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Background: Multigene panels can be a cost- and time-effective alternative to sequen-
tially testing multiple genes, especially with a mixed family cancer phenotype. However,
moving beyond our single-gene testing paradigm has unveiled many new challenges
to the clinician. The purpose of this article is to familiarize the reader with some of
the challenges, as well as potential opportunities, of expanded hereditary cancer panel
testing.

Methods: We include results from 348 commercial multigene panel tests ordered from
January 1, 2014, throughOctober 1, 2014, by clinicians associated with the City of Hope’s
Clinical Cancer Genetics Community of Practice. We also discuss specific challenging
cases that arose during this period involving abnormalities in the genes: CDH1, TP53,
PMS2, PALB2, CHEK2, NBN, and RAD51C.

Results: If historically high risk genes only were included in the panels (BRCA1, BRCA2,
MSH6, PMS2, TP53, APC, CDH1), the results would have been positive only 6.2% of the
time, instead of 17%. Results returned with variants of uncertain significance (VUS) 42%
of the time.

Conclusion: These figures and cases stress the importance of adequate pre-test coun-
seling in anticipation of higher percentages of positive, VUS, unexpected, and ambiguous
test results. Test result ambiguity can be limited by the use of phenotype-specific
panels; if found, multiple resources (the literature, reference laboratory, colleagues,
national experts, and research efforts) can be accessed to better clarify counseling and
management for the patient and family. For pathogenic variants in low and moderate risk
genes, empiric risk modeling based on the patient’s personal and family history of cancer
may supersede gene-specific risk. Commercial laboratory and patient contributions to
public databases and research efforts will be needed to better classify variants and reduce
clinical ambiguity of multigene panels.

Keywords: multigene panels, hereditary breast cancer, hereditary colon cancer, genetic counseling,
next-generation sequencing, hereditary cancer panel
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Introduction

An interdisciplinary medical practice that employs a grow-
ing arsenal of genetic and genomic tools to identify individu-
als and families with inherited cancer risk (1), genetic cancer
risk assessment (GCRA) enables informed choices about can-
cer screening (2–4), surgical (5–9), and chemopreventive risk
management options (10–14), as well as genetically targeted
cancer treatment therapies (15, 16). Although genetic coun-
seling and testing driven by syndromic features, with testing
focused on one or a few high penetrance cancer predisposi-
tion genes, has been the standard of care, technical advances
have upended the well-established paradigms. National guide-
lines now include discussion of hereditary cancer panels inclu-
sive of multiple genes as a potentially cost- and time-effective
alternative to sequentially testing multiple single genes associated
with a given phenotype; or when atypical family presentations,
or limited family structure make it difficult to use family

history alone to determine the most appropriate gene(s) to
test (17, 18).

Moving beyond single-gene testing has unveiled new challenges
to the clinician involved in providing GCRA. Since the implemen-
tation of multigene panels, significant gaps in our gene-specific
phenotypic knowledge base have been identified. The prevalence
of variants of uncertain significance (VUS), unexpected findings,
such as “off-phenotypic-target” gene mutations, and pathogenic
findings in low and moderate risk genes challenge the established
counseling repertoire. Even in the case of mutations in highly
actionable genes, expanded panel testing can lead to unexpected
findings. The purpose of this article is to illustrate some of the
challenges and opportunities associated with expanded hereditary
cancer panel tests, many of which include both well-characterized
and lesser known cancer-associated genes. We also provide a
conceptual framework according to evidence for clinical utility
to help classify low, moderate, and high risk cancer predisposing
genes (Figure 1; Table 1).
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• Penetrance: moderate; organ specific cancer risks are fairly well defined for at least 

one cancer site(i.e., ATM causes an increased risk for breast cancer, however, 

pancrea!c risks remain unclear) 

• Ac!onability: moderate; enough evidence exists to supersede empiric risk (if 

necessary) for enhanced surveillance for at least one at risk site (i.e., enhanced 

breast cancer surveillance for PALB2 carriers is jus!fied even in the absence of a

family history of breast cancer (54)

• Implica!ons for other family members: may not be straigh"orward 

• Penetrance: high; causes a well known cancer syndrome with well defined cancer 

risks by site (i.e., BRCA1/2 and hereditary breast and ovarian cancer syndrome) 

• Ac!onability: high; evidence based risk reducing na!onal guidelines exist for at least 

one organ system (i.e., Tamoxifen therapy/salpingo-oophorectomy for BRCA1/BRCA2

carriers (23), colectomy for APC carriers (18)

• Implica!ons for other family members: straigh"orward

HIGH RISK

MODERATE

RISK

LOW RISK

• Penetrance: low or uncertain; vague organ specific cancer risks (i.e., MRE11A carriers 

have currently unclear organ specific cancer risks) 

• Ac!onability: low; due to lack of established evidence based guidelines. Screening 

and management recommenda!ons are provided based on empiric risk es!mates 

and case-by-case literature and laboratory data review 

• Implica!ons for other family members: not well defined 

FIGURE 1 | General characteristics of genetic cancer risk groups. Genetic risk categories are shown with an adjacent matched color descriptor noting the
general features specific to each risk tier. Quantification of risk with a categorization of genes in each tier is provided in Table 1. Clinical utility (arrow) increases with
higher cancer risk predisposition. The arrow gradient denotes the potential significant overlap between the tiers. Clinical utility and refined risk scores may improve in
the future, especially for low and moderate risk genes (19). Penetrance, actionability, and implications for family members have been simplified for conceptual use.
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TABLE 1 | Breast, colorectal, and ovarian cancer risk estimates by monoallelic germline mutation.

Cancer site High risk (oddsθθθ ≥≥≥5.0) Moderate risk (≥≥≥2.0 oddsθθθ <5.0) Low risk (≤≤≤2.0 oddsθθθ ≥≥≥1.0 or
growing evidence of association)

Breast (female) BRCA1 (20), BRCA2 (20), CDH1 (21), PTEN
(22), STK11 (23, 24), TP53 (25)

ATM (26, 27), BRIP1 (28),
CHEK2 (29, 30), PALB2 (31, 32)

BAP1 (33), BARD1 (34, 35), RAD50 (36, 37),
RAD51C (38), RAD51D (39, 40), MRE11A (36),
MUTYH (41), NBN (42, 43), XRCC2 (44, 45)

Colorectal APC (46), BMPR1A (47), ψEPCAM (48), MLH1
(49), MSH2 (49), MSH6 (49, 50), *MUTYH (51),
PMS2 (52), SMAD4 (47), STK11 (53)

CHEK2 (54, 55), PTEN (56),
TP53 (25)

CDH1 (57, 58), EXO1 (59), GALNT12 (60, 61),
MUTYH (62, 63), POLD1 (64), POLE (64)

Ovary BRCA1 (65), BRCA2 (65), MLH1 (66), MSH2
(66), STK11 (24)

MSH6 (66), PALB2 (32, 65),
RAD51C (65, 67), RAD51D (39)

BARD1 (65, 68), BRIP1 (65), CHEK2 (65), MRE11A
(65), MUTYH (69), NBN (65), RAD50 (65), TP53 (65)

Due to study design variation, genetic risk categorization was extrapolated from odds ratios, relative risks, cumulative, or absolute cancer risks and presented as an estimate of the
generalized odds (θ) over the baseline population for organ specific cancer risk. Genes in each category are in alphabetical order. Please see individual key reference for specific risk
estimate method used. When study discrepancy, or wide reported confidence intervals were reported, expert opinion was used for the final risk categorization. The list is not exhaustive
for breast, colorectal, and ovarian cancer predisposition. More studies, especially on moderate and low risk category genes will be needed to better clarify the associated cancer risks
and penetrance. Single nucleotide polymorphism studies, which could add hundreds of gene and locus associations to the low risk category, were not included (70). Penetrance and
expressivity can widely vary with specific mutations. Asterisk (*) denotes MUTYH biallelic mutation. (ψ ) denotes deletions only affecting transcription of MSH2.

Since the advent of lower-cost next-generation sequencing,
multigene panels now include 5–60 genes (71–74). Some panels
are phenotype specific and include breast or colon cancer risk
genes, whereas others cover a broad spectrum of cancers and
are marketed for expanded pan-cancer genetic risk assessment.
The driver of cancer genetic testing has historically been clinical
utility, based on sufficient evidence to support significant changes
in patient and/or family screening and risk management recom-
mendations (1, 74–78). Virtually, all multigene panels include
“high penetrance genes” associatedwithmultiple interrelated phe-
notypes. Some of these genes are specific to breast cancer risk,
some specific to colon cancer risk, some specific to both, and/or
other organ system risk (Table 1). However, as shown by our case
reports below, expanded panel testing even for these genes can
lead to unexpected findings. Furthermore, the addition of many
moderate to low risk genes on panels can make it challenging to
develop personalized management guidelines for the patient and
family when a pathogenic mutation is found, since the pheno-
typic spectrum and penetrance are less defined, or unknown, at
this time.

Materials and Methods

Patient Selection
The City of Hope Division of Clinical Cancer Genetics (CCG)
includes a cancer screening and prevention program, cancer
genetics education program, and research program. The Clinical
Cancer Genetics Community of Practice (CCGCoP) was estab-
lished as a multifaceted program of GCRA training and ongoing
distance-mediated practice support for community-based clini-
cians, funded by the NCI (R25CA171998) (79, 80). Members of
the CCGCoP practice in 48 of 50 US states in more than 250 prac-
tice settings. Results from commercial multigene panel tests on
cases presented by CCGCoP members during a weekly multidis-
ciplinary, Continuing Medical Education accredited, web-based
case conference series between January 1, 2014 and September
30, 2014 by the CCGCoP are summarized in Figure 2. The seven
cases detailed in the following vignettes were chosen to exemplify
anddiscuss the challenges ofmultigene panel testing. All probands

were ascertained through an IRB approved protocol. Cases were
adjusted to anonymize the pedigrees.

Results

The results from 348 commercial multigene panel tests ordered
from January 1, 2014, through October 1, 2014, are shown in
Figure 2.

Challenging Multigene Panel Genetic Counseling
Risk Assessment Cases
Colorectal Cancer in CDH1
Case 1 is a 48-year-old male of Chinese ancestry diagnosed with
metastatic left-sided adenocarcinoma of the colon at age 45. Given
his young age at onset he was referred for GCRA. His family
history was devoid of other cancers (Figure 3). In the absence of
polyposis, his early age at diagnosis prompted the pathology labo-
ratory to complete microsatellite instability testing and immuno-
histochemistry for the mismatch repair (MMR) proteins (MLH1,
MSH2,MSH6, PMS2) associated with Lynch syndrome (LS), both
of which returned showing no evidence of defective MMR. Given
his young age, residual small risk for LS, and remaining concern
for potential MUTYH-associated polyposis or attenuated familial
adenomatous polyposis (AFAP), a multigene cancer panel was
chosen to try and better understand potential hereditable cancer
risk. He was found to carry a pathogenic mutation in CDH1,
designated c.283C>T.

CDH1 is a tumor suppressor gene that encodes epithelial
cadherin. Germline mutations have been associated with hered-
itary diffuse gastric cancer (HDGC), a rare autosomal dom-
inant condition historically thought to be highly penetrant,
with evidence to suggest a cumulative diffuse gastric cancer
risk of 80% by 80 years. Women with HGDC also have a
39–52% risk for lobular breast cancer (57, 74). Given the lack
of efficacy in available screening for diffuse gastric cancer, cur-
rent consensus guidelines indicate that prophylactic gastrec-
tomy should be considered for mutation carriers (81). There
is currently insufficient evidence to suggest that colorectal can-
cer (CRC) is part of the spectrum of HDGC-related cancers
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GENE  N 

% of all 

Posi�ves

CHEK2               12 17.4

BRCA1              7 10.1

PALB2              7 10.1

MUTYHφ 6 8.7

ATM 6 8.7

BRCA2 5 7.2

PMS2 5 7.2

NBN 4 5.8

BRIP1 3 4.3

p53 3 4.3

APC 2 2.9

MSH6 2 2.9

MRE11A 1 1.4

NF1 1 1.4

CDH1 1 1.4

RAD50 1 1.4

RAD51D 1 1.4

BARD1 1 1.4

CDKN2A 1 1.4

Uninforma�ve

[n= 157; 39%]

VUS

[n=168*; 42%]

Posi�ve

[n= 69+; 17%]

FIGURE 2 | Clinical cancer genetics community of practice experience with multigene panel tests. 403 results of 348 commercial multigene panel tests
ordered by Clinical Cancer Genetics Community of Practice clinicians between January 1, 2014, through October 1, 2014 are depicted. “VUS” means variant of
uncertain significance. “Uninformative” refers to negative panel testing results. “Inconclusive” refers to the laboratories inability to classify the result into other
categories at the present time. The plus symbol (+) denotes that six patients had mutations in ≥1 gene. Asterisk (*) denotes that 35 patients had ≥1 VUS. The side
table shows the number of individual positive gene mutations found. (φ) denotes that five MUTYH cases were monoallelic, whereas one case was biallelic.

 48
CRC 45

5 2

51 53 62 6459

79 77 78 80 77 85

83 84

85 84 86 79

54 62

57

2

Diagnosis = CRC

FIGURE 3 | Proband (arrow head) with colorectal cancer (CRC) and a
CDH1 monoallelic mutation. Note the large extended family without
cancer. There was no known gastric cancer even in the extended family.
Please see associated vignette for more details.

(57, 58), so the genetic finding does not appear to explain the
patient’s phenotype. This specific mutation has been reported
once previously and was associated with multiple individuals

with invasive lobular breast cancer in a family without DGC or
CRC (82).

The identification of a CDH1mutation in this case was consid-
ered an incidental, yet potentially meaningful test result for the
family. Given the absence of stomach cancer in the family, his
mutation was likely either de novo (a new germline mutation), or
the familial penetrance of gastric cancer is low with this mutation;
similar to the above family previously reported in the literature
(82). Given his current poor prognosis no further management
recommendations were made for him at this time. Unfortunately,
both of his parents were deceased and therefore it may not be
possible to further clarify whether this was an inherited mutation
with low penetrance, or a de novo mutation. If a sibling pursues
testing and tests positive, parental gonadal mosaicism (a propor-
tion of a parent’s spermor eggs had themutation) could be another
possibility. Either way, in this situation testing for all first-degree
relatives was recommended to clarify if there are other individuals
at elevated cancer risk. His children were recommended to have
testing between the ages of 18 and 21. For individuals identified
with the mutation, gastrectomy would need to be considered
since DGC surveillance has unproven value (57). Enhanced breast
screening, including annual breast magnetic resonance imaging
(MRI) for female carriers, would also be recommended (75).

Mosaic TP53
Case 2 is a 42-year-old unaffected woman of Northern European
ancestry referred for interpretation of ambiguous results from a
breast focused multigene panel ordered by her referring physi-
cian due to her maternal family history of cancer (Figure 3);
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her mother had breast cancer at age 74, her aunt had colon
cancer at age 76, her grandmother had leukemia at age 60,
and her great-grandmother had breast cancer at age 75. There
was no other family history of cancer. Results revealed a “likely
pathogenic” variant in TP53, designated c.542G>A. However,
the allele ratio deviated from 50%, suggesting the possibility of
somatic mosaicism.

Li–Fraumeni syndrome (LFS) is a hereditary cancer syndrome
associated with heterozygous germline mutations in TP53 (83–
85). Lifetime cancer risk is approximately 70% for male carriers
and approaches 100% for female carriers (86). Although LFS
includes predisposition to multiple and various primary neo-
plasms, the core cancers with highest risk include sarcoma, brain,
breast, and adrenocortical carcinoma, there are also reported
associations with colon, gastric, melanoma, bronchoalveolar, and
hematological malignancies (86, 87). The only prospective obser-
vational screening study to date followed 33 LFS patients for a
mean duration of 2 years (88); 18/33 underwent surveillance with
their comprehensive protocol, and 10 asymptomatic tumors were
found in seven individuals. Remarkably, all of the individuals in
the surveillance group were living at the completion of the study
(100% survival), compared to the standard (symptomatic) care
group, wherein 12 high-grade/stage tumors developed in 10 LFS
patients and only 2 individuals survived (20% survival) (88). For
adults, the screening protocol entailed: annual whole body, breast
(females only along with mammogram), and depending on the
family history, dedicated brain MRI; colonoscopy every 2 years
beginning at age 40; annual dermatologic exam; and a complete
blood count (CBC), erythrocyte sedimentation rate, and lactate
dehydrogenase for hematological malignancy screening (88). This
study demonstrated the feasibility of screening these high risk
patients, and this protocol has now been adopted (and adapted)
nationally and internationally (75, 86). Previously, most LFS cases
were identified using clinical criteria (Classic LFS, Chompret,
Birch, and Eeles) (89). However, next-generation sequencing tech-
nology enabled TP53 testing to be included in most hereditary
cancer gene panels.

Given that the patient’s personal and family history did not
meet criteria for a specific hereditary cancer predisposing syn-
drome other possibilities needed to be considered. Further discus-
sion with the laboratory revealed that the mutation was detected
in only 13% of DNA isolated from peripheral blood lymphocytes,
suggesting a mosaic de novo finding, or hematological or other
malignancy. No additional information from the laboratory or
literature regarding the specific variant was available. Concern
about apparent clonal hematopoiesis with a TP53 mutation as
a manifestation of an occult hematological malignancy led to
recommendations for a baseline CBC (normal), as well as annual
screening CBC. There were no available living family members
to help clarify the results any further. Given that constitutional
mosaicism for the TP53 mutation could not be excluded, it was
decided that high risk breast screening with addition of breast
MRI and clinical breast exams every 6months was justified. This
approach was also supported by the fact that empiric risk model
estimates indicated that the patient hadmoderately elevated breast
cancer risk (>20%) based on her family history (90). Although
often discussed in the literature, there is insufficient evidence

regarding risk associated with exposure to ionizing (imaging
or therapeutic) in the context of LFS (91). A colonoscopy was
recommended based on the genetic finding as well as on her
family history of CRC. It was discussed with the patient that
her cancer risks are currently unclear given the mosaic nature of
her genetic finding. She expressed distress over the test results
given the uncertainty of her cancer risks and potential that the
fraction of cells with the TP53 mutation represented an incipient
hematological malignancy.

PMS2, Incidental Finding but Possibly Significant
for Management
Case 3 is a 30-year-old unaffected woman of Northern European
ancestry, self-referred for GCRA due to a family history of multi-
ple cancers that included a paternal aunt who had breast cancer at
age 44 and a new primary breast cancer at age 46, who passed away
at age 52, a maternal grandmother who had breast cancer in her
60s and died at age 70, and a maternal aunt with ovarian cancer in
late 40s whowas alive at age 55 (no pathological reports available).
Meeting the National Comprehensive Cancer Network (NCCN)
hereditary breast and ovarian cancer syndrome (HBOC) genetic
testing criteria (75), the patient chose to proceed with a multigene
pan-cancer panel after counseling and informed consent. This
was intended to provide coverage for HBOC as well as LS given
the potential association with ovarian cancer (reported in her
maternal aunt). Testing revealed a complete deletion of exon 14
in PMS2.

PMS2 mutations are associated with LS, a condition that
increases the risk for developing CRC, uterine, ovarian, hepa-
tobiliary, urinary tract, brain, skin, and other gastrointestinal
malignancies (49, 92–95). The exact cancer risks conferred by
PMS2 mutations are unclear, but they are thought to be lower
than other MMR gene mutations (96). Available evidence to date
indicates that mutations in the PMS2 gene confer a lifetime CRC
risk of 15–20% (compared to lifetime risk as high as 80% with the
other LS-associated MMR genes) (52). In addition, it is estimated
that PMS2 carriers have a 15% lifetime risk of endometrial cancer
(compared to up to 60% with other LS-associated MMR genes).
Limited data exist regarding the exact risk estimates of other
extra-colonic cancers (52, 76, 96, 97).

There may be a very modest risk of breast cancer (10 years
risk 2% [95% CI= 1–4%]; SIR= 1.76 [95% CI= 1.07–2.59]) fol-
lowing CRC among women with MMR gene mutations; how-
ever, the majority of the MMR genes in the report were MSH2
and MLH1 (both thought to be associated with greater cancer
risk) (98). Therefore, the patient was counseled that the results
were not explanatory of the multiple breast cancers seen in her
family. Additionally, she was also counseled that the history of
ovarian cancer was more likely to be unrelated to the PMS2
mutation if there was papillary serous histology vs. endometri-
oid. Nonetheless, she was counseled that the detected mutation
confers modestly elevated risk for CRC for her, and that test-
ing other family members was recommended. Recommendations
were made for a colonoscopy with repeat every 1–2 years per
NCCN guidelines (76). She was given enhanced breast cancer
screening recommendations inclusive of annual breast MRI due
to her elevated lifetime breast cancer empiric risk estimate of
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over 20% (90, 99). Consideration of a hysterectomy with bilateral
salpingo-oophorectomy was discussed but decision-making was
deferred by the patient at the time of the visit. She felt upset regard-
ing the unanticipated risk for CRC and uncertainty regarding her
ovarian cancer risk.

Management of PALB2-Related Cancer Risks
Case 4 is an 80-year-old woman of Northern European ances-
try referred for GCRA after her daughter was found to carry a
pathogenic PALB2 gene mutation (Figure 4). The patient had a
history of breast cancer at age 60 and a gastrointestinal stromal
tumor (GIST) at age 78. Her family history includes a sister with
CRC at age 41, and a sister with multiple precancerous polyps
since her 40s, number unknown. The patient’s daughter was diag-
nosed with CRC at age 40. Presumably due to her personal and
family history of multiple cancers suggesting different heritable
etiologies, she pursued a multigene panel at an outside hospi-
tal, which revealed a pathogenic mutation in PALB2, designated
c.3113G>A (p.Trp1038Ter).

PALB2 (partner and localizer of BRCA2) interacts with BRCA2
in the repair of DNA double strand breaks. Biallelic mutations in
PALB2 cause Fanconi Anemia type N, characterized by growth
retardation, developmental disabilities and a high risk for pedi-
atric solid tumors (100). Monoallelic (heterozygous) mutations in
PALB2 cause an increased risk for breast cancer, with the highest
risks for cases with a family history of breast cancer (31, 32, 101).
The largest study ofPALB2mutation carriers to date indicated that
the cumulative risk of breast cancer at age 70 was 35% regardless
of family history, whereas those with two first-degree relatives
diagnosed with breast cancer before age 50 had an absolute risk
of 58% by age 70 (32). PALB2 founder mutations exist in Polish,
Danish, and Russian HBOC cohorts (102–104). Antoniou et al.
(32) observed an increased ovarian cancer risk for carriers by a
factor of 2.3; however, findings did not reach statistical signifi-
cance (32). Thus, although it is likely that there is a moderately
elevated risk for ovarian cancer associated with PALB2mutations,
the magnitude has not yet been established. PALB2 mutations
have also been identified in a small proportion of hereditary

 80
Br 60 

GIST, 78

+

 82
CLL 77

 50
CRC 40

+

62 56

78 88

 45
CRC 41

 71

polyps, 40s

45 55 50

94

50 46

64 72

no info

2

no info no info

7269

84

63

Diagnosis = CRC Diagnosis = Br Diagnosis = CLL

FIGURE 4 | Family with a pathogenic PALB2:c.3113G>A (p.Trp1038Ter) mutation (+) in the proband (arrow head) and daughter. CLL, chronic lymphocytic
leukemia; Br, breast cancer. PALB2 mutations have not been associated with CRC, GIST, or colon polyps (polyps, number unknown). Please see associated
vignette for more details.
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pancreatic cancer families (105, 106). Themagnitude of pancreatic
cancer risk conferred by PALB2 mutations also remains unclear.
Given the related pathway, it may be near the level observed
in BRCA2 mutation carriers (RR= 5.9) (107, 108), which cor-
relates with an absolute risk of <5% lifetime. PALB2 mutations
have not been associated at this time with an increased risk for
CRC or GIST.

The patient was the only one in her family with a breast cancer
diagnosis. At this point, there is insufficient evidence about new
primary breast cancer risk associated with PALB2 mutations to
recommend consideration of risk-reducing bilateral mastectomy,
especially in a post-menopausal patient. Furthermore, there is no
consensus at this point regarding consideration of risk reduction
salpingo-oophorectomy or application of pancreatic surveillance
in PALB2 carriers. She was recommended to continue enhanced
breast cancer surveillance. Given the lack of other cancers in
the family, her ovarian cancer risk was estimated at 5–10%, and
her pancreatic cancer risk was estimated to be <5%. Given the
strong history of CRC and polyps in the family, the patient’s
sisters were recommended to pursue their own GCRAs on the
assumption that there may be a separate genetic issue for them.
Despite uninformative (negative) genetic testing for the LS genes
(MSH2, MLH1, MSH6, PMS2) in the patient’s daughter, she was
recommended to pursue MSI and IHC for the respective MMR
proteins on her CRC to help delineate the tumor phenotype,
as a small proportion of such cases can show a defective MMR
profile due to acquired (somatic) MMR mutations, or rarely,
suggest a germline genemutation undetectable by standard testing
techniques.

CHEK2, Finding Clinical Utility
Case 5 is a 55-year-old woman of Northern European ancestry
with a recent history of an estrogen receptor positive (ER+)
invasive lobular breast cancer and atypical ductal hyperplasia
in the contralateral breast. She underwent bilateral mastectomy
and was prescribed Tamoxifen. Her family history (Figure 5)
was significant for a mother diagnosed with breast cancer at
age 42 who succumbed to metastatic disease at age 58, and two
maternal half-sisters with breast cancer (one had invasive lobular
breast cancer diagnosed at age 46, the second had invasive ductal
carcinoma at age 43). With ≥3 breast cancers in the family the
patient met NCCN criteria for genetic testing (75). Given that
both half-sisters previously had uninformative (negative) BRCA1
and BRCA2 testing, a multigene panel that included other breast
cancer predisposition genes was offered and completed. Testing
revealed a suspected deleterious splice site mutation in CHEK2,
designated c.846+ 1G>A.

CHEK2 encodes the checkpoint kinase 2 protein, and germline
CHEK2 mutations have been associated moderately elevated risk
for breast cancer, with an odds ratio of 2.7 for unselected breast
cancer cases (Table 1) (109). Evidence also suggests an approxi-
mately twofold elevated risk for CRC in CHEK2mutation carriers
(54, 55). However, most published research to date pertains to
theCHEK2 c.1100delC foundermutation. TheCHEK2-associated
breast cancer risk of 20–30% lifetime is not generally high enough
to warrant consideration of risk-reducing bilateral mastectomy,
but heightened surveillance with additional annual breast MRI

 55
Br 55

+

82  58
Br 42

81

41 48
Br 46

-

 45
Br 43

82 93 72 69

79

Diagnosis = Br

FIGURE 5 | Family with a suspected deleterious CHEK2 allele that
does not track as expected with the family history of cancer. Breast
cancers (Br) with ages are shown. The CHEK2 mutation (+) in the denoted
proband (arrow head) did not track as expected with one of the maternal
half-sisters (−). Testing for other family members was not available. Please
see associated vignette for more details.

is recommended (75). Moreover, empiric risk estimates based
on family history of breast cancer may mirror the magnitude
of CHEK2-associated risk in breast cancer families found to
have a mutation. In this case, family members already had a
lifetime breast cancer risk of approximately 25% based on the
Tyrer–Cuzick empiric risk model (99). Therefore, the clinical
utility of testing for the known familyCHEK2mutation in families
like this is not clear.

Although it is unclear whether identifying a mutation in a
moderate risk gene like CHEK2 will change the care for family
members who have elevated empiric risks already, it may illu-
minate cancer risks that are not apparent based on the family
history alone. For example, the twofold elevated risk for CRC asso-
ciated with a CHEK2 mutation prompted a recommendation for
enhanced surveillance with colonoscopy every 5 years beginning
at age 40, in addition to the recommendation for annual breast
MRI (75, 110). GCRAwas offered for the patient’s half-siblings. Of
note, one maternal half sibling with breast cancer tested negative
for the mutation, illustrating the interpretive challenge associated
with moderate risk genes, as they often do not track as expected
within the family (Figure 5).

What is NBN Again?
Case 6 is a 67-year-old female of mixed European and Hispanic
ancestry with a history of a locally advanced ER+ right breast
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cancer diagnosed at age 42. Family history was significant for
both of her grandmothers being diagnosed with post-menopausal
breast cancer in their 60s. She received a right mastectomy with
adjuvant chemotherapy for treatment of her cancer and was
25 years post treatment without evidence of disease at the time of
GCRA. She was self-referred to better understand the potential
heritable risk for her 34-year-old daughter. NCCN HBOC genetic
testing criteria was met (75). Testing was recommended and the
patient chose a multigene pan-cancer panel. Testing revealed an
NBN VUS, designated c.643C>T.

NBN is a low cancer risk category gene (Table 1). It encodes
the Nibrin protein, which is involved in DNA damage response
pathway. Historically, biallelic germline mutations in NBN have
been associated with Nijmegen Breakage syndrome (NBS), a rare
autosomal recessive disorder associated with immunodeficiency,
dysmorphic features, and high risk of lymphoidmalignancy (111).
There is some evidence of increased cancer risks for individuals
who are heterozygous (monoallelic) for the common Eastern
European founder mutation c.657del5, and for those who carry
the c.643C>T variant (42, 111). However, definitive evidence
regarding NBN-associated cancer risks is lacking, and there are
inconsistencies in variant classification between diagnostic lab-
oratories. Known NBN mutation carriers of childbearing age
should be offered prenatal counseling, given the risk for NBS if
both partners of a pregnancy are found to be NBN carriers.

At the time of the patient’s appointment, one major lab was cat-
egorizing c.643C>T as pathogenic, and another as a likely benign
variant. This highlights the need for consistency and transparency
of the variant classification protocols used among different labo-
ratories. For instance, variants of unknown significance are con-
sidered uninformative for management purposes, and should not
illicit gene-specific treatment, surveillance recommendations, or
testing of other family members for the same purpose (112). We
explained to the patient that even if the variant is reclassified as
a pathogenic mutation by the reference laboratory, current can-
cer screening and management recommendations would still be
based on the personal and family history of cancer using empirical
risk modeling. Individualized GCRA and prenatal counseling was
recommended for her daughter. Although the patient expressed
her appreciation for our interpretation and recommendations, she
was unnerved by her ambiguous result.

RAD51C is Associated with Ovarian Cancer and . . .
Case 7 is a 32-year-old of Korean ancestry recently diagnosed with
amulti-focal ER+ infiltrating ductal carcinoma of the right breast.
Her family history includes a sister diagnosed with acute myeloid
leukemia at age 27 and a maternal uncle with thyroid cancer in
his 50s. She underwent a unilateral mastectomy with immediate
reconstruction and was prescribed a 5-year course of Tamoxifen.
She is newly married and was contemplating childbearing just
before her diagnosis. As her breast cancer diagnosis was under the
age of 36, shemet testing criteria for both LFS andHBOC (75, 89).
After genetic counseling and informed consent, the patient chose
to proceed with a breast cancer-specific multigene panel. The only
finding among 17 genes was a deletion involving 704 bp in the 3′
untranslated region downstream of the stop codon in RAD51C.

The laboratory reported that the variant was of “indeterminate
significance” and yet that it may increase cancer risk.

RAD51C, also known as Fanconi anemia complementation
group O (FANCO), is part of the RAD51 gene family and is essen-
tial for homologous recombination repair. Biallelic mutations in
this gene can cause a Fanconi anemia-like phenotype, and current
evidence suggests that monoallelic mutations confer a moderately
increased risk for ovarian cancer (Table 1) (67, 113). However, the
magnitude of breast cancer risk, if any, associatedwithmonoallelic
germline RAD51C mutations is uncertain (38, 113).

The commercial laboratory label of “indeterminate signifi-
cance” for this variant is problematic as it does not fall into
one of the five categories recommended for variant classification
by the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (pathogenic, likely
pathogenic, benign, likely benign, or uncertain significance)
(112). However, although most commercial laboratories use this
or a similar variant classification scheme, variability remains,
with some labs using such variant classifications as “inconclusive,”
“unknown,” and “indeterminate significance.”

Regardless, VUS should be treated and reported to the patient
as an uninformative finding until more information is known.
However, this particular mutation was reported as a variant of
intermediate significance rather than a VUS. The variant lies in
the non-translated region of the RAD51C mRNA, therefore, it
could potentially interfere with RNA processing, hence protein
production/function; or it may do nothing at all to the protein.
The patient was counseled about the uninformative result and
ambiguous interpretation. Given the absence of ovarian cancer in
the family, the ambiguous test result, and her young age, we did
not recommend bilateral salpingo-oophorectomy. Additionally,
we did not recommend further testing for this variant within
her family at this time. A plan was made to see her again in
2–3 years, with the hope that more information will be known
about this particular finding and the absolute cancer risks asso-
ciated with RAD51C. The patient remained understandably con-
cerned about her personal and family’s risk for future cancers,
especially ovarian.

Discussion

The above cases highlight the complexities inherent in the use
of multigene panels that include low and moderate cancer risk
genes, as well as the potential that a higher risk variant discordant
with the personal or family cancer phenotype may be detected in
some patients. GCRA, counseling, and management recommen-
dations are often complicated by a lack of family information and
mutation tracking information, a crucial component for pedigree-
based studies. When pathogenic mutations in high risk genes are
incidental (i.e., not associated with the presenting phenotype) (see
Table 1 and CDH1, TP53, PMS2 cases above) the results can be
particularly challenging. Findings that are “off-phenotype” (not
known to be associatedwith the particular underlying cancer)may
suggest rare or novel genotype–phenotype correlations, mosaic
or de novo findings, limitations in family structure or simply
incidental findings from broad panel testing. However, one is
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usually compelled to make management recommendations based
on genotype when pathogenic mutations in high cancer risk
genes are discovered, instead of on the family history or phe-
notype alone. However, as in the mosaic TP53 case above, the
finding of a pathogenic variant in a highly penetrant hereditary
cancer syndrome gene in only a subset of the patient’s DNA
added another level of management complexity. In that particu-
lar case, after a thorough discussion with the patient regarding
her various options, management was based mainly on familial
empiric risks, instead of genotype alone. The heterozygous PMS2
case demonstrates the importance of providing thorough pre-
test counseling and informed consent for unanticipated results,
especially when pan-cancer multigene panel testing is pursued.
This case also demonstrates the obstacle of redirecting the patient’s
focus on cancer risks that may not have been expected prior to
testing.

Even though there may have been a selection bias toward
mutation positive and VUS case accrual since some CCGCoP
members selectively present higher complexity cases during case
conferences, as evident in Figure 2, if historically high risk genes
only were included in the panels [see Figure 2 (table), BRCA1,
BRCA2,MSH6, PMS2, TP53,APC,CDH1], the results would have
been positive only 6.2% of the time, instead of 17%. Furthermore,
results returned with VUS 42% of the time, likely due in large part
to the testing inclusion of more genes and the current knowledge
gap in human genetic variation. Taken as a whole, these figures
stress the importance of adequate pre-test counseling in antici-
pation of higher percentages of positive, VUS, unexpected, and
ambiguous test results.

Will it change medical and/or surgical management? Can
screening and/or surveillance be altered? Currently, consensus
guidelines to answer these questions are lacking for many mod-
erate and low risk cancer predisposing genes included in many
commercially available multigene panels. Figure 1 can be used
as a framework to help categorize high, moderate, and low risk
cancer predisposing genes. High risk gene mutations are thought
to explain specific cancer phenotypes; however, moderate and low
risk genes are likely not the sole explanation for the cancer in the
individual, and/or family. Management of pathogenic mutations
in moderate risk genes is difficult and requires an evaluation of
the personal and family history of cancer (see Table 1 and PALB2
and CHEK2 cases above). Currently, it is not clear how to use
low cancer risk genes in management and risk counseling (i.e., see
Table 1; NBN, XRCC2, GALNT12, etc.), since recommendations
should be based either way on the personal and family history of
cancer.

As our collective knowledge base expands, we will also learn
how specific mutations or other genetic modifiers, such as single
nucleotide polymorphisms or epigenetic factors, alter risk. As
noted in the CHEK2 and NBN cases above, outside of specific
founder mutations, cancer-related risks for these genes remain
ambiguous. Even though ATM is considered a moderate risk
(20–25%) breast cancer predisposition gene, two specific muta-
tions (c.7271T>G and IVS10-6T>G) were estimated to confer
a 60% cumulative lifetime risk of breast cancer (114, 115). Sim-
ilarly, although BRIP1 has been associated with only a mod-
estly increased risk for ovarian cancer, an Icelandic mutation

(c.2040_2041insTT) has been associated with an eightfold risk for
ovarian cancer (116). The significant knowledge gaps in geno-
type–phenotype correlations, expressivity, and penetrance will
only be unraveled bymarrying thorough and relevant clinical data
with genetic findings. This emphasizes the need for community-
based clinicians to contribute genotype/phenotype data generated
by multigene panels to large national and international hereditary
cancer collaborative research registries. Some current initiatives
include the evidence-based network for the interpretation of
germline mutant alleles (ENIGMA), the Prospective Registry of
MultiPlex Testing (PROMPT), and the consortium of investiga-
tors of modifiers of BRCA1/2 (CIMBA) among others (117–119).
Laboratories must also openly contribute their findings to public
databases, such as ClinVar (120).

In summary, multigene hereditary cancer panel testing can
lead to unexpected and complex findings. This stresses the
importance of appropriate pre-test counseling and informed
consent by a knowledgeable genetics professional (19). Addi-
tionally, choosing a phenotype-specific panel with high clinical
utility/risk genes instead of pan-cancer panels inclusive of many
“off-phenotype” and low risk genes can decrease the amount
of incidental and uncertain results. If ambiguity is found on
testing, many resources, including the literature, reference lab-
oratory, colleagues, and national experts, are available to help
better clarify counseling and management for the patient and
family. In the case of uninformative testing, or in the case of
mutations in low and moderate risk genes, empiric risk mod-
eling may help guide management. Appropriate prenatal coun-
seling and partner testing is advised in situations involving
mutations in genes that carry a recessive disease risk (those in
the Fanconi anemia pathway, NBN, ATM, etc.). In challenging
cases, patient follow-up every 1–3 years may be prudent until
the patient and family recommendations can be better clarified.
Multigene panels are here to stay, therefore, we must collec-
tively continue to clarify the absolute and relative cancer risks,
delineate genotype–phenotype correlations, and reclassify vari-
ants of unknown significance. This can only be done with lab-
oratory transparency of testing results and through the help of
collaborative research studies that merge genetic findings with
phenotypic data.
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