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Cancer immunotherapy has finally come of age, demonstrated by recent progress in strate-
gies that engage the endogenous adaptive immune response in tumor killing. Occasionally,
significant and durable tumor regression has been achieved. A giant leap forward was the
demonstration that the pre-existing polyclonal T cell repertoire could be re-directed by use
of cloned T cell receptors (TCRs), to obtain a defined tumor-specific pool of T cells. How-
ever, the procedure must be performed with caution to avoid deleterious cross-reactivity.
Here, the use of engineered soluble TCRs may represent a safer, yet powerful, alterna-
tive. There is also a need for deeper understanding of the processes that underlie antigen
presentation in disease and homeostasis, how tumor-specific peptides are generated, and
how epitope spreading evolves during tumor development. Due to its plasticity, the pivotal
interaction where a TCR engages a peptide/MHC (pMHC) also requires closer attention.
For this purpose, phage display as a tool to evolve cloned TCRs represents an attractive
avenue to generate suitable reagents allowing the study of defined pMHC presentation,
TCR engagement, as well as for the discovery of novel therapeutic leads. Here, we highlight
important aspects of the current status in this field.

Keywords: phage display, tumor immunity, antigen presentation,T cell receptor, immunotherapy

INTRODUCTION
T cells initiate and regulate adaptive immune responses to
infections, are major components of allergic and autoimmune
responses as well as transplant rejection, and play a pivotal role
in cancer immune surveillance (1). The cancer-prone phenotypes
of mice that lack components of the adaptive immune system
strongly points to lymphocytes as critical factors in the anti-tumor
activity (2). That the T cells represent the critical lymphocyte
population is further underscored by a correlation between the
presence of tumor infiltrating lymphocytes (TILs) and ability to
control tumor growth. The CD45RO+ memory sub-group of the
CD3 T cell compartment appears responsible of this activity (3,
4), and the CD8+ and CD4+ T cells probably act in concert (5).
Furthermore, the observation that selective CD4+ TH cell silenc-
ing may abrogate the anti-tumor response points to the CD4+

TH cells as crucial (6, 7). It is also clear that adoptive cell therapy
(ACT) through the use of CD8+ cytotoxic T lymphocyte (CTL)
or CD4+ TH cells may both result in durable anti-tumor activity
(8–10). This is not merely a consequence of specific T cell target
recognition, nor the affinity by which the T cell receptor (TCR)
recognizes the target (11–13). Thus, to further delineate the mech-
anisms that lead to successful anti-tumor responses and how these
can be exploited, it becomes imperative to further characterize
the TCR–peptides bound to MHC molecules (pMHC) interac-
tion, both at the cellular and the molecular level. The latter has
posed a challenge to the field, since recombinant soluble TCRs have
proven difficult to manufacture and work with. Consequently, our

ability to study this pivotal interaction still depends on technology
development (14). As such, protein engineering using combina-
torial technologies is a powerful tool (15). Here, we focus on
examples derived from the most prevalent combinatorial platform
technology, namely phage display (16).

T CELL SPECIFICITY AT THE MOLECULAR LEVEL
T cell function relies on productive binding between TCRs and
antigens, which are proteolytically derived pMHC displayed on
the surface of a variety of antigen presenting cells (APCs). Most
TCRs bind pMHC ligands in a semi-conserved diagonal orien-
tation with the somatically derived CDR3 loops located centrally
atop the bound peptide, and the germ-line encoded variable CDR1
and CDR2 loops positioned over the MHC α helices (17). Upon
activation, T cells may proliferate, differentiate, release cytokines,
kill target cells, or carry out other effector functions. Thus, the
ability of T cells to orchestrate the adaptive anti-tumor response
depends on the TCR–pMHC interaction and downstream signal-
ing events (18, 19). Productive interactions between TCRs and
pMHCs are among the weakest known to initiate a biological
response (20–22). Thus, a T cell needs to discriminate between
foreign and self-peptides bound to MHC molecules even though
the differences in affinity and binding kinetics may be minute (21,
22). Nonetheless, the earliest events in TCR signaling are charac-
terized by high sensitivity and selectivity toward agonist pMHC
(19). This is remarkable considering the apparent promiscuity of
TCR binding, which in extreme cases have been suggested to be
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in the range of 106 different peptides, yet still in a HLA restricted
context (23). Such scaffold-dependent ligand binding promiscu-
ity may partly be attributed to germ-line encoded HLA interaction
signatures that ensure preservation of HLA restriction (24–27). It
could also be an important feature explaining how a limited num-
ber of TCR germ line segments in combination with somatically
generated CDR3 loops serve as versatile building blocks that gen-
erate a supply of TCRs able to promptly respond to a universe
of pathogens (28–30). Clearly, multi-epitope specificity can also
be a characteristic of tumor-specific TCRs, as shown in the study
of Chinnasamy et al. focusing on HLA-A2/MAGE-A3 targeting
(31). However, during ACT, such lack of mono-specificity may
translate into fatal toxicity, underscoring the need for improved
procedures for pre-clinical testing (32). Also, there is a need for
a very precise delineation of how a TCR actually sees its cog-
nate pMHC target, since minute structural changes may translate
into very different cellular responses (33). Here, elucidating the
underlying thermodynamic parameters governing the interaction
may give clues to the rules that dictate TCR specificity (34, 35).
Such biophysical insight may be further complemented by precise
delineation of docking modes and binding studies that mimic the
cellular topology (36, 37). In either case, one will need access to
sufficient amounts of pure and stable soluble TCR and pMHC
proteins.

REDUCTIONIST APPROACH TO UNDERSTANDING THE
pMHC–TCR INTERACTION – THE TCR EXPRESSION PROBLEM
T cell receptors are membrane anchored proteins, and it is chal-
lenging to obtain sufficient quantities of recombinant soluble
TCRs for molecular studies. A variety of approaches have there-
fore been adopted, including formation of single chain (sc) TCR,
an analog to scFv antibody (Ab) fragments, and fusion of the
extracellular TCR domains to other proteins; i.e., maltose binding
protein, thioredoxin, human constant kappa domain, or leucine
zippers (38–42). However, all of these strategies have had limited
success due to low production yield and poor functionality. The
most widely applied format as of today is the disulfide-bond linked
TCRs (dsTCRs), which have a non-native disulfide bridge between
the TCR constant domains (43). The method has significantly
increased the stability and improved the folding characteristics
of several human TCRs (44) when refolded from inclusion bod-
ies, whereas direct soluble expression appears of limited utility (44,
45). An alternative approach is periplasmic expression with simul-
taneous over-expression of the chaperone FkpA, which has a huge
impact on both the yield and functionality of the TCRs expressed
(46). However, despite the optimized and improved methods, all
are laborious and the expression levels vary extensively between
individual clones. Thus, in many cases engineering of the TCR
scaffold for higher stability, solubility and clone independent
expression levels appears needed to obtain high quality protein.

TCR STABILITY CAN BE ENGINEERED BY USE OF PHAGE
DISPLAY
Evolution of recombinant proteins by random mutagenesis and
subsequent in vitro selection has been successfully applied to a
wide range of protein classes (47), and in particular antibodies
(48). One such strategy has utilized selection of mutated heavy

chain variable domains in combination with thermal challenge
to obtain aggregation-resistant domains (49). Recently, guided
by the study of Jespers et al., molecular evolution of a TCR for
increased stability and expression was carried out by use of phage
display (50). Libraries of randomly mutated scTCRs were pro-
duced as fusion to protein III on the surface of M13 phage. High
valence display allowed stress-induced aggregation after thermal
challenge (Figure 1). Variants characterized by markedly increased
soluble expression levels and reduced aggregation propensity were
obtained after rapid heating and cooling, followed by capture of
aggregation-resistant scTCRs (Figures 1A,D). Importantly, over-
expression of the periplasmic chaperone FkpA resulted in even
display levels among the TCR library members, which proved
imperative for successful selection. Thus, the previously identified
folding assistance to soluble and phage displayed scTCRs offered
by FkpA now allows for extended engineering opportunities to
TCRs in conjunction with high-throughput soluble screening
(Figures 1A,B,D). The list of strategies used for engineering of
increased protein biophysical stability employing destabilization
challenges in combination with multivalent phage display selec-
tion has been further extended. Famm et al. reported selection of
Ig domains resistant to e.g., acidic pH induced aggregation with
increased thermodynamic stability (51, 52). Furthermore, Christ
et al. have reported a method for generation of Ab sub repertoires,
based on combinatorial assembly of CDRs from an aggregation-
resistant repertoire (53). Repeated cycles of selection and thermal
denaturation generated domains with remarkable aggregation-
resistant properties. Similar strategies may well be employed to
obtain soluble TCR scaffolds with even higher expression levels
and increased stability than reported to date (50, 54).

TCR AFFINITY CAN BE ENGINEERED BY USE OF PHAGE
DISPLAY
To overcome the intrinsically low binding affinity of the TCR–
pMHC interaction, two approaches have been utilized, namely
multimerization and affinity maturation. Tetrameric forms of sol-
uble TCRs have been produced by capturing biotinylated TCRs
onto avidin, which have four binding sites for biotin (60, 61). The
overall increased avidity greatly increases the half-life of the TCR–
pMHC interaction. Such reagents are used in cellular binding
assays, as they stably adhere to the cell surface. Crucial information
may be collected that allows for deduction of biologically rele-
vant information (61). However, for example direct assessment
of peptide presentation at stoichiometric levels requires stronger
binding between the TCR and pMHC than what is possible to
reach with native TCRs (60). Therefore, affinity maturation of
TCRs for increased binding has been performed. Again, phage
display technology has been efficient (15, 57), and selection from
mutant TCR display libraries can yield TCRs with dramatically
increased affinities toward the cognate pMHCs without concomi-
tant increase in cross-reactivity (Figures 1B–D). Crystallographic
data show that this can be explained by a loss of flexibility in
the otherwise entropically unfavorable TCR–pMHC interaction
interphase, as well as an overall increase in shape complemen-
tarity (62). The degenerate pMHC interaction mode of TCRs
could suggest that engineering must be restricted to the somatically
derived CDR3 loops to preserve MHC restriction (26). However,
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FIGURE 1 | Stability engineering and affinity maturation of solubleTCRs.
(A) Stability engineering of scTCR. The variable (V) regions of an individual
TCR (1) are cloned and connected via a synthetic linker (55). This scTCR is
expressed as fusion to the M13 pIII capsid protein (2). The scTCR is then
diversified by in vitro mutagenesis (3). This collection of mutagenized scTCRs
are expressed as a high valence display phage library (4), which is challenged
with increased temperature, unfavorable acid/base, or chaotropic conditions
(5). Stabilized scTCR resisting aggregation despite the challenge is retrieved
by capture on a conformation-specific ligand, such as an Ab (6). (B) Affinity
maturation of scTCR. The V regions of an individual TCR (1) are cloned and
expressed as a scTCR fusion to either the M13 pIII (55), or pIX capsid protein
(56) (2). Individual TCR α- and β-chain CDR loops of the scTCR are randomized
to create diversity (3). This collection of mutagenized scTCRs is then
expressed as a low (4a) or high (4b) valence display phage library, which is
selected against pMHC (5a and b). (C) Affinity maturation of dsTCR. The V

regions of an individual TCR (1) are cloned and expressed as fusions to
prototypic constant (C) domains stabilized by an artificial disulfide bridge,
hence reconstituting the complete TCR ectodomain architecture (43). This
recombinant dsTCR is then expressed as fusion to the M13 pIII capsid protein
(2). Individual TCR α- and β-chain CDR loops of the dsTCR are randomized to
create diversity (3). Usually this process is confined to the in vivo pMHC
specificity-determining CDR3 loops (57), but has also been successfully
applied to the germ-line encoded CDR2 only (58, 59). This collection of
mutagenized dsTCRs is then expressed as a low valence display phage library
(57), which is selected against pMHC (5). (D) Screening of engineered dsTCR
and scTCR. The stability engineered (A), or affinity matured (B) scTCR is
reformatted to soluble, periplasmic expression (46), and individual mutated
scTCRs screened for functionality against target immobilized on solid phase.
The screening for desired binders following dsTCR selection is done on phage
due to incompatibility with high-throughput soluble dsTCR screening (45).

this appears not to be the case as also the germ-line encoded CDR2
loop has been targeted by mutagenesis resulting in increased affin-
ity (58, 63). Such engineered high-affinity TCRs have been used
to study low level tumor associated pMHC presentation at phys-
iological levels to obtain information that has previously been
unattainable (64–66).

LESSONS LEARNT – TRANSLATION TO THE TUMOR pMHC
COMPLEXES AND CANCER THERAPY
Conformational plasticity in the CDR loops upon pMHC bind-
ing appears to be a driving mechanism upon TCR–pMHC com-
plex formation, whereas, rigid “lock and key” interaction modes
also have been reported (67). This energetic diversity reflects
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the multiple binding strategies implemented by the TCR during
pMHC engagement. However, in spite of the described diversity
(68), step by step, we are unveiling the mechanism by which a TCR
deciphers a pMHC complex.

The low level of molecular shape complementarity in the
TCR–pMHC complex gives rich opportunities for in vitro affin-
ity maturation (57, 58, 62). This feature is likely to be generic
to most TCRs (26). In the case of the affinity maturation of a
HLA-A2/MART-1 specific TCR, the increase in shape comple-
mentarity was focused primarily onto the MHC portion of the
complex essentially without affecting the peptide interaction (69).
Thus, loss of peptide specificity could potentially be expected.
However, structural and thermodynamic investigations suggested
that this was not the case. In stark contrast, the opposite pMHC
interaction strategy was employed by a different TCR recently
reported, which was evolved toward high affinity against the HLA-
A2/Tax complex. Here, a peptide-focused mechanism was found to
underlie the enhanced affinity (59). Thus, the authors suggest an
alternative interaction mode to the generally accepted two-step
TCR–pMHC binding model (19). Here, instead of first dock-
ing the CDR1 and CDR2 onto the MHC, followed by kinetic
proofreading of the peptide by the CDR3s, the opposite order
of interaction is suggested. This scan-clamp model fits well with
how weak, but specific protein–protein interactions have been
stabilized by affinity clamping in other trimeric complexes anal-
ogous to TCR–pMHC (70, 71). It also explains how exquisite
peptide specificity can be preserved both in natural and engi-
neered systems. In either case, the picture is not consistent, and
the observation that complementary structural fluctuations of
both the antigenic peptide and the CDR3s of the TCR prevail
even after final complex formation, underscores the remarkable
flexibility of the interaction (35). Thus, at present it is challenging
to validate both naturally and artificially evolved TCRs e.g., for
safe use in therapy. Despite rigorous classical pre-clinical valida-
tion, a human clinical pilot study resulted in fatal cardiac toxicity
due to unforeseen cross-reactivity when an affinity matured TCR
against HLA-A1/MAGE-A3 was employed in specificity redirected
ACT (32).

Also, there are still many questions to be answered regarding
the difference between MHC class I and class II restricted TCRs.
In particular, it is important to understand the significance of
co-receptors in creating a fully functional immunological synapse
(72). For instance, it has been shown that CD8 plays a stabilizing
role in the TCR–pMHC class I interaction (73), whereas, CD4 does
not appear to play a role in the corresponding TCR–pMHC class II
interaction (36). Notably, these two co-receptor interactions differ
significantly in MHC binding strength, which may possibly elude
to their differential importance (72). Thus, an affinity threshold
has been observed for the CD8 T cell compartment that limits
the benefits of very high intrinsic affinity between TCR–pMHC
class I (11, 74–77). So far, this has not been observed for TCR–
pMHC class II. Even though fewer examples have been reported
with respect to TCRs reactive toward pMHC class II, it appears
that different functional rules govern this interaction (74, 77, 78),
and pilot trials have shown promising results in pMHC class II
restricted ACT (10, 79).

CONCLUDING REMARKS
The ability to engineer stable and high-affinity TCRs offers a
unique ability to harness the immune system with an improved
ability to respond to a given pMHC. However, our current under-
standing is still incomplete with respect to how this can safely be
translated into durable cancer immunotherapy (9). One would
expect improved affinity to translate into improved killing ability,
but the empirical data suggest otherwise. Rather, an affinity thresh-
old limiting any additional benefit in cellular responses above a
certain TCR–pMHC binding strength has been reported, as out-
lined above. Moreover, the affinity threshold appears to be largely
confined to the CD8 T cell compartment, as nearly all high-affinity
engineered CD4 T cells have responded with both improved pep-
tide sensitivity and preserved specificity. This gives clues as to how
one might differentially exploit TCRs derived from the two dis-
tinct T cell compartments. On one hand, engineered high-affinity
MHC class I and II restricted TCRs may both serve as very potent
cytotoxic drugs in a soluble format (80). On the other hand, the
most potent avenue for redirected cell therapy might in some cases
be limited to the MHC class II restricted compartment due to the
CD8 T cell affinity threshold (10, 74).

A final question is whether or not one actually needs to apply
ACT to achieve optimal clinical benefit. ACT is demanding as it
relies on massive ex vivo autologous cell expansion, which will
be difficult in major patient groups for example due to cellular
senescence (81–83). Epitope spreading appears to be the signa-
ture of successful anti-tumor immune responses (10, 13, 84, 85).
Now it appears that this can also be achieved by the use of sol-
uble TCRs harnessed with the ability to recruit the endogenous
adaptive effector apparatus (80, 86). Such soluble TCRs appear
attractive compared to the cellular approaches in light of patient
convenience and safety issues (32). The use of a soluble TCR obvi-
ates the need for ex vivo cell expansion and a single drug may be
used by a genetically heterogeneous patient population sharing
the target MHC allele only. Putative off target toxicity may also be
better controlled, and quenched if needed, due to tunable dosing
and limited drug half-life. A soluble drug would also be less prone
to efficacy variation due to in vivo regulatory mechanisms than
ACT. How well the soluble TCR approach is reduced to clinical
practice is currently under investigation through a first in man
phase I/II clinical trial in late-stage malignant melanoma target-
ing a HLA-A2/gp100 complex (http://www.clinicaltrials.gov/ and
IMCgp100).

Undoubtedly, improved phage display technology will continue
to be a driver in providing engineered TCRs, which will be pow-
erful tools to monitor and elucidate specific pMHC complexes, as
well as creating novel specificities suitable for safe use in the clinic.
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