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A major dilemma in brain-tumor surgery is the identification of tumor boundaries to max-
imize tumor excision and minimize postoperative neurological damage. Gliomas, espe-
cially low-grade tumors, and normal brain have a similar color and texture, which poses
a challenge to the neurosurgeon. Advances in glioma resection techniques combine
the experience of the neurosurgeon and various advanced technologies. Intraoperative
methods to delineate gliomas from normal tissue consist of (1) image-based navigation,
(2) intraoperative sampling, (3) electrophysiological monitoring, and (4) enhanced visual
tumor demarcation. The advantages and disadvantages of each technique are discussed.
A combination of these methods is becoming widely accepted in routine glioma surgery.
Gross total resection in conjunction with radiation, chemotherapy, or immune/gene
therapy may increase the rates of cure in this devastating disease.
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Introduction

The purpose of brain-tumor resection is to maximize tumor removal while sparing healthy tissue.
The extent of resection is a key prognostic factor; however, complete tumor resection is often
not possible. Improvements in survival time, functional recovery, and tumor recurrence rates
are associated with increasing extents of safe resection in older patients (≥60 years) (1). Due to
the imprecise correlation between pre-operative images and intraoperative anatomy as well as
poor differentiation of low-grade glioma from normal tissue in non-eloquent areas, substantial
tumor volume may remain postoperatively. The frequency of residual tumor following surgery is
surprisingly high, leading to rapid disease recurrence (2, 3).

To avoid these shortcomings, better delineation of normal from tumor tissue intraoperatively
could improve the clinical outcomes following tumor removal surgeries. Delineation tools and
methods have been designed and improved continuously to increase the chance of total tumor
resection and to decrease normal tissue damage adjacency of important structures. Intraoperatively,
certain gliomas may be vaguely suggested by their physical differences, such as natural color or the
dissimilar firmness of the tumor tissues. The usefulness of these physical signs for recognition of
glioma also depends on the location and extension. If the glioma is superficially located, the affected
gyri may become distended, edematous, discolored, or possess different vascularity. These signs are
less obvious in deep-seated lesions.

Traditionally, excision of gliomas relies on the neurosurgeon’s ability to detect slight variations in
cortical topography; however, even the experienced surgeon may be unable to detect the changes.
Because the limited differentiable capabilities of naked eyes and hands of the surgeons, advanced
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imaging methods and identification assays are in continual devel-
opment for glioma delineation. Various technologies may detect
subtle differences between the glioma and normal tissue using,
such modalities as ultrasound (US), computed tomography (CT),
nuclear magnetic resonance imaging, functionally by electrophys-
iological assays (4), and biologically by assessments on protein,
lipid, DNA, ion channel, vascular permeability, autofluorescence,
and metabolism alterations. In this review, the representative
methods and tools for differentiating glioma from normal CNS
tissue are discussed.

Intraoperative Delineation of Gliomas

Image-Based Navigation
Delineation of gliomas is initiated during pre-operative surgical
planning. Gross tumor delineation is achieved using imaging
technologies based on US (reflecting ultrasonic waves), com-
puted tomographic x-ray, and magnetic resonance of tissue. Pre-
operative and intraoperative imaging confers anatomic landmarks
that help determine the surgical approach.

MRI Navigation
MRI navigation is an essential tool in surgical planning. Both
CT and MRI are used for surgical navigation; however, MRI is
preferred due to superior visualization of both the tumor and
the normal anatomy in most cases. MRI neuronavigation assists
the surgeon in determining the optimal approach andmonitoring
the extent of tumor resection intraoperatively. Several intraoper-
ative systems are available, such as Brainlab (Feldkirchen, Ger-
many), CranialMap (Stryker, Kalamazoo, MI, USA), StealthSta-
tion (Medtronic, Minneapolis, MN, USA), each differing in hard-
ware and software design. Neuronavigation systems incorporate
multiple registration techniques to bring the imaging information
into the surgical field to assist surgical guidance. Regardless of
the pros and cons of the various systems, frameless navigation
may be superior to frame-based ones because image distortion
may occur in an area of interest situated adjacent to the frame
(5). High-field MRI coupled with stereotactic neuronavigation
provides anatomical and functional guidance in glioma surgery
(6–8).Diffusion tensor imaging defineswhitematter fiber tracts to
assist in identifying areas of tumor infiltration and reducing dam-
age to normal tracts during tumor excision (9). Neuronavigation
with multimodal imaging data, such as structural and metabolic
data, fiber tracking, and 3D visualization, has been proposed to
optimize the safety and extent of tumor resection (10).

Based on information obtained from pre-operative images, the
accuracy of navigation may be influenced by brain sagging due to
head position, CSF drainage, and the effects of tissue resection.
Neuronavigation using intraoperative MRI imaging may avoid
potential errors caused by tissue shift (11, 12). Adaptation of
MRI scans to the surgical suite increases the accuracy of tumor
delineation and the extent of glioma resection. The incidence of
complete tumor resection was significantly higher using intraop-
erative MRI with no increase in neurological deficits compared
to conventional surgery (p= 0.023) (13, 14). The intraoperative
MRI is inconvenient due to its bulky coil that encroaches on
limited surgical space, and its strong magnetic field requires MRI

compatible tools and supplies when surgery is performed in the
magnetic field (15, 16). Although the ioMRI scanner in which
the patient is fixed in one position has several advantages (no
need to move the patient during the operation, which could lead
to potential anesthetic complications, a shorter time to obtain
images), it requires non-ferro-magnetic instruments that are not
as robust as conventional neurosurgical instruments. Most avail-
able ioMRI scans require that the patient be moved from the
surgical site located outside the magnetic field into the intraop-
erative scanner. Alternatively, the MR scanner may be moved to
the patient who remains in the surgical site. These methods delay
the surgery while the patient (or MRI scanner) is moved to the
location in which images will be performed. However, having the
surgical site remote from the scanner is advantageous insofar as
conventional neurosurgical instrumentsmay be used and a higher
power MR scan is usually available. Intraoperative MRI may also
be limited in tumor delineation during surgery in that surgery
itself may induce contrast enhancement. This enhancement may
make identification of residual tumor difficult or give the appear-
ance of residual tumor rather than normal brain. A technique
that improves repeat intraoperative imaging includes iron oxide
nanoparticles (17).

Ultrasound Navigation
Ultrasound navigation is cost-effective and has been used intra-
operatively for decades (18). US navigation is a real-time method
for delineating solid, cystic, and necrotic tissues based on their
different acoustic impedances and reflection coefficients. Three-
dimensional ultrasonography has been widely adapted for place-
ment of catheters, needles, or other instruments into sites of
abnormal tissue (19). US is optimal for accurate placement of nee-
dles for glioma biopsy. Under its guidance, the trajectory and the
depth of the biopsy needle may easily be planned. Intraoperative
US imaging also helps to determine the surgical corridor and to
guide tumor resection based on the size, shape, and localization
of lesions in situ in real-time (20, 21). Newly developed linear
array intraoperativeUShas a significantly superior ability to detect
residual glioma compared to conventional intraoperative US. Lin-
ear array US rivals ioMR scans in identifying residual tumor;
however, ioMRI has a higher specificity and lower sensitivity (22).

Contrast-enhanced US is used in neurosurgery to assist in the
delineation of tumor margins. It also identifies afferent and effer-
ent blood vessels as well as the perfusion patterns of the tumor,
which is particularly valuable in highly vascular tumors (23, 24).
Gross tumor resection of intracerebral high-grade tumors was
achieved in 21/22 (95.5%) of patients with little morbidity using
high-frequency US (hfioUS) (25). This method allowed detailed
discrimination between normal, pathological, and edematous tis-
sue in all patients.

The true border of the tumor is usually larger than that depicted
by ultrasonography. In a study of 101 supratentorial glioma cases,
intraoperative MRI proved to be more accurate in tumor delin-
eation than intraoperative ultrasonography (26). The drawback of
US is the inability to provide both high resolution and deep pene-
tration. Improving resolution of ultrasonographymay increase the
precision of tumor delineation; however, signal accuracy deterio-
rates when identifying deep-seated tumors (27, 28).
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Intraoperative Sampling
This method produces the greatest diagnostic accuracy although
information from specimens from a single patient is spatially and
temporally discontinuous. The final diagnosis, particularly for
unusual tumors, may be delayed for several days and requires that
specimens be placed together. Precision of tumor identification
increases with the number of tissue samples obtained. Tumor
differentiation is based on molecular, cellular, and structural
differences between gliomas and normal tissue.

Mass Spectrometry-Based Analysis
Mass spectrometry molecular analysis is faster and more accurate
compared to histological evaluation. The diagnosis is based on
tumor-specific molecules and analysis of oncometabolites. Using
desorption electrospray ionization mass spectrometry (DESI-
MS), differences of lipids and their concentration between gliomas
and normal brain are used to confirm the tumor type and to
define tumor margins (29, 30). Due to its ability to rapidly analyze
tissue samples, intraoperative mass spectrometry may confirm
brain-tumor pathology (30–32).

Electrophysiological Monitoring (Mapping)
Dielectric properties of human gliomas and surrounding tissues
may be measured by a network analyzer using a coaxial line
capacitive sensor. The permittivity and conductivity of tumors
is 30% higher than surrounding normal tissue (33). These elec-
trophysiological differences have not been used clinically to dif-
ferentiate glioma types. Current electrophysiological methods
used for intraoperative tumor delineation are indirect and define
boundaries of normal circuitry adjacent to the glioma. Intra-
operative functional mapping by electro-cortical stimulation or
magnetoencephalography guides supratentorial glioma resection,
especially valuable when the tumor is in proximity to eloquent
brain. Functional mapping by applying lower electrical stimuli at
either the cortical or subcortical levels identifies the eloquent areas
before and during glioma resection, which improves the accuracy
of tumor resection, reduces neurological deficits, and prolongs
survival (34–39).

Although this method provides indirect evidence of tumor
demarcation, its immediate feedback to the surgeon may avoid
potential risks. A major shortcoming of this technique is that
the patient must be awake to assess sensorimotor, language, cal-
culation, and semantic function, especially for surgery on the
dominant hemisphere (40).

Visually Enhanced Methods for Tumor
Demarcation
Tumor visualization may be enhanced using specially designed
microscopes with filters capable of detecting fluorescent light
emission with or without enhancement. The differentiation
between tumor and normal tissue depends on the uptake of
specific enhancing agents, metabolism, and the production of
detectable bio-products by tumor. These differences are visual-
ized under the surgical microscope equipped with appropriate
filters. This is a promising strategy for real-time tumor discrim-
ination in situ. Dye-based methods have been investigated but
were unacceptable for clinical use due to inadequate color contrast

between tumor and normal brain tissue (41). New microscope
imaging technologies and novel enhancing agents continue to
evolve, which provide a sharper delineation between tumor and
normal brain tissue.

5-Aminolevulinic Acid
5-Aminolevulinic acid (5-ALA) is an accepted method that
enhances glioma visualization under blue light. The metabolism
of 5-ALA is dependent on heme biosynthetic pathways. Since
gliomas are deficient in ferrochelatase enzyme, accumulation of
the fluorophore protoporphyrin IX exhibits strong fluorescence
in gliomas compared to surrounding brain tissue under blue
light. Intraoperative 5-ALA enables more complete resection of
malignant glioma leading to greater survival (42–46).

Confocal Microscopy
Confocal microscopy combined with chemical-induced fluores-
cence may provide non-invasive histological images. This is also
referred to as optical sectioning and allows visualization of the
tumor in one plane. This technology reduces fluorescent light
scatter, thus, resulting in higher resolution and contrast images,
with in vivomagnification up to 1000× (47). Intraoperative visual-
ization of brain tumors is greatly enhanced by new technologies of
5-ALAwith confocalmicroscopy that is of importance not only for
resection of high-grade gliomas but also for intraoperative visual-
ization of anaplastic foci in a tumor initially suspected of being low
grade (48). Fluoroscein injected intraoperatively and visualized
with white light, use of fluorescein filters attached to the micro-
scope, and confocal endomicroscopy demonstrate an increased
success in near total removal of tumor. Intraoperative confocal
microscopy is a safe, effective, and convenient method to visualize
cellular 5-ALA-induced tumor fluorescence within LGGs and at
the brain-tumor interface, which may aid in obtaining a greater
extent of resection (49–51).

Microspectrofluorometer
Microspectrofluorometer measures the fluorescence spectra to
distinguish tumor from normal tissue microscopically in vivo. As
the 5-ALA method visualizes the tumor directly, the microspec-
trofluorometer utilizes a readout device (spectrometer or spectro-
scope) to differentiate the fluorescence emission from the glioma.
This dye-free method identifies tumors based on the glioma’s
unique autofluorescence that is distinct from normal brain. Under
certain pathological processes, the autofluorescent properties of
tissues change due to oncogenesis (52). Time-resolved fluores-
cence spectroscopy records the decay profiles of the autofluores-
cence that improves the sensitivity on tumor delineation. Under
microspectrofluorometry, the normal white matter showed two
peaks of fluorescence emission at 390 and 460 nm; the 390-
nm emission peak was absent or reduced from the gliomas (53,
54). The spectrofluorometry method is accurate in differenti-
ating between tumor and normal tissue. Tumor discrimination
may be enhanced by certain agents, such as chloro-aluminum
phthalocyanine tetrasulfonate (55).

Other Tumor Delineating Methods
Other tumor delineating methods: (1) Fluorescence lifetime imag-
ing microscopy (FLIM) allows the demarcation of tumor from

Frontiers in Oncology | www.frontiersin.org July 2015 | Volume 5 | Article 1753

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Zhang et al. Art of intraoperative glioma identification

normal tissue. Tumor metabolism is different from that of nor-
mal tissue. At a wavelength band emission of 460± 25 nm cor-
responding to NADH/NADPH fluorescence, malignant gliomas
exhibit a weaker fluorescence intensity (p< 0.05) and a longer
duration (p< 0.005) (56). (2) Tumor Paint BLZ-100 is a chloro-
toxin ligand conjugated with indocyanine green that has a higher
affinity for gliomas. The indocyanine green labeled tumor tissue
can be identified vividly under near-infrared (NIR) lighting (57).
(3) A IRDye 800CW-RGD peptide in tumor delineation serves
as a probe to bind integrin receptors that are overexpressed in
malignant gliomas for angiogenesis and growth. 800CW-RGD
peptide-enhanced tumors may be visualized using near-infrared
IRDye (58). (4) A dye-loaded polyacrylamide nanoparticles coated
F3 peptide in tumor demarcation produces tight binding on the
tumor surface receptor nucleolin. The affinity binding of dye-
loaded nanoparticles with glioma helps to visualize the affected
tissue from normal brain (59, 60). (5) Triple-modality magnetic
resonance imaging–photoacoustic Raman imaging nanoparticles
have been studied experimentally as a molecular strategy to delin-
eate tumors. Intravenous injection of these nanoparticles into
glioblastoma-bearing animals allows sharp tumor delineation due
to specific retention of the nanoparticles by tumor cells (61). (6)
Stimulated Raman scattering (SRS) microscopy can differentiate
tumors fromnormal brain based on diverse Raman spectra, which
reflects the histoarchitectural and biochemical variations of the
tumor. SRS serves as a label-free technique for tumor demarcation
in vivo by which the revealed tumor margins correlate well with

histological assessment (kappa = 0.98) (Figure 1) (60, 62, 63). (7)
Two-photon or multi-photon fluorescence microscopy has been
utilized for tumor margin visualization. The advantage of using
infrared lighting avoids the phototoxicity of tissues exposed to
light in the surgical field (64).

Discussion

The ultimate goal of brain-tumor surgery is to attain maximum
tumor resection and to achieve the greatest survival with minimal
neurological deficits. In addition, it is important to obtain a precise
pathological diagnosis of the cellular origins and grade of the
tumor. The surgery reduces the neurological symptoms caused by
tumor compression/invasion and tumor-associated tissue edema.
The key issue for glioma surgery is to obtain intraoperative tumor
delineation. Since the texture and color of gliomas, especially
low-grade tumors, are similar to normal brain tissue, accurate
tumor identification remains a challenge for neurosurgeons. Tra-
ditionally, the determination of tumor margins depends on the
experience of the neurosurgeon to sense subtle differences in
color, texture, and surface vascularity of the glioma. Several tech-
nologies used intraoperatively to delineate tumor margins have
been developed and continue to rapidly evolve. Current available
technologies that assist with intraoperative demarcation between
tumor and normal brain tissue are listed in Table 1.

Each innovative technology has its advantages and limitations.
In a recent review, advanced intraoperative delineation techniques

FIGURE 1 | In vivo stimulated Raman scattering microscopy images
of human glioblastoma multiforme xenografts. (A) The arachnoidal
and pial vessels on the surface of the normal brain were clearly identified in
the standard bright field and stimulated Raman scattering images.
Visualization of the tumor was undetectable under standard operative
conditions. Certain regions of brain tissue that appeared grossly normal
under bright field microscopy revealed extensive tumor infiltration on

stimulated Raman scattering microscopy. The dashed line represents the
tumor margin which was observed both biochemically and structurally.
(B,C) The glioblastoma multiforme xenograft tissue was blue and cellular.
(D) Normal axonal processes and vascular patterns were noted in
non-infiltrated (normal) cortex. [Permission obtained from the publisher
American Association for the Advancement of Science (AAAS); Ji et al.
(63)].
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TABLE 1 | Intraoperative demarcation between tumor and normal brain tissue.

Methods Suitability Characteristics

Image-based navigation Plan the surgical approach to biopsy the lesion; attempt
gross tumor resection

Provides information of tumor size, shape, and location; not a true
real-time toola

Intraoperative tissue sampling Confirm tumor diagnosis; possibly identify tumor origin
and grade

High-diagnostic value; specimens are piecemeal and discontinuous;
must combine multiple specimens; often not real-time

Electrophysiological monitoring Identify important functional regions and circuits;
minimize neurologic deficits

Indirect tumor delineation via the responses or feedback of awake
patients; real-time

Enhanced visual tumor
demarcationb

Identify tumor remnants or infiltrating tumors to obtain
complete resection

Strong correlation with the surgeon’s view of the field; real-time

aMRI information for navigation is not real-time.
bMicrospectrofluorometer is similar to the method of enhanced visual tumor demarcation by using a readout device to detect the fluorescence difference instead of visualization.

have greatly improved the extent of glioma resection compared to
conventional methods (42). Intraoperative imaging with CT, US,
andMRI navigation identifies tumor location and extension of the
gliomas and are used to assist in planning the surgical approach.
Thesemethods do not demonstrate residual tumor or tumor infil-
tration. Enhanced visual tumor demarcation techniques do not
provide images of the entire tumor but do demonstrate residual
tumor in the surgical field. This technology requires high signal-
to-noise ratio or tumor-to-brain fluorescence ratio in the surgi-
cal resection cavity (65). Using the 5-ALA method, the tumor-
to-brain fluorescence ratio is acceptable (66, 67). In the future,
improved methods with a greater tumor-to-brain fluorescence
ratio will be developed such as CLR1502 (68).

Ideal methods to differentiate gliomas from normal brain
include (1) easy to perform and accurate, (2) real-time that is
concordant with a surgeon’s view and may be monitored con-
tinuously, (3) maximal functional protection, (4) minimal tech-
nical challenges, and (5) cost-effective. Neuronavigation is based
on imaging information to develop and optimize the surgical

approach to the tumor while providing an aggressive and safe
tumor debulking using methods of demarcation, such as 5-
ALA, to identify residual tumor. Neurophysiologic functional
monitoring may prove beneficial in avoiding damage to elo-
quent areas. Mastering and properly applying methods to dis-
criminate gliomas from normal brain tissue in standard neu-
rosurgical practice will increase the success of total glioma
excision.
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