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The role of angiogenesis as a mediator of immune regulation in the tumor
microenvironment has recently come into focus. Furthermore, emerging evidence indi-
cates that immunotherapy can lead to immune-mediated vasculopathy in the tumor,
suggesting that the tumor vasculature may be an important interface between the tumor-
directed immune response and the cancer itself. The advent of immune checkpoint
inhibition as an effective immunotherapeutic strategy for many cancers has led to a better
understanding of this interface. While the inhibition of angiogenesis through targeting of
vascular endothelial growth factor (VEGF) has been used successfully for the treatment
of cancer for many years, the mechanisms of its anti-tumor activity remain poorly
understood. Initial studies of the complex relationship between angiogenesis, VEGF
signaling and the immune system suggest that the combination of immune checkpoint
blockade with angiogenesis inhibition has potential. While the majority of this work has
been performed in metastatic melanoma, immunotherapy is rapidly showing promise in a
broad range of malignancies and efforts to enhance immunotherapy will broadly impact
the future of oncology. Here, we review the preclinical rationale and clinical investigations
of combined angiogenesis inhibition and immunotherapy/immune checkpoint inhibition
as a potentially promising combinatorial approach for cancer treatment.

Keywords: PD-1:PD-1L blockade, angiogenesis inhibitors, VEGF, melanoma, immunotherapy

Introduction

Immune checkpoint blockade with monoclonal antibodies directed against CTLA-4, PD-1, and
PD-L1 has shown striking anti-tumor activity in an increasing number of solid tumors and hema-
tologic malignancies, including tumors previously not considered immune responsive. However,
many patients with advanced cancer still do not receive clinical benefit from these treatments. The
objective tumor response rates seen in patients with advanced melanoma treated with concurrent
ipilimumab and nivolumab suggest that significant improvements are achievable with combinatorial
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approaches (1–3); however, the combinatorial regimen is associ-
ated with significant immune-related toxicities. Alternative meth-
ods to improve the anti-tumor activity of immune checkpoint
blockade without substantially increasing toxicity are, therefore,
desirable.

The PD-1/PD-L1 pathway appears to be critical in downregu-
lating presumably in vivo primed tumor-directed T cell responses
as demonstrated by the successes of PD-1/PD-L1 inhibition. Nev-
ertheless, additional immunosuppressive mechanisms within the
tumormicroenvironment that compromisemelanoma-directed T
cell responses have been identified and validated. These include
infiltration with inhibitory cells, such as T regulatory cells (Tregs)
(4, 5), myeloid-derived suppressor cells (MDSCs), and tumor-
associated macrophages; upregulation of additional inhibitory
receptors, such as TIM-3 (6) and LAG-3 (7); and the secretion
of immunosuppressive soluble factors, such as cytokines and
chemokines. Unfortunately, while the immunosuppressive mech-
anisms of immune checkpoint blockade are being uncovered,
good predictive biomarkers of success have yet to be validated
(8, 9). These inhibitory mechanisms likely limit the efficacy of
many immunotherapies, and provide targets for combination
therapy.

The vascular endothelial growth factor (VEGF) has been rec-
ognized as a critical mediator of immune suppression, suggesting
that VEGF blockade, which has proven effective for the treatment
of several cancers, may have a favorable impact on the anti-
tumor immune response in addition to its direct effects on the
tumor vasculature. Moreover, our own studies in tumor samples
obtained from advanced melanoma patients after treatment with
ipilimumab revealed immune-mediated vasculopathy associated
with tumor necrosis and heavy infiltration withmononuclear cells
(10). These findings indicate that CTLA-4 inhibition may directly
modulate tumor vessels in addition to its effect on the activation of
T cells (10). We have also recently shown that high serum levels of
VEGF (sVEGF) are associated with decreased overall survival in
advanced melanoma patients treated with ipilimumab, suggesting
that sVEGF levelsmay predict outcomes after immune checkpoint
inhibition (11).

By facilitating both the growth of cancer cells and immune
suppression, tumor angiogenesis is an important link between a
tumor and the immune response directed at that tumor. Angio-
genic factors have been shown to regulate trafficking across tumor
endothelia (12). Consequently, targeting angiogenesis may be an
effective strategy to increase the efficacy of primarily T cell-
directed immunotherapy, such as immune checkpoint blockade.
Preclinical evidence of this important interplay between tumor,
tumor vasculature, and immune cells as well as recently emerging
clinical data is reviewed.

Rationale for Targeting the Vascular
Endothelial Growth Factor Pathway in
Combination with T Cell-Directed
Immunotherapy in Melanoma

Vascular endothelial growth factors are involved in angiogenesis,
lymphangiogenesis, and vasculogenesis and are primarily known

as mediators of tumor neovascularization (13, 14). Different
isoforms of VEGF (A–F) bind to transmembrane receptors
(VEGF-R 1–3), resulting in dimerization and activation through
phosphorylation of tyrosine kinases. VEGF is secreted by most
tumors in response to hypoxia-inducible factor (HIF) or upreg-
ulation of oncogenes, such as c-myc (15–17). Increased VEGF
serum levels are associated with a poor prognosis in patients
with malignancy (18). Melanoma cells demonstrate high levels
of expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 and
high circulating serum levels of VEGF are associated with poor
prognosis in patients with melanoma (19, 20). The anti-VEGF
antibody bevacizumab given in combination with chemotherapy
(carboplatin/paclitaxel) has demonstrated a promising activity
in advanced melanoma patients treated in a phase 2 trial (21).
Aflibercept (VEGF Trap), a fusion protein combining the Fc por-
tion of human IgG with the extracellular ligand-binding domains
of human VEGFR1 and VEGFR2, which acts as a decoy VEGF
receptor has shown promising single agent activity in early stud-
ies in melanoma (22, 23). Furthermore, high levels of soluble
VEGF have been associated with a lack of response to high-dose
IL-2 therapy and decreased OS in cancer patients treated with
ipilimumab (11, 24).

In addition to its role in angiogenesis, VEGF modulates anti-
tumor immunity on multiple levels including promotion and
expansion of inhibitory immune cell subsets, such as Tregs and
MDSCs, suppression of dendritic cell (DC) maturation, mitiga-
tion of effector T cell responses, and alteration of lymphocyte
development and trafficking (25). See Figure 1.

VEGF Promotes Suppressive Immune
Cell Populations

T Regulatory Cells
T regulatory cells inhibit effective anti-tumor responses and are
generally associated with poor outcomes in cancer patients (26).
Although VEGF-A can lead to Treg differentiation by generating
immature DCs (27), VEGFwas also shown to directly induce Treg
proliferation in the CT26 colorectal cancer model (28). In tumor-
bearing mice, the percentage of Tregs among CD4+ T cells was
significantly enhanced in the spleen, VEGF inhibition resulted in
decrease of Treg cells to normal numbers. Furthermore, in patients
with metastatic colorectal cancer, peripheral levels of VEGF-A
were elevated and the percentage of Tregs were higher than in
healthy volunteers and decreased in response to bevacizumab
treatment (28). Conversely, Tregs can directly promote tumor
angiogenesis. In a mouse ovarian cancer model, tumor hypoxia
resulted in the recruitment of Tregs through upregulation of the
chemokine ligand 28 (CCL28), leading to increased tumor growth
(29, 30).

Myeloid-Derived Suppressor Cell
Myeloid-derived suppressor cells represent a heterogeneous
population of immature myeloid cells that have been prevented
from fully differentiating into mature cells during pathological
conditions, such as cancer and inflammation. MDSC inhibit
tumor-directed T cell responses through a variety of mechanisms
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FIGURE 1 | VEGF modulates the function of T cells, suppressive immune cells, and stroma in the tumor microenvironment, leading to an
immunosuppressive state. MDSC, myeloid-derived suppressor cell; iDC, immature dendritic cell; matDC, mature dendritic cell; TAM, tumor-associated
macrophage; T-reg, T-regulatory cell; iMC, immature myeloid cell; TAM, tumor-associated macrophage. Dotted gray lines indicate differentiation from iMC to TAM and
iDC, respectively.

including depletion of arginine and production of NO,
indoleamine 2,3-dioxygenase, and reactive oxygen species (ROS).
VEGF has been shown to promote the expansion of “MDSCs”
(31) and decreased numbers of CD11b+ VEGFR1+MDSCs
in the peripheral blood were observed in the peripheral blood
of renal cell cancer (RCC) patients treated with the anti-VEGF
antibody bevacizumab. In a mouse model, Gr1+CD11b+
immature myeloid cells accumulated in the spleen, whereas CD4
and CD8 cells decreased in mice treated with VEGF; this effect
could be completely reversed by blocking VEGFR-2 (32).

VEGF Leads to Compromised
Antigen-Presenting Cell and T Effector
Cell Function

Dendritic Cells and Tumor-Associated
Macrophages
Antigen-specific cells are critical for the induction of effective T
cell responses and inadequate presentation of tumor antigens by
host antigen-presenting cells is onemechanismof immune escape.
VEGF was found to limit the maturation of DC precursors into
mature DC capable of presenting tumor antigens and inducing
a T cell response directed at tumor antigens (31, 33). VEGFR1
appears to be the primary mediator of the VEGF inhibition of
DCmaturation, while VEGFR2 plays a role in early hematopoietic
differentiation, but is less important in the final stages of DC
maturation (34). Signaling through VEGFR1/Flt-1 inhibits the
activation of NF-kappa B in hematopoietic progenitor cells, which
has been implicated in the generation of mature DCs (35). The

expression of VEGF negatively correlates with DC numbers in
tumor tissue and peripheral blood of patients with different types
of cancer.

Vascular endothelial growth factor was also found to attract
immature myeloid cells from the bone marrow into tumor sites.
Once in the tumor, these precursors develop into immature DC
or tumor-associated macrophages under the influence of VEGF
and other immunosuppressive soluble factors, such as IL-10
and TGF-β. Tumor-associated macrophages can also be directly
recruited to the tumor by VEGF. Increased numbers of TAM
and elevated levels of VEGF were associated with metastasis in a
melanoma model (36).

Inhibition of VEGF with bevacizumab leads to a decrease in
immature progenitor cells and a modest increase in the DC pop-
ulation in the peripheral blood of cancer patients (37). In animal
tumor models, VEGF therapy increased the number and function
of DC detected in lymph nodes and spleens. Treatment of tumor-
bearing mice with an anti-VEGF antibody at a dose that did
not block tumor growth directly, but suppressed serum VEGF
levels, increased mature DC numbers, improved DC function,
and resulted in a pronounced decrease in tumor growth that was
associated with an enhanced tumor-specific CTL response (38).

T Effector Cells
Studies in animal models suggest that VEFG interferes with T
cell development from hematopoietic progenitor cells, thus fur-
ther impairing immune responses (39). Exposure to VEGF at
levels observed in advanced cancer led to decrease CD4+/CD8+
thymocytes and lymphoid progenitors (39). In a mouse model,
CD4 andCD8 cell numbers decreased in the spleen ofmice treated
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with VEGF, while Gr1+CD11b+ immature myeloid cell numbers
accumulated; this effect could be reversed by blocking VEGFR-2.
In addition, VEGF-mediated inhibition of T cell development in
the thymus was also reversed by VEGFR-2 inhibition (40).

VEGF Effects on Tumor Vasculature and
Lymphocyte Trafficking

Tumor vasculature is often markedly abnormal leading to a
hypoxic and acidic microenvironment with high interstitial fluid
pressure (41). Effective anti-cancer immune responses depend
upon the ability of tumor-reactive T cells to infiltrate into a tumor
(42–44). One barrier to effective tumor T cell infiltration is the
endothelium of the tumor vasculature, limiting adhesive interac-
tions between endothelial cells and T cells (45, 46). Angiogenic
factors suppress expression of endothelial intercellular adhesion
molecule-1 causing a reduction in leukocyte adhesion to endothe-
lial cells (47). VEGF blockade restores these endothelial-T cell
interactions through effects on vascular cell adhesion molecule
1 (VCAM-1) and intracellular adhesion molecule 1 (12, 48).
Antiangiogenic treatment can lead to a normalization of tumor
vasculature with regards to anatomy and function. This regen-
eration of an intact vasculature can have beneficial effects on
trafficking of tumor-specific T cells and other immune effectors
(49, 50).

Fas ligand (FasL) is a mediator of T cell apoptosis; in the major-
ity of tumors tested in a tissue array including a wide spectrum of
tumor types, FasL was found to be selectively expressed on tumor
endothelium, but not on the tumor cells themselves. Moreover,
in human ovarian cancer tissue samples, FasL expression was
significantly higher on endothelial cells within tumor islets as
compared to endothelial cells in stroma, providing an explanation
for an earlier observation of T cell infiltrates preferentially seen
in tumor stroma. In human tumors, FasL expression has been
linked to absence of intratumoral CD8+ T cells, but not Tregs,
and endothelial cells expressing FasL were shown to kill T effector
cells. Furthermore, VEGF-A, IL-10, and prostaglandin E2 secreted
by microvascular endothelial cells (HMVECs) in vitro induced
endothelial cell FasL expression. Inmousemodels, FasL lead to the
preferential killing of tumor-reactive CD8+ T effector cells, but
not Treg cells, because of higher anti-apoptotic gene expression
on Treg cells. Blocking FasL or VEGF with antibodies resulted in
marked increase in tumor infiltration with CD8+ cells (48).

Synergy of VEGF Inhibition and
Immunotherapy: Preclinical Models

In an adoptive T cell transfer (ACT) model, mice bearing
large established B16 tumors were treated with pmel-1 T-cell
receptor (TCR) transgenic T cells, which specifically recognize
the melanocyte differentiation antigen gp100. When ACT was
combined with an anti-VEGF-antibody, there was significantly
increased anti-tumor activity overACT alone, whereas anti-VEGF
therapy, by itself, had no treatment effect. Experiments using
luciferase-expressing pmel T cells showed that a single dose
of anti-VEGF antibody given 2 days prior to ACT resulted in
significantly enhanced infiltration of pmel T cells into tumors,

suggesting that the augmented anti-tumor activity was mediated
by more effective trafficking of T cells into the tumors (51).
In a separate study, mice bearing B16 melanoma were treated
with a GM-CSF-secreting tumor cell vaccine in combination with
VEGF blockade using a chimeric adeno-associated virus vector
expressing soluble VEGF receptor (sVEGFR1/R2). Tumor vaccine
in combination with sVEGFR1/R2 leads to prolonged survival
over tumor vaccine alone. Furthermore, tumors of mice treated
with the combination had significantly increased frequencies of
activated DCs and effector T cells, whereas Treg numbers were
decreased (52).

CTLA-4 Inhibition Combined with
VEGF-Blockade: Clinical Experience in
Advanced Melanoma

A phase I study using ipilimumab plus bevacizumab conducted at
our institution provides the first analysis of immune checkpoint
blockade and angiogenesis inhibition in cancer patients (53).
Forty-six patients with advanced melanoma received ipilimumab
(at either 3mg or 10mg/kg) every 3weeks for four doses (induc-
tion phase) and bevacizumab (7.5mg/kg or 15mg/kg) every
3weeks. After the induction phase, ipilimumab was given every
12weeks (maintenance phase) and bevacizumab was continued
every 3weeks. The primary endpoints were safety and preliminary
efficacy. Grade 3 and 4 toxicities were observed in 11 patients
(23.9%) and included colitis, hepatitis, uveitis, and giant cell arteri-
tis. Eight patients had partial responses and 22 patients had stable
disease (disease control rate 30/46, 67%).

On treatment, tumor biopsies showed intense infiltration with
CD8+ T cells and CD163+ dendritic macrophages within the
tumor vasculature. Patients treated with ipilimumab alone who
had biopsies performed had substantially less infiltration with
CD8+ T cells and CD163+ macrophages. Morphologic changes
of the tumor vasculature with columnar and roundedCD31+ cells
were observed post-treatmentwith ipilimumabplus bevacizumab.
Increased expression of E-selectin was seen with combined treat-
ment compared to ipilimumab monotherapy, indicating endothe-
lial activation. The types of changes seen were similar to alter-
ations in high endothelial venules seen in secondary lymphoid
organs and associated with lymphocyte extravasation, suggesting
an improved ability of lymphocytes to migrate into tumor tis-
sues. Furthermore, treatment with ipilimumab plus bevacizumab
leads to increased numbers of circulating memory CD4 and CD8
cells (CCR7+/−CD45RO+) in the peripheral blood compared to
ipilimumab alone.

Galectins are a family of carbohydrate-binding proteins with
an affinity for β-galactosides. Galectin-1 was found to play a
role in immune regulation. Galectin-1 binding to Gal-1 lig-
ands on immune and endothelial cells associated with melanoma
causes dampened immune response and increased angiogene-
sis in melanoma (54). Increased antibody levels directed to the
galectins 1, 3, and 9 found in post-treatment sera indicate that one
mechanism bywhich combinedCTLA-4 andVEGF blockademay
increase immune regulation is through inhibition of galectin. This
inhibition has potential implications for both immune regulation
and angiogenesis.
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TABLE 1 | Clinical trials combining immune checkpoint blockade and angiogenesis inhibition.

Checkpoint inhibitor Angiogenesis inhibitor Tumor type Design Status ID no.

Ipilimumab Bevacizumab Melanoma Phase 1, multiple cohorts Completed NCT00790010
Ipilimumab Bevacizumab Melanoma Phase 2, randomized Recruiting NCT01950390
MPDL-3280A Bevacizumab Solid tumors Phase 1, multiple cohorts Recruiting NCT01633970
Nivolumab Bevacizumab RCC Phase 2, randomized Recruiting NCT02210117
Nivolumab Bevacizumab NSCLC Phase 1, randomized, multiple cohorts Recruiting NCT01454102
Pembrolizumab Bevacizumab RCC Phase 1b/2 Recruiting NCT02348008
Pembrolizumab Bevacizumab NSCLC Phase 1 and 2, multiple cohorts Recruiting NCT02039674
Pembrolizumab Bevacizumab High Grade Glioma Phase 1 (+HFSRT) Recruiting NCT02313272
Pembrolizumab Bevacizumab GBM Phase 2 Recruiting NCT02337491
Pembrolizumab Ziv-Aflibercept Solid tumors Phase 1 Recruiting NCT02298959
Tremelimumab MEDI3617 (anti-ang-2) Melanoma Phase 1 Recruiting NCT02141542

NSCLC, non-small cell lung cancer; RCC, renal cell cancer; GBM, glioblastoma multiforme; HFSRT, hypofractionated stereotactic irradiation; ang-2, angiopoietin 2.

These early promising clinical results with correlative work
confirming mechanisms of synergy between immune checkpoint
inhibition and antiangiogenic therapies have led to further testing.
There are several trials combining immunotherapy and beva-
cizumab in melanoma including a randomized phase II trial with
ipilimumab (ECOG trial E3612, NCT01950390), several trials
with anti-PD1 antibodies (NCT02210117 and NCT02348008),
and a phase Ib with anti-PDL1 antibody (NCT01633970).
In addition, a phase I trial of the anti-PD1 antibody pem-
brolizumab plus Ziv-Aflibercept in patients with Advanced Solid
Tumors is ongoing (NCT02298959). Receptor tyrosine kinase
inhibitors with numerous targets, which include VEGF, have
activity in RCC, hepatocellular carcinoma, gastrointestinal stro-
mal tumors, and other malignancies. There are numerous tri-
als ongoing combining these agents with immune checkpoint
blockade. Other angiogenic targets beyond VEGF are being
explored in early clinical testing. Angiopoietin 2 (Ang2) is a
growth factor expressed in a variety of tumor types, which cor-
relates with increased angiogenesis and poor prognosis (55).
A trial combining MEDI3617 and anti Ang2 antibody and
tremelimumab (anti-CTLA4) in melanoma is enrolling par-
ticipants (NCT02141542). See Table 1 for a listing of active
trials.

Conclusion

The remarkable successes of immune checkpoint inhibition in
an increasing number of tumors have brought immunotherapy
to the forefront of cancer treatment in recent years. Neverthe-
less, while overall response rates of 50% and higher, with many
responses being durable, have been seen in some tumor types,
such as melanoma and Hodgkin’s lymphoma, the efficacy is much
lower or absent in other tumor types. Novel and combinatorial
approaches are, therefore, necessary to improve outcomes with
checkpoint inhibition. VEGF plays a central role in suppressing
tumor-directed immune responses and promoting angiogenesis.
Modulating this suppressive state in the tumormicroenvironment
through angiogenesis inhibition is an attractive partnering strat-
egy for immune checkpoint inhibitors. Combined therapy with
ipilimumab and bevacizumab in melanoma patients resulted in
encouraging anti-tumor activity and had beneficial effects on the
host anti-tumor immune response, including increase of memory
cells in the peripheral blood, increased effector cell trafficking, and
enhanced antibody responses to galectins. Many trials are under-
way exploring the concept of checkpoint inhibition in combina-
tion with angiogenesis inhibition, including VEGF blockade and
inhibition of novel angiogenesis targets, such as angiopoietin 2.
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