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Signal transducer and activator of transcription (STAT)3 mediates the signaling down-
stream of cytokine and growth factor receptors, regulating the expression of target genes.
It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcrip-
tional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate
mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating
with reduced production of ROS, delayed senescence, and protection from apoptosis.
STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated
(S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening
of the mitochondrial permeability transition pore, also promoting survival and resistance
to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream
of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by
promoting cell survival and reducing ROS production. Here, we discuss these properties
in the light of potential connections between STAT3-driven alterations of mitochondrial
metabolism and the development of drug resistance in cancer patients.
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Introduction

Signal transducer and activator of transcription (STAT)3 becomes activated in response to cytokines,
growth factors, and oncogenes, via phosphorylation on its tyrosine 705 residue (Y-P) mediated by
receptor-associated JAK kinases. Y-P STAT3 concentrates into the nucleus, where it binds to gene
promoters modulating their transcription (1). Being expressed almost ubiquitously and activated
by a wide variety of signals, it is perhaps not surprising that STAT3 can activate cell-specific
repertoires of target genes, thus exerting cell- and context-specific functions (2). For example, STAT3
can trigger induction of acute phase genes during inflammation, liver regeneration, proliferation
of B lymphocytes, terminal differentiation and growth arrest in monocytes, lysosome-mediated
apoptosis in the involuting mammary gland, as well as maintenance of embryonal stem cells
pluripotency (2).

These pleiotropic functions may also have to do with the differential activities of its post-
translationally modified forms. First, STAT3 can also be phosphorylated on serine 727 (S-P),
with both stimulating and inhibitory effects on transcription (3–6), and with a prominent role in
regulating mitochondrial activities [see below (7, 8)]. Second, STAT3 acetylation by the p300 co-
activator can enhance dimer stability and transcriptional activity and promote its interaction with
DNA methyl transferase 1, leading to hypermethylation of target oncosuppressor promoters (9).
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Finally, STAT3 activity can also be positively or negatively regu-
lated by methylation, depending on the residue involved (10, 11).
STAT3 activation is tightly controlled by a number of negative reg-
ulators, including phosphatases, suppressor of cytokine signaling
proteins (mainly SOCS3), and protein inhibitor of activated STAT
(PIAS) proteins, in particular, PIAS3 (12, 13).

Signal transducer and activator of transcription 3 is considered
as an oncogene, being persistently activated by Y-P in more than
50% of human tumors of both solid and hematological origin,
which often become addicted to its activity (14). Aberrant phos-
phorylation is mainly due to persistent activity of its upstream
activators or to disruption of the negative control mechanisms
(14), although activated mutations have also been described,
mainly found in exons 20 and 21, encoding for the SH2 domain
(15–20). Interestingly, also acetylation and S-P can be constitu-
tively activated in tumors (4, 9, 21).

A direct role of STAT3 in oncogenesis was first demonstrated
by overexpressing a constitutively active STAT3 mutant form,
STAT3C, which shows greatly increased function in cells under
basal conditions and is hypersensitive to IL-6 stimulus (22). Its
overexpression leads to malignant transformation in immortal-
ized fibroblasts and epithelial cells (23). Further to this find-
ing, we have shown that primary mouse embryonal fibroblasts
(MEFs) expressing physiological levels of STAT3C undergo spon-
taneous transformation when immortalized via the 3T3 proto-
col, suggesting that a weak but continuous STAT3 activity can
act as a first hit in tumor transformation (24). This is partic-
ularly relevant in the context of inflammation-induced cancer,
where STAT3 is known to play a major role, consistent with the
observation that persistent IL-6 production and STAT3 activation
are prominent features of chronic inflammation (25). Indeed,
STAT3-dependent tumor transformation usually correlates with
enhanced expression of anti-apoptotic and pro-proliferative genes
such as Bcl-2, MCL-1, cyclin-D1, and c-myc, which help pre-
venting apoptosis and stimulating tumor growth, migration, and
invasion (14). Importantly, many activated oncogenes includ-
ing vSRC and RAS require STAT3 to elicit tumor transforma-
tion (8, 26).

In addition to these “canonical” functions, it has become
increasingly evident that STAT3 is also a regulator of cell energy
metabolism, which can heavily impact on tumor transformation
and growth. Both nuclear and mitochondrial STAT3 are involved
in these metabolic activities, as outlined below.

Nuclear STAT3, Energy Metabolism,
and Cell Transformation

We have recently reported that low but constitutive STAT3
transcriptional activity in MEFs expressing the STAT3C form
can trigger a metabolic switch by enhancing aerobic glycolysis
and reducing oxidative phosphorylation and mitochondrial acti-
vation (27) (Figure 1), thus mimicking a common metabolic
feature of tumor cells known as the Warburg effect (28). This
activity contributes to STAT3 pro-oncogenic functions, since it
is required for survival and in vivo growth of STAT3-addicted
human cancer cell lines, which also display low but constitu-
tive Y-P STAT3. The effects on glycolysis are mainly mediated

by chronically increased HIF-1α expression. Indeed, there are
several important connections between STAT3 and the hypoxia
sensor HIF-1α. First, STAT3 constitutive activity was shown
to directly up-regulate Hif-1α transcription in melanoma cells
(29), and to increase HIF-1α protein levels in several tumor
cell types (e.g., breast, kidney, ovary, prostate, melanoma), cor-
relating with EMT and invasion (30–33). Second, STAT3 can
cooperate with HIF-1 by binding to its responsive promoters,
ensuring the formation of a transcriptionally active complex (34,
35). Finally, STAT3 appears to be involved in a feed forward
loop that leads to enhanced aerobic glycolysis and fast prolifera-
tion: oxygen deprivation or oncogenes, up-regulatingHIF-1α and
increasing HIF-1 activity, lead to increased levels of the pyruvate
kinase PKM2 isoform; in turn, this enhances HIF-1 transcrip-
tional activity and directly phosphorylates STAT3 (36, 37); closing
the loop, activated STAT3 up-regulates HIF-1α expression (38)
(Figure 1).

Despite a well-accepted pro-tumorigenic role, STAT3 can also
exert tumor-suppressor activities (39–41), and was reported to
negatively regulate HIF-1α protein levels and aerobic glycolysis
under hypoxic conditions in a model of thyroid cancer (39),
suggesting tissue and context specificity of the mechanisms
described above.

Metabolic activities of STAT3 and HIF-1α may be also co-
regulated by sirtuins, a family of highly conserved NAD+-
dependent deacetylases that act as cellular sensors to detect energy
availability and modulate metabolic processes. In particular,
SIRT1 regulates STAT3 acetylation (42), while SIRT3 destabilizes
HIF-1α and its target genes (43). STAT3 was shown to enhance
glucose release by hepatocytes by inhibiting the transcription
of PEPCK1 and g6pase (44, 45), thus suppressing gluconeoge-
nesis, and SIRT1-dependent STAT3 deacetylation disrupts this
inhibitory effect (46). The down-regulation of SIRT-1 expression
often observed in cancer (47) may thus contribute to maintain
STAT3 activity. Indeed, human and murine hepatocellular carci-
nomas that show down-regulation of SIRT1 display significantly
reduced expression of gluconeogenic enzymes and increased
release of glucose into circulation, due to the activation of an IL-6-
STAT3 signaling pathway leading to the up-regulation of miR-23a
(48). This in turn down-regulates the expression of gluconeogenic
enzymes such as PGC1α and G6PC. The consequent accumula-
tion of glucose intermediates is likely used by tumors to sustain
rapid proliferation. Moreover, since PGC1α positively regulates
mitochondrial biogenesis and respiration, its STAT3-dependent
down-regulation may also contribute to decrease mitochondrial
activity (49, 50).

Increased glycolysis and decreased mitochondrial activity
might help reducing ROS production, as it is indeed observed
in STAT3C MEF cells (27), thus delaying cell senescence and
enhancing cell survival. Additionally, in neuronal cells, STAT3was
shown to regulate SOD2 expression, increasing the scavenge of
superoxide radicals (51). Interestingly, low-ROS levels are known
to correlate with fast tumor cell proliferation (52).

Not least, the effects of STAT3 on glucose metabolism may also
be partly mediated by c-myc, a well-known direct transcriptional
target that up-regulates glycolysis genes such as GLUT-1, HK2,
ENO-1, and PFKM (53, 54).
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FIGURE 1 | Differential actions of nuclear and mitochondrial STAT3.
STAT3 can influence energy metabolism both from within the nucleus and the
mitochondrion, depending on specific post-transcriptional modifications (Y-P
or S-P) triggered by different oncogenic stimuli. Y-P nuclear STAT3 mediates
transcriptional up-regulation of HIF-1α and the down-regulation of mitochondrial
genes. This leads to enhanced aerobic glycolysis, blunted ETC activity, and

decreased ROS production, thus promoting fast proliferation while inhibiting
apoptosis. On the other hand, also S-P STAT3 mitochondrial activity leads to
enhanced cell proliferation and survival and to apoptosis resistance by
preserving ETC activity, stimulating aerobic glycolysis, decreasing ROS
production, and inhibiting the opening of the mitochondrial permeability
transition pore (MPTP).

Mitochondrial STAT3, Energy Metabolism,
and Cell Transformation

Signal transducer and activator of transcription 3 can local-
ize to mitochondria, mainly in the matrix, where its S-P form
can regulate mitochondrial functions independently from its
transcriptional activity (7, 8, 55). Mitochondrial transport was
proposed to involve the interaction with GRIM-19 (56), a cell
death regulatory protein that is an essential component of respi-
ratory chain complex I (57). Interestingly, STAT3 was shown to
mediate cell death upon TNF-induced necroptosis, which triggers
S-P STAT3 through RIPK1 activity, its interaction with GRIM-
19 and the accumulation of the complex in mitochondria, where
it leads to increased ROS production and cell death (58). Other
import mechanisms have been proposed, involving the activities
of the heat shock protein H11 kinase/Hsp22, a potential compo-
nent of organelle import (59), and of the import receptor subunit
Tom20 (55).

Mitochondrial STAT3 is involved in maintaining optimal
oxidative phosphorylation levels in cardiac and nerve cells as well
as in RAS-transformed tumor cells (7, 8, 60–62). Indeed, STAT3
deletion results in a significant reduction of complex I and II
activities in murine hearts, which can be rescued by expressing a
mitochondrially targeted STAT3 (7). Accordingly, upon induction

of cardiac ischemia, STAT3 protects complex I-dependent res-
piration from injury, decreasing cytochrome c release and ROS
production (63). Mitochondrial STAT3 was proposed to act by
interacting with respiratory complexes I, II, and V (7, 8), and is
able to improve complex I respiration and calcium retention even
in isolated mitochondria of post-conditioned hearts (64). Addi-
tionally, STAT3 inhibits the opening of the mitochondrial per-
meability transition pore (MPTP) by interacting with cyclophilin
D, thus inhibiting apoptosis through blockade ofMPTP-mediated
cytochrome c release (55) (Figure 1).

The connections between mitochondrial STAT3 activities and
ROS production are somewhat contradictory. NGF-dependent
STAT3 S-P results in increased mitochondrial STAT3 localiza-
tion and higher ROS production in neuronal cells, leading to
faster neurite outgrowth (61). By contrast, STAT3-deficient astro-
cytes produce high levels of ROS, decrease glutathione concen-
tration and are unable to maintain mitochondrial membrane
potential and cell viability (60), although whether these effects
require cytoplasmic or nuclear STAT3 activity has not been
determined.

A number of reports suggest that S-P STAT3 can contribute
to tumor transformation and growth in several malignancies,
including chronic lymphocytic leukemia, myeloproliferative neo-
plasms (65), prostate, and breast cancer (21, 66, 67). Indeed,
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mitochondrial S-P STAT3 is required for tumor transformation
mediated by oncogenic RAS, favoring both aerobic glycolysis and
ETC activity and increasing ATP abundance (8). Although RAS
oncogenes can activate several serine kinases able to phospho-
rylate STAT3 on S727, the MEK-ERK pathway appears to play
a prominent role since it was shown to be necessary for S-P
of mitochondrial STAT3 and RAS-mediated transformation (62)
(Figure 1).

Mitochondrial S-P STAT3 enhances growth and invasion of
the murine 4T1 breast cancer cells, both in vitro and in vivo,
by increasing complex I coupling and reducing ROS production
and apoptosis (68). In addition, a single nucleotide germline
polymorphism (SNP) in the FGFR4, which has been linked to
enhanced pituitary tumorigenesis, is associatedwith increased S-P
STAT3, supporting a pro-tumorigenic role of aberrantly regulated
mitochondrial STAT3 (69).

A link between mitochondrial STAT3 and tumorigenesis has
also been suggested in skin cancer. Treatment of keratinocytes
with the TPA tumor promoter results in increased mitochondrial
S-P STAT3 via a PKCε-dependent mechanism (70). Interestingly,
under these conditions STAT3 was shown to bind to and regulate
mitochondrial DNA transcription, suggesting that perhaps STAT3
accumulation inmitochondriamay impact on the transcription of
mitochondrial-encoded genes also in other circumstances.

Despite several reports suggesting that STAT3 may act by inter-
acting with ETC components, this mechanism is still controver-
sial, mainly due to the disproportioned stoichiometry between
STAT3 and ETC proteins (71). It was also noted that ectopically
expressed, fluorescent-tagged recombinant STAT3 fusion protein
cannot be visualized in association with mitochondria by live
cell imaging (72). Taken together, these findings suggest that
mitochondrial STAT3 may perhaps act catalytically rather than
structurally.

In conclusion, similar to its transcriptionally active counter-
part, mitochondrial STAT3 is potentially able to regulate cellular
metabolism to warrant cell survival to apoptotic stimuli upon
different kinds of stress such as, for example, cardiac ischemia
or oncogenic transformation. STAT3 appears therefore to act as
a hub integrating multiple signals, which lead to its Y-P or S-P, or
both, at the level of energy metabolism and apoptosis control. As
disruption of energymetabolism is a common feature of all tumor
cells, this central metabolic role of both Y-P and S-P STAT3 may
well explain the addiction to STAT3 shownby somany biologically
distinct tumors.

STAT3 and Drug Resistance

Most common chemo- or radio-therapeutic agents trigger cell
damage and the activation of the intrinsic apoptotic pathway,
leading to cell death (73, 74). In particular, oxidative damage
triggered by enhanced ROS accumulation is a prominent effect of
both ionizing radiation and pharmacological agents such as gem-
citabine, cisplatin, doxorubicin, and elesclomol (75). Cell death
is brought about by the activation of p53 and of pro-apoptotic
members of the Bcl-2 family, leading to changes in the inner
mitochondrial membrane that result in the loss of transmembrane
potential and release from the mitochondrial intermembrane

space of soluble and cytotoxic proteins such as cytochrome c, the
Smac/DIABLO complex, nucleases, and proteases. In turn, pro-
apoptotic proteins activate caspases that mediate cell destruction
via several pathways (76, 77).

Both in normal and in chemotherapy-sensitive tumor cells,
stimulation of pro-apoptotic factors tilts the life/death balance
toward death. However, the balance between pro- and anti-
apoptotic proteins is often compromised in tumor cells, due to
the aberrant regulation of apoptosis-modulating pathways and
enhancing survival. Indeed, a great percentage of cancer patients
fail to respond to chemo- and/or radio-therapy, or experience
tumor relapse due to the expansion of drug-resistant tumor cell
clones, thus limiting the long-term efficacy of current thera-
pies (78).

Distinct mechanisms can contribute to the development of
drug resistance, including (i) alterations of drug metabolism,
which determine increased efflux, decreased uptake, enhanced
detoxification, and sequestration. Particularly prominent is
the enhanced efflux determined by increased activity of the
P-glycoprotein encoded by the multidrug resistance (MDR)-1
gene and of other MRP pumps; (ii) decreased drug activation;
(iii) modification of drug targets with activation of compen-
satory signaling receptors or effectors, by either gene mutation
or amplification; (iv) feedback loops that are activated following
drug-mediated inhibition of pro-tumorigenic targets, associated
with up-regulation of alternative RTKs that in turn sustain tumor
proliferation; and, finally, (v) dysregulation of apoptotic pathways
(79–82).

Multiple STAT3 activities have been correlated with drug resis-
tance in cancer (Figure 2). Indeed, the levels of transcription-
ally active Y-P STAT3 are often elevated in drug-resistant cancer
cells (83, 84). STAT3 may enhance resistance to conventional
chemo- and radio-therapies by inducing the expression of sur-
vival proteins and cell cycle genes, which are well-known STAT3
targets (as Bcl-2, survivin, c-myc, cyclin-D1, and Mcl-1), and
by down-regulating tumor-suppressor genes either directly, like
p53, or indirectly via ZEB1 induction (85–92). Indeed, sev-
eral reports correlate high levels of tumor-secreted cytokines,
such as IL-6 and IL-10, with STAT3-mediated activation of
anti-apoptotic factors and drug resistance (93–98). These obser-
vations have prompted efforts to exploit the beneficial effects
of STAT3 inhibitors to synergistically enhance the efficacy of
chemotherapeutic agents. Indeed, several commonly used com-
pounds including anthracyclines, butyrate, sulindac, curcumin,
and cucurbitacin have been proposed to owe their anti-tumoral
effects at least partly to their ability to directly down-modulate
STAT3 activity (99). Moreover, specific STAT3 inhibitors act-
ing at different levels have been tested alone or in combination
with chemical agents. For example, treatment of nasopharyn-
geal carcinoma cell lines, widely insensitive to cisplatin and to
radiation therapy, with the Stattic STAT3 inhibitor, results in
reduced cells viability and proliferation, as well as sensitizing
to common therapies (100). DPP, a cell-permeable porphyrin
compound that prevents STAT3 dimerization, can increase the
sensitivity of drug-resistant gastric cancer cells to chemother-
apy (101). The combination of cisplatin with YC-1, which pro-
motes STAT3 degradation and reduces HIF-1α protein levels,
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FIGURE 2 | Signal transducer and activator of transcription 3 activities
and resistance to radio- and chemotherapy. Chemotherapy as well as
radiation therapy trigger cell death (black arrows) by inducing cell cycle arrest
and promoting DNA damage and, as consequence, oxidative stress; they can
also induce ROS production by different means, including inhibition of the
endogenous antioxidant systems. STAT3 activity contributes to resistance of
tumor cells to these treatments, and accordingly some chemical agents act at
least partly by directly targeting STAT3 (i.e., anthracyclines, butyrate, sulindac,
curcumin, cucurbitacin, red bars). STAT3 activity may counteract the action of

radiation and pharmacological compounds by mediating transcription of
pro-survival and cell cycle genes, such as Bcl-2, BclXL, and cyclin-D1, and by
promoting increased aerobic glycolysis while decreasing mitochondrial activity
and ROS production (black bars). It is likely that STAT3-mediated
down-regulation of ROS may also overcome the action of several agents that
impact on the activity of endogenous antioxidant systems (dashed black bar).
Thus, therapeutic strategies involving the use of inhibitory molecules directed
against STAT3, and particularly targeting its mitochondrial functions, hold
promise for reverting cancer cells drug resistance.

results in enhanced sensitivity of hepatocellular carcinoma cells
to cisplatin and suppression of tumor growth (102). Accord-
ingly, MDA-MB-435 metastatic breast cancer cells, express-
ing high levels of Y-P STAT3 and of its target Bcl-2, are
highly resistant to chemotherapy-induced apoptosis. Blockade
of STAT3 activation with the EGFR and JAK2 kinase inhibitors
PD16839 or AG490 re-establishes sensitivity to taxol and adri-
amycine (103).

The development of pathway-targeted cancer drugs has raised
hopes of personalized intervention via the inhibition of specific
oncogenic pathways, but the dramatic responses often obtained
are invariably hampered by the onset of resistance. Interestingly,
drug resistance to RTK inhibitors in lung adenocarcinoma cells
was recently shown to involve the activation of Y-P STAT3 via
repression of MEK activity (104). These findings suggest that
inhibition of this STAT3 feedback loop may enhance responses to
a wide range of drugs targeting oncogene addiction.

Tumors displaying constitutively Y-P and/or S-P STAT3 may
also be protected from drugs acting by generating oxidative stress
(Figure 2), since both nuclear and mitochondrial STAT3 lead
to decreased ROS levels and increased antioxidant factors (see
above). On the other hand, ROS can stimulate the JAK2/STAT3
pathway through the induction of a positive ROS/IL-6/JAK2/
STAT3 feedback during starvation-induced autophagy of cancer
cells (105). Accordingly, oxidative stress triggers STAT3 activation
in several cell types (106–108), and ROS are involved in EGF-
induced STAT3 phosphorylation in prostate cancer (33), lead-
ing to increased pro-tumorigenic action. Finally, the oxidation
of conserved STAT3 cysteines was shown to negatively modu-
late its activity on a subset of target genes, reducing prolifera-
tion but enhancing resistance to oxidative stress in breast cancer
cells (109). STAT3 activity can also be down-modulated by cys-
teine glutathionylation (110). Excessive oxidative stress can also
inhibit caspases activity (111, 112) and drug-induced apoptosis
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(113, 114). Taken together, these observations suggest that, in cer-
tain cases, excessive ROS production triggered by drug treatment
may even interfere with treatment effectiveness and contribute to
the development of drug resistance. Even if no direct correlation
between drug resistance and energy metabolism has been so far
shown, it is likely that STAT3-driven metabolic features may play
crucial roles in inducing at least some of the events described
above. Further studies will be required to shed light on this
issue.

The recently uncovered activities of nuclear and mitochondrial
STAT3 on the balance between aerobic glycolysis and oxidative
phosphorylation and on ROS production suggest that agents
blocking STAT3 functions at different levels may be beneficial in
association with agents acting via ROS production. Indeed, inhi-
bition of STAT3 activity was shown to increase responses of pan-
creatic cancer cells to gemcitabine, a ROS generating agent (115).

Concluding Remarks

Intact apoptotic processes are required for anti-neoplastic agents
to exert their optimal cytotoxic activity. Mitochondria, act-
ing as hubs for signals that regulate energy metabolism, ROS
production, and apoptotic processes, are a preferential site for
multiple alterations during cancer, taking the center stage as
targets for wide-spectrum cancer therapies (116, 117). In this

light, the novel canonical and non-canonical STAT3 functions
on energy metabolism and oxidative stress may provide targets
for developing specific treatments to associate to chemical,
radiation-mediated, or targeted therapies in order to over-
come drug resistance and to prevent the emergence of resis-
tant clones. However, since STAT3 deletion leads to decreased
mitochondrial function and increased oxidative stress, a selec-
tive inhibition of its nuclear functions preserving mitochon-
drial activity may be beneficial in treating Y-P STAT3-driven
cancer/drug resistance. On the other hand, mitochondrial S-P
STAT3 is crucial to cell survival in RAS-transformed cells, where
specific inhibition of this form may be desirable. Thus, the
characterization of Y-P versus S-P STAT3 levels in tumor cells
may lead to personalized intervention with respect to STAT3
activity.
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