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Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only trans-
lation factors but also pleiotropic proteins that are highly expressed in human tumors,
including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton,
exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast,
eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2
leads to cellular transformation and gives rise to tumors in nude mice.The eEF1A2 protein
stimulates the phospholipid signaling and activates the Akt-dependent cell migration and
actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A
proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis.
Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replica-
tion, decreased apoptosis, and increased cellular transformation. This review summarizes
the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in
numerous human diseases through enhancement of oncogenesis, blockade of apoptosis,
and increased viral pathogenesis.
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INTRODUCTION
Translation is the central event leading to protein synthesis and
translation factors are key actors involved in the translation process
(1–3). Recently, it has been suggested that translation factors could
represent a new class of potential oncoproteins that could favor cel-
lular transformation through protein translation infidelity, asso-
ciation with cytoskeleton alterations, and modulation of signaling
pathways (3–5). The eukaryotic translation elongation factors 1
alpha, eEF1A1 and eEF1A2, are the second most abundant protein
(1–3% of total protein content) after actin and an important com-
ponent of translation machinery. In its GTP bound form, eEF1A1
and eEF1A2 deliver the aminoacylated-tRNA to the A site of the
ribosome for decoding of mRNA by codon–anticodon interactions
(6). Following the hydrolysis of GTP,eEF1A (eEF1A1 and eEF1A2),
GDP is released from the ribosome (6). Thus, eEF1A1 and eEF1A2
are GTP-binding proteins and consist of three domains namely
domain I, domain II, and domain III. Domain I spans over 1–240
residues, which made up of a Rossmann-fold topology. Domain
II (241–336 amino acids) and domain III (residues 337–443) con-
sist of beta strands and each domain contains two beta sheets that
form the beta barrel (7–10) (Figure 1).

There are two known isoforms of protein eEF1A, i.e., eEF1A1
and eEF1A2. The cellular expression of eEF1A is divided into three
classes. First are the majority of cell types that express only eEF1A1.
Second, neurons and muscle cells that express only eEF1A2. Third
class belongs to certain tumor cell types and cell lines that express
both eEF1A isoforms (11–13). eEF1A1 protein has been mapped
on chromosomes 6q14. eEF1A1 protein shares homology with
eEF1A2 protein at the nucleotide level (75%) and amino acid

level (96%). eEF1A2 does not bind GDP and GTP with the same
relative affinity as eEF1A1. The GDP dissociation rate constant
is seven times higher for eEF1A1 than for eEF1A2. In addition,
the nucleotide preference ratio (GDP/GTP) for eEF1A1 is 0.82
and for eEF1A2 is 1.50 (14–17). Furthermore, eEF1A has been
shown to be a novel component of the nuclear export machin-
ery in mammalian cells and is involved in the nuclear export of
specific proteins such as VHL van Hippel-Lindau (VHL) tumor
suppressor and poly(A)-binding protein (PABP1) (18).

The eEF1A2 gene is present in the common ancestor of eukary-
otes (Table 1; Figure 2). Human eEF1A2 gene spans approximately
12 kb human genome sequence, which consists of eight exons and
seven introns plus 2 kb upstream promoter region, and has been
mapped on chromosome 20q13.3. Analysis of the region −2064
to +220 reveals that the promoter region contains the binding
sites for several important cis-regulatory elements (E-boxes, EGR
family proteins, GATA motif, and MEF binding site) with no
TATA elements (Figure 3). The core region of the promoter is
mapped from position −16 to +92 (9, 19). Beyond its central
role in translation machinery, eEF1A2 plays an important role in
cell cycle regulation, heat-shock response, aging, posttranslational
modifications, and signal transduction (20–23).

Protein synthesis is one of the most sophisticated biochemical
processes occurring in the cell, which requires hundred of proteins,
including eEF1A proteins, eEF1A1 and eEF1A2. Besides the role
of eEF1A proteins in the translational process, an increasing series
of data are presently emerging about the non-canonical roles of
these proteins in oncogenesis, modulation of apoptosis and viral
pathogenesis (1, 20).
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Abbas et al. Non-canonical function of EF1A

FIGURE 1 | Comparative three-dimensional (3-D) model of eEF1A1
(A) and eEF1A2 (B) on the basis of crystal structure of homologous
eEF1A from yeast. The target sequences used were eEF1A1 (Swiss-Prot
Accession No: P68104) and eEF1A2 (Swiss-Prot Accession No: Q05639).
The amino acids sequences of each protein were submitted to
SWISS-MODEL server to build a 3D model (10).The highest resolved
structure, 1.67-Å X-ray-derived eEF1A protein structure from yeast

(Saccharomyces cerevisiae) with PDB ID: 1f60 and E -value 0.0 (sequence
identity: 80.371%) was used as a template for modeling. Structurally, each
model consists of three domains, domain I, domain II, and domain III as
shown in the above cartoon. Domain I (residues 1–240) is made up of
Rossmann-fold topology. Domain II (residues 241–336) and domain III
(residues 337–443) are made up of entirely from beta-strands; each
domain contains two beta sheets that form a beta barrel (7).

Table 1 | Orthologs for eEF1A2 gene.

Organism Similarity with human

Nucleotide (%) Amino acid (%)

Chimpanzee 78.31 92.41

Rat 89.27 99.78

Mouse 89.13 99.78

Chicken 88.91 99.57

Mosquito 78.99 85.42

Fruit fly 77.68 83.91

CANCER
BREAST CANCER
Breast cancer is the most common cancer in women both in the
developing and developed world; there are an estimated 1 million
new cases per year. The use of gene signature or the identification
of changes in gene expression in breast tumors relative to normal
surrounding tissue is of great importance in terms of prognos-
tic indicators and therapeutic targets (24). The eEF1A2 is hardly
detectable in normal human breast tissue but the expression of
eEF1A2 is strongly upregulated in most of breast tumors (25,
26). High levels of eEF1A2 proteins are detected in 60% of pri-
mary breast tumors and metastases, but not in normal epithelium
(Table 2). The expression of eEF1A2 is sufficient to stimulate the
formation of filopodia in BT549 human breast cancer cells and
non-transformed Rat2 cells. Moreover, its expression is sufficient
to activate Akt in a PI3K-dependent fashion, as down-regulation
of eEF1A2 by siRNA reduces Akt activity. In breast cancer cell line

BT549, eEF1A2 expression stimulates cell migration and invasion
in a largely PI3K and Akt-dependent manner, suggesting eEF1A2
regulates oncogenesis through Akt and PI3K-dependent cytoskele-
ton remodeling (27–29). In fact, eEF1A2 participates in the reg-
ulation of the phospholipids signaling pathway (Figure 4). Phos-
phatidylinositols are negatively charged membrane bound phos-
pholipids that participate in the pathways that regulate the cell pro-
liferation, survival, cytoskeleton organization, vesicular traffick-
ing, and oncogenesis (30, 31). Phosphoinositols are composed of
an inositol ring in which one or more−OH groups at the 3-,4-, and
5-position of inositol ring are esterified with a phosphate group
in all possible combinations. Specific kinase families (PI3K, PI4K,
and PI5K) are responsible for phosphorylation at these sites (32,
33). Overexpression of eEF1A2 protein up-regulates overall PI4K
activity and cellular phosphatidylinositol 4-phosphate (PI4P) gen-
eration in human cells. Furthermore, eEF1A2 directly interacts
with and activates phosphatidylinositol-4 kinase III β (a subfamily
of PI4K), an enzyme that converts phosphatidylinositol to PI4P.
Knockdown of eEF1A2 using eEF1A2 siRNA results in down-
regulation of phosphatidylinositol-4-kinase activity indicating
that eEF1A2 is a physiological regulator of PI4KIIIβ signaling (34,
35). In addition, eEF1A2 expression up-regulates the generation
of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the cyto-
plasm and at the plasma membrane. The subsequent increase in
PI(4,5)P2 at the plasma membrane stimulates the eEF1A2-induced
filopodia formation through binding and activation of PI4KIII β.
Therefore, eEF1A2 is involved in phosphatidylinositol signaling
and actin remodeling (34, 36). Moreover, the gene expression pro-
filing of primary mouse B cell lineage showed the high expression
of eEF1A2 in plasmacytomas (PCT), which results in progression
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Abbas et al. Non-canonical function of EF1A

FIGURE 2 | Phylogenetic tree constructed from the alignment of
nucleotide and protein sequences of eEF1A2. The horizontal lines
are the branches and suggest the amount of evolutionary changes over
time. (A) Phylogenetic tree based on nucleotide sequences of eEF1A2
(Human: NM_001958.3, Chimpanzee: XM_003954094.1, Rat:
NM_012660.2, Mouse: NM_007906.2, Fruit fly: NM_079872.4,
Chicken: NM_001032398.2, and Mosquito: XM_003436467.1) using

neighbor-joining distance method. The numbers indicate the
evolutionary distances. (B) Phylogenetic tree based on amino acid
sequences of eEF1A2 (Human: NP_001949.1, Chimpanzee:
XP_003954143.1, Rat: NP_036792.2, Mouse: NP_031932.1, Fruit fly:
NP_524611.1, Chicken: NP_001027570.1, and Mosquito:
XP_003436515.1 using neighbor-joining (PAM250). The Jalview
program was used for tree construction.
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FIGURE 3 | Promoter of eEF1A2. The promoter of eEF1A2 spans approximately 2.26 kb. Analysis of promoter sequence reveals 13 E-boxes, 3 EGR binding
sites, and 1 MEF2 binding site. The core promoter region spans from position −16 to +92 bp.

of plasma cell neoplasms in both mouse and human (29). Finally,
the knockdown of eEF1A2 expression delays or impairs the IL-6-
induced activation of STAT3 and Akt signaling pathways suggest-
ing that activation of STAT3 and Akt through eEF1A2 involvement
that favors cell proliferation, cell cycle progression, and inhibi-
tion of apoptosis (29, 37, 38). Altogether, eEF1A2 protein activates
the PIK-Akt-STAT3 pathways that have been extensively shown to
favor cellular transformation and oncogenesis (39–44) (Figure 4).

In breast cancer, the genes in 20q13 are frequently amplified
and have been shown by using comparative genomic hybridiza-
tion and fluorescence in situ hybridization (45). The differential
screening of cDNA libraries from metastatic and non-metastatic

cell lines derived from the same parental rat mammary adenocarci-
noma showed a 1.5-fold overexpression of eEF1A in the metastatic
compared to the non-metastatic cells (46). Studying cancer cell
lines derived from breast, lung, prostate, and skin, eEF1A2 gene
expression exhibited the highest alteration in the cancer cell lines
compared to normal controls using a profiling array (47–50).

OVARIAN CANCER
Ovarian cancer represents 4% of all female cancer. It has the
highest fatality to case ratio of all gynecological cancers because
the majority of cases are diagnosed in the late stage. Despite of
significant efforts to improve the early detection and advances
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Table 2 | Expression of eEF1A2 in different human cancers.

Type of cancer Methods of detection Relevant findings Reference

Breast cancer Real-time reverse transcription-PCR/Tissue

array/Immunohistochemistry/western blot

eEF1A2 mRNA/protein is highly expressed in 50–60% in primary

human breast cancer

(25, 39)

Ovarian cancer Tissue-microarray/Immunohistochemistry eEF1A2 is highly expressed in 30% of primary ovarian tumors (40, 56)

Lung cancer Comparative genomic hybridization Positive Ki-67 expression associated with positive eEF1A2 and

KCIP-1

(41, 42)

Hepatocellular carcinoma Immunohistochemistry eEF1A2 is highly expressed in half of hepatocellular carcinoma (43, 44)

PtdIns4P
PtdIns4P

PtdIns4P

PtdIns4P
PtdIns4P

PtdIns4P
PtdIns4P

eEF1A2

PI4KIIIβ

PI4KIIIβPI4K

PI4KIIIβI4K

PI4KIIIβI4K
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PI4KIIIβ

eEF1A2PI4KIIIβ

PtdIns

PI4KIIIβ

PtdIns PtdIns4P

Phospholipid signaling
PI(4,5)P2 synthesis

Filopodia formation

Actin remodeling

Akt pathway

Cell proliferation

Apoptosis inhibitionCell survival

JAK/STAT

FIGURE 4 | eEF1A2 activates the phospholipid, JAK/STAT, and Akt
pathways. eEF1A2 is a physiological regulator of
phosphatidylinositol-4-kinase (PI4K). It directly interacts with
phosphatidyloinositol-4 kinase III β (PI4KIIIβ) and enhances its lipid kinase
activity by converting the phosphatidylinositol (PtdIns) into
phosphatidylinositol-4-phosphate (PtdIns4P). Then PI4KIIIβ and PtdIns4P
increase the phosphatidylinositol-4,5 bisphosphate generation at the
plasma membrane level, which results in the filopodia formation and actin
remodeling. eEF1A2 also directly or indirectly regulates the JAK/STAT and
Akt signaling pathways.

in chemotherapy, metastasis remains a major challenge in clini-
cal management of ovarian cancer (51–54). The eEF1A2 gene is
not expressed in normal ovary but highly expressed in ovarian
cancer (55). eEF1A2 expression enhances the ovarian cell growth

in vitro and favors the tumorsphere formation (56), suggesting
that eEF1A2 could favor the development of ovarian primary
tumor formation. High levels of eEF1A2 expression was observed
in 30% all the primary ovarian tumors, 50% of serous tumors,
30% of endometrioid tumors, 19% of mucinous tumors, and
8% of clear-cell tumors (Table 2) (56). Furthermore, the eEF1A2
protein and RNA expression levels are upregulated in clear-cell
ovarian carcinoma by 75 and 33% respectively. The eEF1A2 gene
is unmethylated both in normal and tumor cells, suggesting that
up-regulation of eEF1A2 gene expression is not dependent on
epigenetic modifications (at least for the methylation status),
but instead that the inappropriate expression of trans-acting fac-
tor(s) could be involved (55). The enhanced expression of eEF1A2
protein in ovarian cancers correlates with poor prognosis (57).

The oncogenic properties of eEF1A2 have also been studied
in different ovarian tumors and established cell lines. In rodent
fibroblasts, eEF1A2 protein favors anchorage-independent growth
and results in decreased doubling time during cellular prolifera-
tion. Furthermore, the induced expression of eEF1A2 in NIH3T3
cells makes them tumorigenic and increases the growth rate of
ES-2 ovarian carcinoma cells xenografted in nude mice (40).
The transcription factor ZNF217 and eEF1A2, both located on
chromosome 20q13, are frequently amplified in ovarian epithe-
lial carcinomas. The stable preneoplastic ovarian cell lines that
over-express eEF1A2 provides the evidence that up-regulation of
eEF1A2 expression contributes to the neoplastic properties of pre-
cursor cells of ovarian carcinomas mediated through ZNF217 (58).

Resveratrol, a phytoalexin produced naturally by several fruit
plants, has been extensively studied for its chemopreventive and
chemotherapeutic effects in cancer and animal models. Resveratrol
blocks the angiogenesis, induces the autophagocytosis and apopto-
sis in proliferating cells, and is a well-known sirtuin 1 activator (59,
60). The expression of eEF1A2 is increased in the PA-1 ovarian cell
line after serum or insulin stimulation. Resveratrol up-regulates
the caspase-3 level in PA-1 cells by down regulating the expression
of eEF1A2 via the blockade of upstream Akt pathway. Addition-
ally, resveratrol suppresses growth of human ovarian cancer cells
in culture and in a murine xenograft model with reduced expres-
sion of proliferating cell nuclear antigen and increased TUNEL
staining (61). All together resveratrol down-regulates eEF1A2 in
ovarian cancer cells and thereby favors apoptosis.

LUNG CANCER
Lung cancer is the most common cause of cancer related death
both in men and women. It accounts for 1.3 million deaths
worldwide annually. In spite of continuous efforts and clinical
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trials to develop new diagnostic and prognostic markers, a better
understanding of the molecular pathways involved in lung cancer
is essential for developing new therapeutic targets (62, 63). Four
lung adenocarcinoma cell lines (HKULC 1–4) were established
from patients with different clinical characteristics. Comprehen-
sive studies of these cell lines show that eEF1A2 is a putative
oncogene that is highly expressed in all the HKULC cell lines
(64). In addition, high-resolution analysis of genomic aberration
by metaphase and comparative genomic hybridization array iden-
tify the involvement of the 20q region, suggesting the potential
role of eEF1A2 as a candidate tumor gene in lung cancer cell
lines (41). In another study, 183 genes with increment in both
genomic copy number and transcript in six lung adenocarcinoma
were analyzed. Forty-two proteins were overexpressed in these cell
lines as compared to the normal cells. Comparing the 183 genes
with the 42 proteins, the expression of four candidates, namely,
PRDX1, eEF1A2, CALR, and KCIP-1 was correlated with increased
DNA copy number and transcript levels. Furthermore, expression
of siRNA targeting eEF1A2 and KCIP-1 in these cell lines sup-
pressed cellular proliferation and triggered apoptosis. Therefore,
the overexpression of eEF1A2 and KCIP-1 in lung tumor samples
strongly suggests that both proteins could be involved in lung ade-
nocarcinoma and could be potential therapeutic targets in lung
cancer (42).

LIVER CANCER
Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors in humans (65, 66). HCC cell lines, HepG2,
HuH7, and JHH6 show increased expression of eEF1A2 as com-
pare to normal liver tissue, but the mRNA of eEF1A2 is markedly
increased only in JHH6 cells (43). In addition, the MDM4 and
eEF1A2 proteins show increased expression in cryptogenic HCC
(44). eEF1A2 gene silencing reduces cell viability, proliferation,
and increases the apoptosis rates in HCC cell lines (44). Further-
more, eEF1A2 is overexpressed in 43% of HCC and activates the
Akt pathway as observed in 40–60% of primary HCCs (Table 2)
(44, 67). Using array based comparative genomic hybridization,
frequent amplification and gain of DNA copy number at 1q, 6p, 8q,
17q, and 20q were observed in HCCs, suggesting that these genetic
aberrations might facilitate the malignant transformation (68).

PANCREATIC CANCER
Pancreatic cancer is one of the unsolved health problems associ-
ated with aggressive malignancies and therefore there is need to
develop improved early diagnosis tools (69, 70). The expression
of eEF1A2 gene, located on chromosome 20q13 is significantly
upregulated in pancreatic cancer. Although little or no eEF1A2
expression is present in normal pancreatic tissue, 83% of pancre-
atic cancers display increased expression of eEF1A2, suggesting
that eEF1A2 plays an important role in pancreatic carcinogenesis
(71–73).

APOPTOSIS
Cell proliferation and cell death are highly regulated and coor-
dinated during the normal development, and both are crucial
for the maintenance of tissue homeostasis. Impaired apoptosis
can lead to autoimmunity or malignancy (74, 75). An increasing

number of evidence suggests the involvement of eEF1A2 at the
onset of cell transformation. Peroxiredoxin-1 (Prx-1) is a pro-
tein that is ubiquitously expressed in all mammalian cells and
protects the cells from oxidative stress by reducing the range
of reactive oxygen species. eEF1A2 interacts directly with Prx-
1 and protects the cells from stress-induced apoptosis by the
down-regulation of caspase-3 and caspase-8 activation parallel
to increased expression of the pro-survival factor Akt (76, 77).
Additionally, the eEF1A expression varies in cells treated with
various concentrations of hydrogen peroxide, a strong apoptotic
inducer associated with decreased mitochondrial respiration and
an inhibitor of Prx-1 (78, 79). Finally, eEF1A provides protection
against all endoplasmic reticulum (ER) stress-mediated cell death.
FL5.12 cells are non-transformed murine B-cells that require IL-
3 for growth, survival, and proliferation. Enforced expression of
eEF1A in these cells protects them from IL-3 withdrawal without
cellular transformation (80).

Wasted mouse is a spontaneous autosomal recessive muta-
tion associated with neurological defects, immune system
abnormalities, and defective response to DNA damage repair

Table 3 | Virus-eEF1A interplay.

Virus Description of eEF1A/viral

protein interaction

Reference

HIV eEF1A part of HIV-1 virion and reverse

transcriptase complex

(77, 89,

90, 93)

eEF1A also interacts with Nef and modulate

apoptosis in MDMs

HBV HBx interacts with eEF1A1 resulting in

blockade of actin bundling

(97)

HDV HDV genome also interacts with eEF1A1 (98)

HPV 38 E7 protein interacts with both eEF1A1 and

eEF1A2. The interaction is associated with

cellular immortalization and transformation of

primary keratinocytes

(99)

WNV eEF1A interacts with the 3′ stem–loop region

of the viral genomic RNA and favors

replication

(100, 101)

DENV Viral genomic RNA sequesters eEF1A and

hence decreases the concentration of

Sphk1, thereby governing cell survival

(102)

TGEV eEF1A interacts with the nucleocapsid of the

virus and favors virus replication

(103)

VSV eEF1A is found within the virion (104)

Vaccinia virus eEF1A as a part of mature virion (105, 106)

CMV eEF1A found to be as a part of virion

proteome

(107, 108)

SARS-CoV eEF1A found in mature virion (109)

HIV, human immunodeficiency virus; MDMs, monocyte-derived macrophages;

HBV, hepatitis B virus; HDV, hepatitis delta virus; HPV, human papillomavirus;

WNV, West Nile virus; DENV, dengue virus; VSV, vesicular stomatitis virus; CMV,

cytomegalovirus; TGEV, transmissible gastroenteritis coronavirus; SARS, severe

acute respiratory syndrome-associated coronavirus (SARS-CoV).
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Abbas et al. Non-canonical function of EF1A

in immune cells. Thymus and spleen from wasted mice show
extensive apoptosis. The loss of activity in wasted mice and
immunological abnormalities are solely linked to the presence of a
deletion in the eef1a2 gene (81–84). Furthermore, eEF1A2 is highly
expressed in terminally differentiated cells such as neurons, car-
diomyocytes, and myofibers. During skeletal muscle development,
undifferentiated myoblasts are susceptible to serum deprived cas-
pase 3-mediated apoptosis but become resistant to apoptosis
after differentiating into myotubes. In muscle cells, the eEF1A1
is expressed during embryonic development of myoblast but is
replaced by eEF1A2 after 2 weeks of birth indicating that the
eEF1A1 isoform plays a pro-apoptotic role while the eEF1A2
isoform displays anti-apoptotic properties (85, 86).

VIRAL INFECTIONS
The eEF1A proteins play a critical role in several viral infec-
tions at distinct stages of the viral cycle [reviewed in Ref. (87)]

(Table 3). Among the most studied viruses, human immunod-
eficiency virus (HIV) interacts with numerous cellular proteins,
including eEF1A (88). First, eEF1A has been detected as part of
the HIV virions as an actin-binding protein (89). Second, eEF1A
has been reported to plays a critical role at early stages of HIV
replication (Figure 5). eEF1A and also EF1G are part of HIV
reverse transcription complex (RTC) (90). Both eEF1A and EF1G
proteins coimmunoprecipitated with the p51 subunit of reverse
transcriptase (RT) and integrase using an endogenous reverse
transcription assay (90) (Figure 5). The depletion of eEF1A and
EF1G using siRNAs decreased reverse transcription parallel to
reduced levels of RTC in treated cells (90). Since integrase is also
an RT binding protein, a tight interplay between RT, integrase,
and eEF1A could be involved in several stages of HIV replica-
tion. Actually, integrase has been shown to interact with eEF1A
in vitro (91, 92). eEF1A also interacts with other viral proteins
involved in early stages of HIV replication such as Nef and Tat.
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FIGURE 5 | eEF1A interferes with HIV-1 replication. eEF1A plays
important role in various phases of HIV-1 life cycle. eEF1A has been
reported in the mature HIV-1 virion and is also found to be a part of
reverse transcription complex (RTC). Binding of eEF1A/EF1G to the RTC
resulted in enhanced reverse transcription. In addition, eEF1A also help
in the recruitment of RNA polymerase II and TRP-185 to the TAR RNA,
which in turn regulates the viral transcription from 5′LTR. Moreover,
HIV-1 Nef has been shown to interact with eEF1A and resulted in

nucleo-cytoplasmic shuttling of eEF1A and ultimately in the inhibition of
stress-induced apoptosis. Role of eEF1A in inhibiting the actin filament
disassembly has been also proposed (77). Abbreviations: eEF1A,
eukaryotic translation elongation factor 1 alpha; Exp-t, exportin-t; dsDNA,
double stranded DNA; cDNA, complementary DNA; IN, integrase; RT,
reverse transcriptase; RTC, reverse transcription complex; tRNA, transfer
RNA; TAR, trans-activation response element; RNA pol II, RNA
polymerase II; Tat, transactivator protein.
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Several reports indicate that HIV Nef interacts with eEF1A (77, 93)
(Figure 5). Abbas and colleagues have shown that the Nef-eEF1A
interaction favors the nucleo-cytoplasmic shuttling of eEF1A and
ultimately inhibits stress-mediated apoptosis in monocyte-derived
macrophages (77). Additionally, Nef interaction with actin impairs
human podocyte actin cytoskeletal integrity and eEF1A could
play a role in the development of podocyte phenotype in HIV-1
associated nephropathy (93). The trans-activation response (TAR)
element is critical for the activation of HIV-1 transcription. eEF1A
stimulates the RNA polymerase II and TRP-185 binding to TAR
RNA, which in turn regulates the HIV-1 gene expression (94).
eEF1A has been described to interact with the HIV Gag protein
(88). Finally, eEF1A is responsible for the selection and binding
of cognate aminoacyl-tRNAs to the A site of the ribosome. HIV
Nef interacts with two components of the 40S small ribosomal
subunit, the RPS10 protein, and the 18S rRNA, and also to tRNAs,
and has been reported to decrease translation using an in vitro
translation assay (95). We cannot exclude that eEF1A that binds
to both Nef and tRNA participates in the control of translation in
HIV-infected cells. Interestingly, EF1-delta has been reported to
interact with the second coding exon of HIV Tat, and to result in
reduced efficiency of the translation of cellular proteins, but not
of viral mRNAs (96).

Since overexpression of eEF1A has been reported in several
cancers, we cannot exclude a link between oncoviruses and eEF1A.
Among oncoviruses, hepatitis B virus expresses the HBx protein
that has been previously involved in liver cancer, especially HCC
(110). HBx protein has been reported to interact with eEF1A1
in Huh-7 hepatoma cells infected with recombinant adenovirus
expressing HBx protein (97). Interaction of HBx protein with
eEF1A1 blocks filamentous actin bundling (97). Interestingly, the
hepatitis delta virus (HDV) that can propagate only in the pres-
ence of HBV has a RNA genome that also interacts with eEF1A1
(98). A dozen of human papillomavirus (HPV) types including
HPV16 and HPV18 are well-known oncoviruses that express two
oncoproteins E6 and E7, and favor cellular transformation, onco-
genesis, and the appearance of cervical cancers (111). E7 protein of
HPV38 has been shown to interact with both eEF1A1 and eEF1A2
proteins leading to cellular immortalization and transformation
of primary keratinocytes probably through disruption of actin
stress fiber formation, a critical event linked to tumor formation
(99). eEF1A facilitates virus replication complex (RPC) assembly
and favors replication of West Nile virus and dengue virus (100–
102). Similarly, eEF1A interacts with the nucleocapsid protein
of transmissible gastroenteritis coronavirus (TGEV) and favors
TGEV replication (103). Since eEF1A is found in highly purified
virions of numerous RNA and DNA viruses including vesicular
stomatitis virus (104), vaccinia virus (105, 106), cytomegalovirus
(107, 108), severe acute respiratory syndrome coronavirus (SARS-
CoV) (109), and HIV-1 (88, 112), its role in viral pathogenesis
needs to be further investigated.

CONCLUSION
Recent findings in the field of cellular and molecular biology
reveal that the eEF1A proteins are not only involved in the trans-
lational process but display also non-canonical functions. The
specific up-regulation of eEF1A2 in numerous tumors and its

transforming properties indicate that it could play a significant role
in tumorigenesis. Furthermore, eEF1A2 activates the phospho-
lipid and Akt signaling pathways favoring cell survival. Addition-
ally, eEF1A proteins block apoptosis and favors viral replication.
All together, the non-canonical functions of eEF1A proteins are
involved at the crossroads of oncogenesis, blockade of apoptosis,
and viral pathogenesis. Therefore, the eEF1A proteins might play
an important role in the pathophysiology of tumors and apoptosis,
especially in response to stress and viral infections. Future studies
need to be done to further highlight the role of eEF1A proteins in
human diseases.
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