140. Langley RR, Fidler IJ. The seed and soil hypothesis revisited – the role of
tumor-stroma interactions in metastasis to different organs. Int J Cancer (2011)
128(11):2527–35. doi:10.1002/ijc.26031

141. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al.
VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-
metastatic niche. Nature (2005) 438(7069):820–7. doi:10.1038/nature04186

142. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregula-
tion of chemoattractants and recruitment of myeloid cells predetermines lung
metastasis. Nat Cell Biol (2006) 8(12):1369–75. doi:10.1038/ncb1507

143. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, et al. S1PR1-STAT3 sig-
naling is crucial for myeloid cell colonization at future metastatic sites. Cancer
Cell (2012) 21(5):642–54. doi:10.1016/j.ccr.2012.03.039

144. Zhau HE, Li CL, Chung LW. Establishment of human prostate carcinoma skele-
tal metastasis models. Cancer (2000) 88(12 Suppl):2995–3001. doi:10.1002/
1097-0142(20000615)88:12+<2995::AID-CNCR15>3.3.CO;2-P

145. Amir E, Tannock IF. Prostate cancer: androgen deprivation therapy and bone
loss. Nat Rev Urol (2009) 6(12):642–4. doi:10.1038/nrurol.2009.218

146. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. The effects of androgen
deficiency on murine bone remodeling and bone mineral density are medi-
ated via cells of the osteoblastic lineage. Endocrinology (1997) 138(9):4013–21.
doi:10.1210/endo.138.9.5359

147. Economos C, Morrissey C, Vessella RL. Circulating tumor cells as a marker
of response: implications for determining treatment efficacy and evaluat-
ing new agents. Curr Opin Urol (2012) 22(3):190–6. doi:10.1097/MOU.
0b013e3283519b58

148. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, et al.
Fate of melanoma cells entering the microcirculation: over 80% survive and
extravasate. Cancer Res (1995) 55(12):2520–3.

149. Wikman H, Vessella R, Pantel K. Cancer micrometastasis and tumour
dormancy. APMIS (2008) 116(7–8):754–70. doi:10.1111/j.1600-0463.2008.
01033.x

150. Okazaki M, Takeshita S, Kawai S, Kikuno R, Tsujimura A, Kudo A, et al. Molec-
ular cloning and characterization of OB-cadherin, a new member of cadherin
family expressed in osteoblasts. J Biol Chem (1994) 269(16):12092–8.

151. Kawaguchi J, Kii I, Sugiyama Y, Takeshita S, Kudo A. The transition of cad-
herin expression in osteoblast differentiation from mesenchymal cells: consis-
tent expression of cadherin-11 in osteoblast lineage. J Bone Miner Res (2001)
16(2):260–9. doi:10.1359/jbmr.2001.16.2.260

152. Chu K, Cheng CJ, Ye X, Lee YC, Zurita AJ, Chen DT, et al. Cadherin-11 pro-
motes the metastasis of prostate cancer cells to bone. Mol Cancer Res (2008)
6(8):1259–67. doi:10.1158/1541-7786.MCR-08-0077

153. Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, et al. Cadherin-11 increases
migration and invasion of prostate cancer cells and enhances their interaction
with osteoblasts. Cancer Res (2010) 70(11):4580–9. doi:10.1158/0008-5472.
CAN-09-3016

154. Tamura D, Hiraga T, Myoui A, Yoshikawa H, Yoneda T. Cadherin-11 mediated
interactions with bone marrow stromal/osteoblastic cells support selective col-
onization of breast cancer cells in bone. Int J Oncol (2008) 33(1):17–24.

155. Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat
Rev Cancer (2005) 5(1):21–8. doi:10.1038/nrc1528

156. Mishra A, Shiozawa Y, Pienta KJ, Taichman RS. Homing of cancer cells to
the bone. Cancer Microenviron (2011) 4(3):221–35. doi:10.1007/s12307-011-
0083-6

157. Yin JJ, Pollock CB, Kelly K. Mechanisms of cancer metastasis to the bone. Cell
Res (2005) 15(1):57–62. doi:10.1038/sj.cr.7290266

158. Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic
and osteoblastic activity. J Cell Biochem (2004) 91(4):718–29. doi:10.1002/jcb.
10662

159. Darby S, Cross SS, Brown NJ, Hamdy FC, Robson CN. BMP-6 over-expression
in prostate cancer is associated with increased Id-1 protein and a more invasive
phenotype. J Pathol (2008) 214(3):394–404. doi:10.1002/path.2292

160. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. Bone
morphogenetic protein signaling enhances invasion and bone metastasis of
breast cancer cells through Smad pathway. Oncogene (2008) 27(49):6322–33.
doi:10.1038/onc.2008.232

161. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET. Bone morphogenetic protein-
6 promotes osteoblastic prostate cancer bone metastases through a dual
mechanism. Cancer Res (2005) 65(18):8274–85. doi:10.1158/0008-5472.CAN-
05-1891

162. Bentley H, Hamdy FC, Hart KA, Seid JM, Williams JL, Johnstone D, et al.
Expression of bone morphogenetic proteins in human prostatic adenocarci-
noma and benign prostatic hyperplasia. Br J Cancer (1992) 66(6):1159–63.
doi:10.1038/bjc.1992.427

163. Raida M, Clement JH, Ameri K, Han C, Leek RD, Harris AL. Expression of bone
morphogenetic protein 2 in breast cancer cells inhibits hypoxic cell death. Int
J Oncol (2005) 26(6):1465–70.

164. Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, et al. Bone mor-
phogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone
independent growth of breast carcinoma cells. Int J Oncol (2005) 27(2):401–7.
doi:10.3892/ijo.27.2.401

165. Feeley BT, Gamradt SC, Hsu WK, Liu N, Krenek L, Robbins P, et al. Influence
of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer.
J Bone Miner Res (2005) 20(12):2189–99. doi:10.1359/JBMR.050802

166. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA,
Economides AN, et al. Essential requirement of BMPs-2/4 for both
osteoblast and osteoclast formation in murine bone marrow cultures from
adult mice: antagonism by noggin. J Bone Miner Res (2000) 15(4):663–73.
doi:10.1359/jbmr.2000.15.4.663

167. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. Differentiation of human
marrow stromal precursor cells: bone morphogenetic protein-2 increases
OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte
maturation. J Bone Miner Res (1999) 14(9):1522–35. doi:10.1359/jbmr.1999.
14.9.1522

168. Jena N, Martin-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in
mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res (1997)
230(1):28–37. doi:10.1006/excr.1996.3411

169. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation
of bone and cartilage development by network between BMP signalling and
transcription factors. J Biochem (2012) 151(3):247–54. doi:10.1093/jb/mvs004

170. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al.
The novel zinc finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell (2002) 108(1):17–29.
doi:10.1016/S0092-8674(01)00622-5

171. Morrissey C, Brown LG, Pitts TE, Vessella RL, Corey E. Bone morphogenetic
protein 7 is expressed in prostate cancer metastases and its effects on prostate
tumor cells depend on cell phenotype and the tumor microenvironment. Neo-
plasia (2010) 12(2):192–205.

172. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, et al. Bone
morphogenetic protein 7 in dormancy and metastasis of prostate cancer
stem-like cells in bone. J Exp Med (2011) 208(13):2641–55. doi:10.1084/jem.
20110840

173. Lee GT, Kang DI, Ha YS, Jung YS, Chung J, Min K, et al. Prostate cancer bone
metastases acquire resistance to androgen deprivation via WNT5A-mediated
BMP-6 induction. Br J Cancer (2014) 110(6):1634–44. doi:10.1038/bjc.2014.23

174. Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer
induces bone metastasis through Wnt-induced bone morphogenetic protein-
dependent and independent mechanisms. Cancer Res (2008) 68(14):5785–94.
doi:10.1158/0008-5472.CAN-07-6541

175. Godebu E, Muldong M, Strasner A, Wu C, Park S, Woo JR, et al. PCSD1, a new
patient-derived model of bone metastatic prostate cancer, is castrate-resistant
in the bone-niche. J Transl Med (2014) 12(1):275. doi:10.1186/s12967-014-
0275-1

Frontiers in Oncology | Cancer Endocrinology December 2014 | Volume 4 | Article 364 | 14

http://dx.doi.org/10.1359/JBMR.041109
http://dx.doi.org/10.1186/1476-4598-12-85
http://dx.doi.org/10.1158/1078-0432.CCR-10-2505
http://dx.doi.org/10.1038/nrc2621
http://dx.doi.org/10.1002/ijc.26031
http://dx.doi.org/10.1038/nature04186
http://dx.doi.org/10.1038/ncb1507
http://dx.doi.org/10.1016/j.ccr.2012.03.039
http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2995::AID-CNCR15>3.3.CO;2-P
http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2995::AID-CNCR15>3.3.CO;2-P
http://dx.doi.org/10.1038/nrurol.2009.218
http://dx.doi.org/10.1210/endo.138.9.5359
http://dx.doi.org/10.1097/MOU.0b013e3283519b58
http://dx.doi.org/10.1097/MOU.0b013e3283519b58
http://dx.doi.org/10.1111/j.1600-0463.2008.01033.x
http://dx.doi.org/10.1111/j.1600-0463.2008.01033.x
http://dx.doi.org/10.1359/jbmr.2001.16.2.260
http://dx.doi.org/10.1158/1541-7786.MCR-08-0077
http://dx.doi.org/10.1158/0008-5472.CAN-09-3016
http://dx.doi.org/10.1158/0008-5472.CAN-09-3016
http://dx.doi.org/10.1038/nrc1528
http://dx.doi.org/10.1007/s12307-011-0083-6
http://dx.doi.org/10.1007/s12307-011-0083-6
http://dx.doi.org/10.1038/sj.cr.7290266
http://dx.doi.org/10.1002/jcb.10662
http://dx.doi.org/10.1002/jcb.10662
http://dx.doi.org/10.1002/path.2292
http://dx.doi.org/10.1038/onc.2008.232
http://dx.doi.org/10.1158/0008-5472.CAN-05-1891
http://dx.doi.org/10.1158/0008-5472.CAN-05-1891
http://dx.doi.org/10.1038/bjc.1992.427
http://dx.doi.org/10.3892/ijo.27.2.401
http://dx.doi.org/10.1359/JBMR.050802
http://dx.doi.org/10.1359/jbmr.2000.15.4.663
http://dx.doi.org/10.1359/jbmr.1999.14.9.1522
http://dx.doi.org/10.1359/jbmr.1999.14.9.1522
http://dx.doi.org/10.1006/excr.1996.3411
http://dx.doi.org/10.1093/jb/mvs004
http://dx.doi.org/10.1016/S0092-8674(01)00622-5
http://dx.doi.org/10.1084/jem.20110840
http://dx.doi.org/10.1084/jem.20110840
http://dx.doi.org/10.1038/bjc.2014.23
http://dx.doi.org/10.1158/0008-5472.CAN-07-6541
http://dx.doi.org/10.1186/s12967-014-0275-1
http://dx.doi.org/10.1186/s12967-014-0275-1
http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

176. Nishimori H, Ehata S, Suzuki HI, Katsuno Y, Miyazono K. Prostate cancer cells
and bone stromal cells mutually interact with each other through bone mor-
phogenetic protein-mediated signals. J Biol Chem (2012) 287(24):20037–46.
doi:10.1074/jbc.M112.353094

177. Zunich SM, Douglas T, Valdovinos M, Chang T, Bushman W, Walter-
house D, et al. Paracrine sonic hedgehog signalling by prostate cancer cells
induces osteoblast differentiation. Mol Cancer (2009) 8:12. doi:10.1186/1476-
4598-8-12

178. Zunich SM, Valdovinos M, Douglas T, Walterhouse D, Iannaccone P, Lamm
ML. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog sig-
naling by prostate cancer cells and enhances osteoblast differentiation. Mol
Cancer (2012) 11:30. doi:10.1186/1476-4598-11-30

179. Rosano L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological impli-
cations and therapeutic opportunities. Nat Rev Cancer (2013) 13(9):637–51.
doi:10.1038/nrc3546

180. Nelson JB, Udan MS, Guruli G, Pflug BR. Endothelin-1 inhibits apoptosis in
prostate cancer. Neoplasia (2005) 7(7):631–7. doi:10.1593/neo.04787

181. Rosano L, Varmi M, Salani D, Di Castro V, Spinella F, Natali PG, et al.
Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian
carcinoma cells. Cancer Res (2001) 61(22):8340–6.

182. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, et al.
Elevated blood pressure and craniofacial abnormalities in mice deficient in
endothelin-1. Nature (1994) 368(6473):703–10. doi:10.1038/368703a0

183. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger
MA, et al. Identification of endothelin-1 in the pathophysiology of metasta-
tic adenocarcinoma of the prostate. Nat Med (1995) 1(9):944–9. doi:10.1038/
nm0995-944

184. Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL, et al.
A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metas-
tases. Proc Natl Acad Sci U S A (2003) 100(19):10954–9. doi:10.1073/pnas.
1830978100

185. Rahim F, Hajizamani S, Mortaz E, Ahmadzadeh A, Shahjahani M, Shahrabi S,
et al. Molecular regulation of bone marrow metastasis in prostate and breast
cancer. Bone Marrow Res (2014) 2014:405920. doi:10.1155/2014/405920

186. Chiao JW, Moonga BS, Yang YM, Kancherla R, Mittelman A, Wu-Wong JR,
et al. Endothelin-1 from prostate cancer cells is enhanced by bone contact
which blocks osteoclastic bone resorption. Br J Cancer (2000) 83(3):360–5.
doi:10.1054/bjoc.2000.1261

187. Nelson JB, Nabulsi AA, Vogelzang NJ, Breul J, Zonnenberg BA, Daliani
DD, et al. Suppression of prostate cancer induced bone remodeling by the
endothelin receptor A antagonist atrasentan. J Urol (2003) 169(3):1143–9.
doi:10.1097/01.ju.0000042162.08938.27

188. Quinn DI, Tangen CM, Hussain M, Lara PN, Goldkorn A, Moinpour CM,
et al. Docetaxel and atrasentan versus docetaxel and placebo for men with
advanced castration-resistant prostate cancer (SWOG S0421): a randomised
phase 3 trial. Lancet Oncol (2013) 14(9):893–900. doi:10.1016/S1470-2045(13)
70294-8

189. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD Jr.,
et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone forma-
tion. Mol Endocrinol (2007) 21(2):486–98. doi:10.1210/me.2006-0346

190. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in can-
cer. Nat Rev Cancer (2013) 13(1):11–26. doi:10.1038/nrc3419

191. Kypta RM, Waxman J. Wnt/beta-catenin signalling in prostate cancer. Nat Rev
Urol (2012) 9(8):418–28. doi:10.1038/nrurol.2012.116

192. Hall CL, Kang S, MacDougald OA, Keller ET. Role of Wnts in prostate cancer
bone metastases. J Cell Biochem (2006) 97(4):661–72. doi:10.1002/jcb.20735

193. Yardy GW, Brewster SF. Wnt signalling and prostate cancer. Prostate Cancer
Prostatic Dis (2005) 8(2):119–26. doi:10.1038/sj.pcan.4500794

194. Watanabe M, Kakiuchi H, Kato H, Shiraishi T, Yatani R, Sugimura T, et al. APC
gene mutations in human prostate cancer. Jpn J Clin Oncol (1996) 26(2):77–81.
doi:10.1093/oxfordjournals.jjco.a023188

195. Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers:
past decades and still growing. Mol Cancer (2012) 11:7. doi:10.1186/1476-
4598-11-7

196. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, et al. Up-
regulation of Wnt-1 and β-catenin production in patients with advanced
metastatic prostate carcinoma: potential pathogenetic and prognostic implica-
tions. Cancer (2004) 101(6):1345–56. doi:10.1002/cncr.20518

197. Boissan M, De Wever O, Lizarraga F, Wendum D, Poincloux R, Chignard N,
et al. Implication of metastasis suppressor NM23-H1 in maintaining adherens
junctions and limiting the invasive potential of human cancer cells. Cancer Res
(2010) 70(19):7710–22. doi:10.1158/0008-5472.CAN-10-1887

198. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS,
et al. Canonical WNT signaling promotes osteogenesis by directly stimulating
Runx2 gene expression. J Biol Chem (2005) 280(39):33132–40. doi:10.1074/
jbc.M500608200

199. Cho YD, Yoon WJ, Kim WJ, Woo KM, Baek JH, Lee G, et al. Epigenetic mod-
ifications and canonical wingless/int-1 Class (WNT) signaling enable trans-
differentiation of nonosteogenic cells into osteoblasts. J Biol Chem (2014)
289(29):20120–8. doi:10.1074/jbc.M114.558064

200. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote
osteoblastic bone metastases through Wnts. Cancer Res (2005) 65(17):7554–60.
doi:10.1158/0008-5472.CAN-05-1317

201. Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell
Commun Signal (2013) 11:97. doi:10.1186/1478-811X-11-97

202. Ustach CV, Huang W, Conley-LaComb MK, Lin CY, Che M, Abrams J, et al. A
novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate can-
cer. Cancer Res (2010) 70(23):9631–40. doi:10.1158/0008-5472.CAN-10-0511

203. Ustach CV, Taube ME, Hurst NJ Jr., Bhagat S, Bonfil RD, Cher ML, et al. A
potential oncogenic activity of platelet-derived growth factor d in prostate
cancer progression. Cancer Res (2004) 64(5):1722–9. doi:10.1158/0008-5472.
CAN-03-3047

204. Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights
into a novel mechanism involving MSCs. J Orthop Res (2011) 29(12):1795–803.
doi:10.1002/jor.21462

205. Lev DC, Kim SJ, Onn A, Stone V, Nam DH, Yazici S, et al. Inhibition of platelet-
derived growth factor receptor signaling restricts the growth of human breast
cancer in the bone of nude mice. Clin Cancer Res (2005) 11(1):306–14.

206. Hwang RF,Yokoi K, Bucana CD, Tsan R, Killion JJ, Evans DB, et al. Inhibition of
platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec)
reduces growth and metastasis of human pancreatic carcinoma in an ortho-
topic nude mouse model. Clin Cancer Res (2003) 9(17):6534–44.

207. Mathew P, Thall PF, Bucana CD, Oh WK, Morris MJ, Jones DM, et al.
Platelet-derived growth factor receptor inhibition and chemotherapy for
castration-resistant prostate cancer with bone metastases. Clin Cancer Res
(2007) 13(19):5816–24. doi:10.1158/1078-0432.CCR-07-1269

208. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer.
Chemother Res Pract (2014) 2014:357027. doi:10.1155/2014/357027

209. Erlebacher A, Derynck R. Increased expression of TGF-β2 in osteoblasts
results in an osteoporosis-like phenotype. J Cell Biol (1996) 132(1–2):195–210.
doi:10.1083/jcb.132.1.195

210. Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, Heillman M, et al.
Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased
bone remodeling and increased trabecular bone mass. Development (1999)
126(19):4267–79.

211. Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi
BO, et al. TGF-beta promotion of Gli2-induced expression of parathyroid
hormone-related protein, an important osteolytic factor in bone metasta-
sis, is independent of canonical Hedgehog signaling. Cancer Res (2011)
71(3):822–31. doi:10.1158/0008-5472.CAN-10-2993

212. Buijs JT, Stayrook KR, Guise TA. TGF-beta in the Bone Microenvironment:
Role in Breast Cancer Metastases. Cancer Microenviron (2011) 4(3):261–81.
doi:10.1007/s12307-011-0075-6

213. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA. Molecular biology of bone
metastasis. Mol Cancer Ther (2007) 6(10):2609–17. doi:10.1158/1535-7163.
MCT-07-0234

214. Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, et al. Ki26894, a
novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits
in vitro invasion and in vivo bone metastasis of a human breast cancer cell line.
Cancer Sci (2007) 98(1):127–33. doi:10.1111/j.1349-7006.2006.00357.x

215. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng
XH, et al. TGF-β-RI kinase inhibitor SD-208 reduces the development and
progression of melanoma bone metastases. Cancer Res (2011) 71(1):175–84.
doi:10.1158/0008-5472.CAN-10-2651

216. Yin JJS, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser RM, et al.
TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells

www.frontiersin.org December 2014 | Volume 4 | Article 364 | 15

http://dx.doi.org/10.1074/jbc.M112.353094
http://dx.doi.org/10.1186/1476-4598-8-12
http://dx.doi.org/10.1186/1476-4598-8-12
http://dx.doi.org/10.1186/1476-4598-11-30
http://dx.doi.org/10.1038/nrc3546
http://dx.doi.org/10.1593/neo.04787
http://dx.doi.org/10.1038/368703a0
http://dx.doi.org/10.1038/nm0995-944
http://dx.doi.org/10.1038/nm0995-944
http://dx.doi.org/10.1073/pnas.1830978100
http://dx.doi.org/10.1073/pnas.1830978100
http://dx.doi.org/10.1155/2014/405920
http://dx.doi.org/10.1054/bjoc.2000.1261
http://dx.doi.org/10.1097/01.ju.0000042162.08938.27
http://dx.doi.org/10.1016/S1470-2045(13)70294-8
http://dx.doi.org/10.1016/S1470-2045(13)70294-8
http://dx.doi.org/10.1210/me.2006-0346
http://dx.doi.org/10.1038/nrc3419
http://dx.doi.org/10.1038/nrurol.2012.116
http://dx.doi.org/10.1002/jcb.20735
http://dx.doi.org/10.1038/sj.pcan.4500794
http://dx.doi.org/10.1093/oxfordjournals.jjco.a023188
http://dx.doi.org/10.1186/1476-4598-11-7
http://dx.doi.org/10.1186/1476-4598-11-7
http://dx.doi.org/10.1002/cncr.20518
http://dx.doi.org/10.1158/0008-5472.CAN-10-1887
http://dx.doi.org/10.1074/jbc.M500608200
http://dx.doi.org/10.1074/jbc.M500608200
http://dx.doi.org/10.1074/jbc.M114.558064
http://dx.doi.org/10.1158/0008-5472.CAN-05-1317
http://dx.doi.org/10.1186/1478-811X-11-97
http://dx.doi.org/10.1158/0008-5472.CAN-10-0511
http://dx.doi.org/10.1158/0008-5472.CAN-03-3047
http://dx.doi.org/10.1158/0008-5472.CAN-03-3047
http://dx.doi.org/10.1002/jor.21462
http://dx.doi.org/10.1158/1078-0432.CCR-07-1269
http://dx.doi.org/10.1155/2014/357027
http://dx.doi.org/10.1083/jcb.132.1.195
http://dx.doi.org/10.1158/0008-5472.CAN-10-2993
http://dx.doi.org/10.1007/s12307-011-0075-6
http://dx.doi.org/10.1158/1535-7163.MCT-07-0234
http://dx.doi.org/10.1158/1535-7163.MCT-07-0234
http://dx.doi.org/10.1111/j.1349-7006.2006.00357.x
http://dx.doi.org/10.1158/0008-5472.CAN-10-2651
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganguly et al. Microenvironment of prostate cancer metastasis

and bone metastases development. J Clin Invest (1999) 103(2):197–206.
doi:10.1172/JCI3523

217. Li X, Sterling JA, Fan KH, Vessella RL, Shyr Y, Hayward SW, et al. Loss of TGF-β
responsiveness in prostate stromal cells alters chemokine levels and facilitates
the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res
(2012) 10(4):494–503. doi:10.1158/1541-7786.MCR-11-0506

218. Furstenberger G, Senn HJ. Insulin-like growth factors and cancer. Lancet Oncol
(2002) 3(5):298–302. doi:10.1016/S1470-2045(02)00731-3

219. Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Burfeind P. Blockade of the
type I IGF receptor expression in human prostate cancer cells inhibits prolifera-
tion and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2
expression. J Pathol (2004) 202(1):50–9. doi:10.1002/path.1492

220. Zhao H, Dupont J, Yakar S, Karas M, LeRoith D. PTEN inhibits cell prolifera-
tion and induces apoptosis by downregulating cell surface IGF-IR expression
in prostate cancer cells. Oncogene (2004) 23(3):786–94. doi:10.1038/sj.onc.
1207162

221. Hiraga T, Myoui A, Hashimoto N, Sasaki A, Hata K, Morita Y, et al. Bone-
derived IGF mediates crosstalk between bone and breast cancer cells in bony
metastases. Cancer Res (2012) 72(16):4238–49. doi:10.1158/0008-5472.CAN-
11-3061

222. Ryan CJ, Haqq CM, Simko J, Nonaka DF, Chan JM, Weinberg V, et al. Expres-
sion of insulin-like growth factor-1 receptor in local and metastatic prostate
cancer. Urol Oncol (2007) 25(2):134–40.

223. Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and
their receptors in prostate cancer. Endocr Relat Cancer (2004) 11(4):709–24.
doi:10.1677/erc.1.00535

224. Abate-Shen C, Shen MM. FGF signaling in prostate tumorigenesis – new
insights into epithelial-stromal interactions. Cancer Cell (2007) 12(6):495–7.
doi:10.1016/j.ccr.2007.11.021

225. Corn PG, Wang F, McKeehan WL, Navone N. Targeting fibroblast growth
factor pathways in prostate cancer. Clin Cancer Res (2013) 19(21):5856–66.
doi:10.1158/1078-0432.CCR-13-1550

226. Dorkin TJ, Robinson MC, Marsh C, Neal DE, Leung HY. aFGF immunoreac-
tivity in prostate cancer and its co-localization with bFGF and FGF8. J Pathol
(1999) 189(4):564–9. doi:10.1002/(SICI)1096-9896(199912)189:4<564::AID-
PATH480>3.0.CO;2-1

227. Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic fibroblast
growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin
Cancer Res (1999) 5(5):1063–71.

228. Ropiquet F, Giri D, Kwabi-Addo B, Mansukhani A, Ittmann M. Increased
expression of fibroblast growth factor 6 in human prostatic intraepithelial
neoplasia and prostate cancer. Cancer Res (2000) 60(15):4245–50.

229. Freeman KW, Welm BE, Gangula RD, Rosen JM, Ittmann M, Green-
berg NM, et al. Inducible prostate intraepithelial neoplasia with reversible
hyperplasia in conditional FGFR1-expressing mice. Cancer Res (2003)
63(23):8256–63.

230. Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, et al.
Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma
and an epithelial-to-mesenchymal transition. Cancer Cell (2007) 12(6):559–71.
doi:10.1016/j.ccr.2007.11.004

231. Ozen M, Giri D, Ropiquet F, Mansukhani A, Ittmann M. Role of fibroblast
growth factor receptor signaling in prostate cancer cell survival. J Natl Cancer
Inst (2001) 93(23):1783–90. doi:10.1093/jnci/93.23.1783

232. Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J, et al. Androgen
receptor-negative human prostate cancer cells induce osteogenesis in mice

through FGF9-mediated mechanisms. J Clin Invest (2008) 118(8):2697–710.
doi:10.1172/JCI33093

233. Valta MP, Hentunen T, Qu Q, Valve EM, Harjula A, Seppanen JA, et al. Regula-
tion of osteoblast differentiation: a novel function for fibroblast growth factor
8. Endocrinology (2006) 147(5):2171–82. doi:10.1210/en.2005-1502

234. Valta MP, Tuomela J, Bjartell A, Valve E, Vaananen HK, Harkonen P. FGF-
8 is involved in bone metastasis of prostate cancer. Int J Cancer (2008)
123(1):22–31. doi:10.1002/ijc.23422

235. Teishima J, Shoji K, Hayashi T, Miyamoto K, Ohara S, Matsubara A. Relation-
ship between the localization of fibroblast growth factor 9 in prostate can-
cer cells and postoperative recurrence. Prostate Cancer Prostatic Dis (2012)
15(1):8–14. doi:10.1038/pcan.2011.48

236. Lamb LE, Knudsen BS, Miranti CK. E-cadherin-mediated survival of
androgen-receptor-expressing secretory prostate epithelial cells derived from
a stratified in vitro differentiation model. J Cell Sci (2010) 123(Pt 2):266–76.
doi:10.1242/jcs.054502

237. Foster BA, Evangelou A, Gingrich JR, Kaplan PJ, DeMayo F, Greenberg NM.
Enforced expression of FGF-7 promotes epithelial hyperplasia whereas a dom-
inant negative FGFR2iiib promotes the emergence of neuroendocrine phe-
notype in prostate glands of transgenic mice. Differentiation (2002) 70(9–
10):624–32. doi:10.1046/j.1432-0436.2002.700915.x

238. Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA,
et al. Enhanced paracrine FGF10 expression promotes formation of multifo-
cal prostate adenocarcinoma and an increase in epithelial androgen receptor.
Cancer Cell (2007) 12(6):572–85. doi:10.1016/j.ccr.2007.11.002

239. Liu W, Zhou Y, Reske SN, Shen C. PTEN mutation: many birds with one stone
in tumorigenesis. Anticancer Res (2008) 28(6A):3613–9.

240. Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A, et al. Prostate
cancer metastasis: role of the host microenvironment in promoting epithelial
to mesenchymal transition and increased bone and adrenal gland metastasis.
Prostate (2006) 66(15):1664–73. doi:10.1002/pros.20488

241. Corey E, Quinn JE, Buhler KR, Nelson PS, Macoska JA, True LD, et al. LuCaP
35: a new model of prostate cancer progression to androgen independence.
Prostate (2003) 55(4):239–46. doi:10.1002/pros.10198

242. Corey E, Quinn JE, Vessella RL. A novel method of generating prostate
cancer metastases from orthotopic implants. Prostate (2003) 56(2):110–4.
doi:10.1002/pros.10235

Conflict of Interest Statement: The authors declare that the writing of this review
article was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Received: 01 October 2014; paper pending published: 17 November 2014; accepted: 29
November 2014; published online: 15 December 2014.
Citation: Ganguly SS, Li X and Miranti CK (2014) The host microenvironment influ-
ences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic
metastasis. Front. Oncol. 4:364. doi: 10.3389/fonc.2014.00364
This article was submitted to Cancer Endocrinology, a section of the journal Frontiers
in Oncology.
Copyright © 2014 Ganguly, Li and Miranti. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Oncology | Cancer Endocrinology December 2014 | Volume 4 | Article 364 | 16

http://dx.doi.org/10.1172/JCI3523
http://dx.doi.org/10.1158/1541-7786.MCR-11-0506
http://dx.doi.org/10.1016/S1470-2045(02)00731-3
http://dx.doi.org/10.1002/path.1492
http://dx.doi.org/10.1038/sj.onc.1207162
http://dx.doi.org/10.1038/sj.onc.1207162
http://dx.doi.org/10.1158/0008-5472.CAN-11-3061
http://dx.doi.org/10.1158/0008-5472.CAN-11-3061
http://dx.doi.org/10.1677/erc.1.00535
http://dx.doi.org/10.1016/j.ccr.2007.11.021
http://dx.doi.org/10.1158/1078-0432.CCR-13-1550
http://dx.doi.org/10.1002/(SICI)1096-9896(199912)189:4<564::AID-PATH480>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1096-9896(199912)189:4<564::AID-PATH480>3.0.CO;2-1
http://dx.doi.org/10.1016/j.ccr.2007.11.004
http://dx.doi.org/10.1093/jnci/93.23.1783
http://dx.doi.org/10.1172/JCI33093
http://dx.doi.org/10.1210/en.2005-1502
http://dx.doi.org/10.1002/ijc.23422
http://dx.doi.org/10.1038/pcan.2011.48
http://dx.doi.org/10.1242/jcs.054502
http://dx.doi.org/10.1046/j.1432-0436.2002.700915.x
http://dx.doi.org/10.1016/j.ccr.2007.11.002
http://dx.doi.org/10.1002/pros.20488
http://dx.doi.org/10.1002/pros.10198
http://dx.doi.org/10.1002/pros.10235
http://dx.doi.org/10.3389/fonc.2014.00364
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive

	The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis
	Foreward
	Tumor microenvironment in promoting prostate cancer metastasis
	Introduction
	Integrins in PCa progression
	Proteases in PCa tumor invasion and metastasis
	Epithelial-mesenchymal transition in promoting PCa metastasis

	Tumor microenvironment in prostate cancer bone homing and colonization
	Secreted factors in PCa bone homing
	Ectopic site pre-remodeling
	Adhesion molecules in PCa colonization

	Tumor microenvironment in promoting osteoblastic lesions
	Factors that induce osteoblastic bone metastasis
	Bone morphogenetic proteins
	Endothelin 1
	Wnt
	Platelet-derived growth factor

	Factors released from the bone microenvironment
	Transforming growth factor-β
	Insulin-like growth factor
	Fibroblast growth factor


	Challenges that remain
	Conclusion and perspectives
	Author contributions
	Acknowledgments
	References


