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Targeting eCM disrupts cancer 
progression
Freja A. Venning† , Lena Wullkopf † and Janine T. Erler*

Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark

Metastatic complications are responsible for more than 90% of cancer-related deaths. 
The progression from an isolated tumor to disseminated metastatic disease is a multi-
step process, with each step involving intricate cross talk between the cancer cells and 
their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are 
significantly deregulated during the progression of cancer, causing both biochemical and 
biomechanical changes that together promote the metastatic cascade. In this review, 
the influence of several ECM proteins on these multiple steps of cancer spread is sum-
marized. In addition, we highlight the promising (pre-)clinical data showing benefits of 
targeting these ECM macromolecules to prevent cancer progression.
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iNTRODUCTiON

Metastases cause more than 90% of cancer patient death (1). The spread of the tumor cells to second-
ary sites of the body is a complex process involving reciprocal interaction between tumor cells and 
their microenvironment (2). Metastases are the result of a series of complex processes, including 
the escape from the primary tumor, the invasion into adjacent tissue, hematogenous or lymphatic 
spread, the establishment of micrometastases, and the final outgrowth and colonization at the distant 
site of the body (3). Today, it is becoming widely accepted that the tumor microenvironment crucially 
affects cancer progression. The tumor microenvironment consists of not only the cancer cells, all 
non-malignant cell types such as immune cells, fibroblasts, pericytes, endothelial cells, adipocytes, 
and mesenchymal stem cells, but also the interstitial fluids and the extracellular matrix (ECM). This 
review will summarize how ECM composition and structure, at both the primary and the secondary 
site, are key factors for a successful metastatic spread.

The ECM is a complex meshwork of macromolecules secreted by the different cell types of a tissue, 
made up of both proteins and proteoglycans (PGs) with covalently attached sugar chains, glycosami-
noglycans (GAGs). Besides providing the structural support of an organ, the ECM is instrumental in 
modulating cell functions. Beyond direct interaction with cellular signaling receptors, the network 
of macromolecules also functions as a reservoir for growth factors or signaling molecules, thus 
influencing cellular behavior indirectly (4). Together ECM signaling can be involved in proliferation, 
migration, invasion, the onset of angiogenesis, or the resistance to apoptotic stimuli. In addition, ECM 
proteins can work as an anchor and promote cellular adhesion. Moreover, fibers of ECM proteins such 
as collagens can build migration tracks for the tumor cells. At the same time, the ECM can function 
as a barrier blocking, e.g., the penetration of immune cells into the tumor, or it can create a high 
interstitial fluid pressure (IFP) preventing the perfusion of drugs, which facilitates chemoresistance.

In this review, we will first briefly introduce a handful of well-studied ECM components and then 
describe their contribution to the steps of the metastatic cascade (Figure 1). On the protein side, the 
focus will be on the matricellular proteins periostin and tenascin C as well as on the fibrillar collagen 
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I. We will also look into the role played by the unique GAG hya-
luronan (HA) and its often partner-in-crime versican. Second, we 
will discuss therapeutic approaches that either directly target the 
ECM components or their modification.

KeY PLAYeRS

Periostin
Periostin, also known as osteoblast-specific factor 2 (OSF-2), is 
a secreted N-glycoprotein that was identified as a cell adhesion 
protein in a mouse osteoblast cell line (5). This matricellular 
protein was shown to interact with itself and other ECM proteins 
as collagen I, fibronectin, and tenascin C (6). Initially, periostin 
was associated to cancer as high expression levels were found 
in patient samples of common solid tumor types such as breast, 
colon, lung, and pancreatic cancer, as well as melanoma (7–11). 
The expression level correlates with tumor progression and was 
shown to be especially elevated in the secondary sites in 75% of 
the lymph node metastases of breast cancer patients (12). Besides, 
periostin can be found in the serum of patients with advanced 
metastatic disease (13–15). Therefore, periostin qualifies as a 
tumor marker in the clinic, especially for advanced breast cancer.

FiGURe 1 | The eCM drives the progression of cancer cells along the metastatic cascade. The metastatic cascade is composed of multiple complex 
processes, which are critically influenced by ECM components. First, ECM-regulated signaling pathways increase cancer cell motility and promote the egress from 
the primary tumor. In addition, the stability of the endothelial cell barrier is critically regulated by HA, thus influencing intra- and extravasation efficacy of cancer cells. 
The survival in the circulation system is also directly and indirectly modulated by ECM components as they function as physical shields as well as attractants for 
platelets. Through deposition and modification of ECM components at distant sites, the initial engraftment and final colonization of cancer are enhanced. Hereby, 
biochemical as well as biomechanical cues of the ECM promote metastatic outgrowth.

Tenascin C
The tenascin family has five members named tenascin C, R, W, 
X, and Y (16). The secreted glycoproteins bind to a great variety 
of proteins as periostin, fibronectin, integrins, and several colla-
gens. This review will focus on the role of tenascin C in advanced 
tumorigenesis. Tenascin C expression is restricted to connective 
tissues and interestingly stem cell niches in adult tissues but is 
very prominent in tumor tissue (17–22). Stromal expression 
was particularly observed in late-stage tumors, with a particular 
strong staining at the zone of tumor–stroma interaction (17, 18, 
23). Elevated serum levels make tenascin C suitable for clinical 
monitoring of the most common cancer types (24–26).

Hyaluronan
Hyaluronan is an important GAG in the ECM of many adult 
tissues, and an increase in HA deposition is seen in many solid 
cancers, particularly of the prostate, pancreas, breast, and bladder 
(27), often correlating to a poor prognosis (28). HA is the only 
GAG composed of unsulfated disaccharides (d-glucuronic acid 
and N-acetylglucosamine), and it is never covalently attached to a 
proteoglycan core protein (29). HA is synthesized by hyaluronan 
synthases (HAS), which produce high-molecular-weight HA 
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(HMW-HA) above 1000 kDa (30), which can be degraded into 
low-molecular-weight (LMW)-HA and even smaller oligo-HA 
by either hyaluronidases (HYAL-2, -2, -3, and PH20) or reactive 
oxygen species (ROS) (31). Interest in HA’s role in cancer pro-
gression was recently rekindled by the seminal finding that the 
extremely large HMW-HA produced by the naked mole rat (five 
times larger than human HMW-HA) is essential for its remark-
able resistance to cancer development (32–34).

versican
Versican is a large chondroitin sulfate proteoglycan (CSPG) that 
is present around cells in most healthy tissue in low amounts and 
upregulated in malignancies of, e.g., the breast, colon, prostate, 
lung, and ovaries, among others (35). Versican binds to a num-
ber of other ECM components, notably HA, contributing to the 
formation of a biomechanically active pericellular matrix that 
affects the proliferation, adhesion, and motility of cells (36–39). 
Clinically, increased versican expression correlates to a decreased 
progression-free survival in prostate cancer (40), increased 
relapse in breast cancer (41), advanced disease and lymph node 
metastasis in adenocarcinomas of the lung (42), and is also diag-
nostically relevant in other cancers [reviewed in Ref. (35)].

Collagen i
Collagen I is the main fibrillar collagen in the ECM, provid-
ing tensile strength to the tissue and limiting its distensibility. 
Collagen I fibrils in normal tissue are made up of processed 
heterotrimers of two col1α1 and one col1α2, which self-assemble 
in the extracellular space into fibrils. The fibrils are cross-linked 
by enzymes of the lysyl oxidase (LOX) family (43), forming larger 
mechanotransductive fibers that increase the density and rigidity 
of the tissue (44). Increased mammographic density correlates to 
an increase in collagen deposition (45) and more importantly to 
an increased risk of developing breast cancer (46). Abnormally 
large collagen deposition is the most well-documented ECM 
alteration in many tumor types, and collagen deposition has been 
causally linked to an increase in mammary tumor and metastasis 
incidence (47).

eSCAPiNG THe PRiMARY TUMOR: eMT 
AND iNTRAvASATiON

The first step of tumor dissemination is for the cancer cells 
to break free from the confinements of the primary tumor. 
They have to acquire the ability to move and invade through 
the basement membrane as well as the walls of vessels of 
the blood stream or the lymphatic system, a process called 
intravasation (48). In order to detach from the primary site, 
some tumor cells undergo epithelial–mesenchymal transition 
(EMT). EMT is defined by a simultaneous downregulation of 
epithelial proteins such as E-cadherin and an upregulation 
of mesenchymal proteins such as N-cadherin and vimentin 
leading to the loss of cell–cell contacts and an increase in cell 
motility (49). Many ECM proteins are associated with the 
induction of EMT by activating receptor-mediated signaling 
cascades (Figure 2) (50, 51).

First, the production of the glycosaminoglycan HA has been 
demonstrated to induce EMT in both normal and transformed 
epithelial cells in  vitro [reviewed in Ref. (31) and references 
therein]. In vivo, accumulation of HA in pancreatic and mam-
mary tumor models is associated with loss of E-cadherin and 
nuclear translocation of β-catenin (52, 53), both hallmarks of 
EMT. However, overproduction of HA is not in itself enough to 
create an invasive phenotype, on its own it actually decreases cell 
motility and tumorigenesis (54). However, if the general turnover 
of HA is increased due to high levels of both HA synthases and 
hyaluronidases, i.e., increased levels of LMW-HA, then this leads 
to an increase in cell motility in vitro. This is mirrored in vivo 
by the appearance of spontaneous lymph node metastasis in a 
mouse model of pancreatic cancer with increased HA-turnover 
(54). One mechanism of HA-induced EMT involves binding to 
the cellular receptor CD44, which then translocates to the nucleus 
and by binding to the promoter leads to the upregulation of LOX. 
Next, LOX catalytic activity is, in a so far undetermined manner, 
necessary for the expression of the EMT transcription factor 
TWIST-1 (Figure 2) (55).

The formation of an HA-rich pericellular matrix is important 
for proliferation and motility of normal mesenchymal cells (36), 
a phenomenon cancer cells also utilize (37–39, 56, 57). Studies 
of ovarian cancer cells and leiomyosarcoma cells have showed 
that versican is necessary for the formation of this HA-rich 
pericellular matrix (38, 39). Knockdown of versican expression 
in ovarian cancer cells decreased their motility in vitro and more 
interestingly also their ability to form experimental metastases 
after injection into the peritoneal cavity (58).

Besides its role in general motility, HA has a particular 
important function in the process of intravasation. HA regulates 
blood vessel integrity, with HMW-HA and LMW-HA degrada-
tion products playing opposite roles. HMW-HA promotes 
endothelial cell barrier function through several mechanisms 
while LMW-HA disrupts it (59–61). Furthermore, LMW-HA is 
also angiogenic (62), so the production of LMW-HA fragments 
in the tumor microenvironment can thus compromise the tumor 
vessel integrity and promote angiogenesis, making it easier for 
cancer cells to intravasate and continue the metastatic process.

Studies of both patient material and mouse models of cancer 
have shown that the deposition of a collagen-rich matrix is linked 
to tumor progression and metastasis (47). Collagen I is indeed 
intricately involved in the induction and maintenance of EMT 
and an invasive phenotype. In vitro studies have shown that inter-
action between collagen I and integrin β1 leads to destabilization 
of the E-cadherin–beta-catenin complex and also to upregula-
tion of N-cadherin (63, 64). Recently, it has been reported that 
inhibition of collagen synthesis in human MDA-MB231 breast 
cancer xenografts leads to a decrease in local invasion into the 
surrounding adipose tissue and to a decrease in metastasis to both 
the draining lymph nodes and lungs (65, 66). The level of circulat-
ing tumor cells was decreased in mice where collagen synthesis 
was inhibited, further demonstrating that the collagen content of 
the primary tumor is important for generating invasive cancer 
cells capable of intravasation (65).

Changes in the collagen matrix in tumors also provide altered 
biomechanical cues to tumor cells. Enzymes of the LOX family 
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cytoplasmatic-bound TWIST-1. Besides, tenascin C also influences the transcriptional regulation of EMT indicated by the downregulation of E-cadherin and a 
simultaneous upregulation of vimentin as well as several MMPs. Periostin also enhances MMP expression, thus inducing EMT through binding to tumor cell 
αvβ5-integrin.
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catalyze the cross-linking of collagens and elastin, increasing the 
tissue stiffness (43). LOX and LOX family members are frequently 
overexpressed in cancers (43), and their collagen cross-linking 
activity has been proven to promote tumor progression through 
increased integrin signaling (67–70). Additionally, the tissue 
stiffness is essential for determining the cellular response to the 
potent EMT inducer TGF-β, as EMT signaling is only induced 
in cells residing in a stiff tissue, with apoptosis being the go-to 
program for cells in a soft ECM (71). The mechanism behind this 
stiffness-regulated switch was decoded recently, showing that 
the transcription factor TWIST-1, which is essential for EMT, 
translocates to the nucleus due to stiffness-induced release from 
its cytoplasmic anchor G3BP2 (Figure 2) (72).

It is not only the amount and stiffness of the collagen network 
that is important; the orientation of collagen fibers also appears to 
be central to the progression of cancer. Through intravital imag-
ing of tumors several studies have shown that the organization of 
collagen into straight, aligned fibers promotes cell invasion along 
these fibers (73). In breast cancer, the orientation of these col-
lagen fibers in relation to the tumor is an independent prognostic 
indicator, with fibers aligned perpendicular to the tumor correlat-
ing to a poor disease-specific and disease-free survival (hazard 

ratio >3) (74). Molecular evidence for this clinical correlation 
was provided by Zhang et al. in a mouse model of breast cancer, 
showing that binding of collagen I to the cell surface receptor 
discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase, 
leads to the formation of collagen fibers oriented perpendicular 
to the surface of the tumor, facilitating cells invading out along 
these (75). Furthermore, DDR2 is upregulated in cells undergo-
ing EMT, and binding of collagen I to DDR2 further sustained 
the EMT transcriptional program, providing a positive feedback 
loop (Figure 2) (75).

Bornstein et al. introduced the term matricellular proteins 
to describe the family of non-structural extracellular proteins 
(76), among which periostin and tenascin C are especially 
important for the metastatic cascade. During the last decade, 
increasing evidence has amassed for the functional importance 
of periostin in the initiation of the metastatic cascade via 
the induction of EMT. First, overexpression of the periostin 
in 293T cells led to an augmented expression of vimentin 
correlating with a mesenchymal morphology as well as an 
increase in migration and invasion. These effects were depend-
ent on αvβ5-integrin binding to periostin (Figure  2) (77). In 
addition, these cells also showed an increase in expression of 
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the matrix metalloproteinase MMP-9. Proteases degrade the 
ECM in the cell’s surroundings, paving the way for the cells 
through the dense environment (78). Moreover, elevated levels 
of periostin mRNA and protein were revealed at the invasive 
front of immortalized esophageal cells in  vitro and in  vivo. 
Overexpression of periostin in these cells increased their abil-
ity to move while depriving them of the matricellular protein 
reduced the invasive potential significantly (79). The same was 
reported in oral squamous cell carcinomas, where overexpres-
sion of periostin facilitated motility and invasiveness in vitro as 
well as in an orthotopic mouse model (80).

A further mediator of cell motility is tenascin C. By binding 
to either integrin αvβ1 or αvβ6, recombinant tenascin C induced a 
change in the morphology of the breast cancer cell line MCF-7 
to a more mesenchymal phenotype (Figure  2) (81). Besides, 
Tavazoi et  al. were able to diminish the invasive potential of a 
metastatic breast cancer cell line by knocking down tenascin C 
expression. These cells were also deprived of the ability to form 
lung metastasis in vivo (82). Moreover, tenascin C induces expres-
sion of several matrix metalloproteinases (Figure 2) (83), again 
linking it to the onset of invasion (84). Both observations are in 
accordance with the striking expression of tenascin C seen at sites 
of epithelial–mesenchymal interactions during development (85) 
and at the invasive front of human breast cancer samples (86). 
Oskarsson et al. could even demonstrate a deposition of tenascin 
C at the margin of lung metastases of both mice injected with the 
breast cancer cell line MDA231-LM2 and breast cancer patient 
samples (23).

A JOURNeY iN THe BLOOD: ReSiSTiNG 
MeCHANiCAL FORCeS AND 
iMMUNOeSCAPe

Once tumor cells manage to evade the constraints of the primary 
tumor and successfully invade the lymphatic or hematologic sys-
tem, they are exposed to a hostile and deadly environment. As the 
transition to distant organs depends on the blood system, we will 
focus on the tumor cell survival in the blood circulation. Here, 
cancer cells have to resist shear forces and turbulence. In addition, 
they have to escape the immune surveillance, especially natural 
killer (NK) cells. The main protective mechanism for tumor 
cells is an interaction with platelets that work as a shield against 
immune cell lysis and mechanical stress (87). The most important 
mediator is the acute phase protein fibrinogen. Fibrinogen is 
mainly secreted by hepatocytes and megakaryocytes but can also 
derive from tumor cells (88). Although being primarily a plasma 
protein, fibrinogen has many roles as an ECM protein in cancer 
(89). Fibrinogen can bind to thrombocyte receptors inducing 
platelet adhesion. Both fibrinogen and especially its protease con-
verted form fibrin can provoke αvβ3-integrin and αIIbβ3-mediated 
cancer-cell–fibrin(ogen)–platelet complexes (Figure 3) (90, 91). 
The promoting role of fibrinogen and platelets in hematogenous 
metastasis was confirmed by a striking decrease in melanoma 
cells colonizing the lung in either fibrinogen knockout or platelet 
deprived, protease-activated thrombin receptor 4 (PAR4) knock-
out animals (92–94).

However, other ECM proteins can also promote the recruit-
ment, binding, and activation of platelets (95, 96). Platelets 
adhered efficiently to tenascin C in static in vitro assays as well 
as under dynamic flow. Tenascin C also enhanced platelet activa-
tion (97). Although not specifically shown in cancer, tenascin C 
therefore could indirectly support tumor survival in the blood by 
promoting platelet recruitment and activation (Figure 3).

An HA-rich pericellular matrix could be another type of shield 
the cancer cells employ to ward off NK cells. In vitro studies have 
shown that HA effectively keeps lymphocytes such as NK cells 
from getting in close contact with the cancer cells, preventing 
them from killing the cancer cells (Figure 3) (57, 98). Thus, the 
ability of the cancer cell to produce such a pericellular matrix, 
requiring CD44, HA, and versican (or aggrecan), could add to the 
chances of survival in the circulation.

FiNDiNG A New HOMe: THe CHALLeNGe 
TO eXTRAvASATe AND SURvive

Seeding of cancer cells in a secondary organ requires the extrava-
sation from the circulation, initial adherence, and the initiation of 
proliferation under the unpermissive conditions of the secondary 
sites.

In order to leave the circulation, cancer cells need to adhere 
to the endothelium and push through into the tissue. Endothelial 
cells have a thick, pericellular matrix rich in HA, the glycocalyx, 
and tumor cells can interact with this through CD44 to initiate 
adhesion (Figure 4) (99). The importance of cancer cell interac-
tion with HA on endothelial cells in the process of extravasation 
is backed by a recent in vivo study, which showed that knockdown 
of the HA receptor CD44 in MDA-MB-231 breast cancer cells 
drastically decreased the number of experimental metastases in 
an intracardiac dissemination model (100).

Cancer cells may also construct a pericellular matrix rich in 
HA (57), and the reciprocal interaction of this with receptors 
on endothelial cells also appears to be important for adhesion 
(101–104) and the following transmigration into tissue (103). 
Once cancer cells have adhered to the endothelium, it is possible 
that tumor cell-secreted hyaluronidases create a local increase in 
LMW-HA, from the breakdown of the glycocalyx, which then in 
turn can lead to the disruption of the endothelial barrier, opening 
up the door for the cancer cell.

Hirose et  al. recently showed that the levels of circulating 
LMW-HA in the blood is an important factor for melanoma 
cell adhesion to endothelial cells. Increased serum levels of 
LMW-HA, created by blocking the HA receptor for endocytosis 
(HARE/Stab2) found in sinusoidal endothelium in the liver, 
bone marrow, and lymph nodes, prevented B16F10 melanoma 
cells from binding to endothelial cells and producing lung foci 
in tail-vein injected mice (105). Strikingly, elevated LMW-HA 
in serum also prevented spontaneous lung and lymph node 
metastasis of orthotopically implanted human MDA-MB-231 
and mouse 4T1 breast cancer cells (105). Similarly, Simpson 
et al. have reported that prostate cancer cells bind to sinusoidal 
endothelial cells through HARE/Stab2 and that blocking HARE 
in vivo via an antibody completely prevented spontaneous lymph 
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node metastasis in an orthotopic prostate cancer model (104). 
Two cooperating mechanisms may be at play here. Blocking 
HARE or saturating it with HA can prevent direct binding of 
cancer cells to HARE+ cells through their HA-rich pericellular 
matrix and simultaneously the elevated blood levels of HA, cre-
ated by lack of HARE-mediated clearance, might also saturate 
CD44 on the cancer cells, preventing them from utilizing this 
previously demonstrated important factor for extravasation. 
Yet, a recent study has found that elevated plasma levels of 
LMW-HA correlate with lymph node metastasis in breast 
cancer patients (106). An explanation for this discrepancy 
could be the fact that serum levels of LMW-HA that prevent 
extravasation and metastasis in mice were more than fourfold 
higher than normal serum levels, and the difference in serum 

LMW-HA that separated metastatic vs. non-metastatic patients 
was less than twofold. This suggests that the modest increase 
in serum LMW-HA seen in metastatic breast cancer patients, 
while prognostically indicative, confers no protective advantage 
to offset the pro-metastatic benefits of increased intra-tumoral 
LMW-HA.

Lysyl oxidase, LOXL2, or LOXL4 expression in the primary 
breast tumor leads to pre-metastatic deposition of collagen I 
in the lungs of mice (Figure  4) (65, 107), favoring the forma-
tion of metastases in the lungs (65, 107–109). Furthermore, 
LOX-mediated cross-linking of collagen I increases the fibrotic 
response in lungs and livers of mice and helps form a favorable 
metastatic niche in these organs. Mice with fibrotic lungs and liv-
ers had an increased number of spontaneous 4T1 breast cancer 
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FiGURe 4 | A distant home: tumor cell extravasation and engraftment at secondary sites are enhanced by eCM secretion and remodeling. 
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endothelial cell barrier supporting transendothelial migration of the cancer cells. After arrival at a distant site, cancer cells are exposed to a foreign environment. To 
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example is tumor-derived LOX altering collagen cross-linking at pre-metastatic sites. Tumor cell-secreted tenascin C also enhances the establishment of 
micrometastases. However, tumor cells also induce stromal cells to produce cancer-promoting ECM proteins, creating a more permissive environment. Here, 
stromal periostin improves cancer cells adhesion by binding to αvβ5-integrin. In addition, periostin supports the self-renewal and proliferation of CSCs through the 
activation of the WNT signaling pathway, which may enhance outgrowth of metastases.
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metastases to these organs, which was abrogated by blocking LOX 
activity (110).

Periostin also showed a proadhesive effect on 293T cells, 
which was αvβ5-integrin-dependent (Figure  4) (77). This 
is concurrent with the identification of periostin as one of 
the key components of the so-called metastatic niche (111). 
In order to convert the new unfavorable surrounding into 
a more permissive environment, tumor cells secrete factors 
before and upon arrival at the distant site. Furthermore, they 
induce stromal cells to produce cancer-promoting extracellular 
proteins (112). Contié et al. reported a prominent expression 
of periostin in bone metastasis of tail vein-injected MDA-B02 
breast cancer cells (15). Malanchi et  al. confirmed this result 
in the polyomavirus middle T antigen (PyMT) mouse model 
for spontaneous breast cancer. Here, a deposition of periostin 
was revealed not only in the primary breast tumor but also 
even more pronounced in the lung metastasis. By combining 
the breast cancer model with periostin null mice, the authors 
could reveal that stromal periostin supports the survival and 
proliferation of cancer stem cells (CSCs, CD90+, and CD24+) 
through the activation of WNT signaling (Figure 4) (12). CSCs 
have been implicated in the establishment of new microme-
tastases that then subsequently grow out into macroscopic 

secondary tumors (113). The reduction in number of metastasis 
in periostin knockout mice to less than 10% of the control, 
with a lower number of CSCs and abrogated WNT signaling, 
affirms this concept (12).

The initial engraftment of tumor cells at secondary sites is 
also critically influenced by tenascin C (Figure  4). In depriv-
ing a human metastatic breast cancer cell line of tenascin C, 
Oskarsson et  al. proved the need of tumor-secreted tenascin 
C for the establishment of micrometastasis. The tenascin C 
knockdown resulted in a 90% inhibition of lung colonization 
in either experimental or spontaneous lung metastases of these 
cells. Immunohistochemistry probing for the apoptotic marker 
caspase-3 revealed that tumor cell survival is dependent on 
tenascin C. In order to specify the effect of tumor endogenous 
protein production, Oskarsson et al. used an inducible knock-
down model narrowing down the time frame for the depend-
ency on tumor-derived tenascin C. Interestingly, depriving the 
breast cancer cells of tenascin C only affected the outgrowth of 
metastases when they reached a certain size (23). In pancreatic 
cancer, ectopic tenascin C expression in RIP-Taq2 mice signifi-
cantly increased the establishment of micrometastases, whereas 
a tenascin C knockout reduced tumor cell engraftment in the 
lungs (22).
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MAKiNG YOURSeLF AT HOMe: 
MACROSCOPiC OUTGROwTH iN AN 
iNHOSPiTABLe eNviRONMeNT

The low efficiency of engrafted cancer cells to establish bona fide 
macroscopic metastases indicates that the microenvironment 
of secondary sites is generally unsupportive for tumor cells. In 
order to convert an unfavorable surrounding of a distant site 
into a more permissive environment, which allows macroscopic 
lesions to develop, tumor cells secrete factors before and upon 
arrival at the distant site. Furthermore, they induce stromal cells 
to produce cancer-promoting extracellular proteins (112).

Collagen deposition in the metastases is very important for the 
progression into larger lesions. Extravasated MDA-MB-231 cells 
with a knockdown of prolyl-4-hydroxylases, an enzyme essential 
for correct collagen biosynthesis, were able to survive but formed 
smaller lung metastases than their wild-type counterparts (65, 66). 
In line with this, successful colonization of draining lymph nodes 
by MDA-MB-231 xenografts was accompanied by an increase in 
collagen deposition in the lymph nodes (114). Additionally, mice 
with collagen-rich fibrotic lungs and livers tended to develop 
larger breast cancer metastases (110).

The recruitment of bone marrow-derived cells (BMDCs) is 
another key step in the formation of the metastatic niche (115). 
LOX-mediated cross-linking of collagen IV recruits CD11b+ 
BMDC to the metastatic niche in the lungs (107, 109), and these 
CD11b+ cells further remodel the ECM into a favorable home for 
extravasating cancer cells, e.g., by laying down the proteoglycan 
versican (Figure  5) (116). Inhibiting versican production by 
CD11b+ BDMCs radically decreased the burden of lung metas-
tases in a mouse model of spontaneous breast cancer, specifically 
preventing the progression from micrometastases to macrome-
tastases (116). Previously, versican had been shown to promote 
mesenchymal to epithelial transition (MET) in fibroblasts in vitro 
(117). In the study by Gao et al., versican also promoted MET 
in vivo, changing the phenotype of the intravasated cancer cells 
from migratory and slowly proliferative to more adhesive and 
proliferative (116). Versican could also contribute to the growth 
of metastases by interacting with HA and forming complexes 
that can recruit macrophages and induce angiogenesis (53, 
118), further molding the secondary site into a supportive home 
(Figure 5).

Cancer cell-produced HA and the accumulation of HA in 
experimental bone lesions of MDA-MB-231 breast cancer cells 
appear to be important for the growth of the lesions (119). One 
mechanism for HA-induced bone lesion growth was deciphered 
by Okuda et al., showing that CSCs (CD24−, CD44+, EpCAM+) 
from bone tropic MDA-MB-231-BoM depend on autologous 
HA synthesis to survive and renew in the metastatic bone niche. 
CSC-produced HA interacts with CD44 on macrophages, acti-
vating them to produce the growth factor PDGF-BB, which in 
turn activates other stromal cells to produce FGF7 and FGF9 
that stimulate CSC proliferation and self-renewal (Figure  5) 
(103). This places HA at a central position in the development 
of a favorable metastatic niche that permits secondary tumor 
development.

While Malanchi et  al. (12) reported an essential role of 
stromal periostin in the establishment of micrometastases, an 
earlier study revealed a role of tumor-endogenous periostin in 
the final step of colon cancer colonization of the liver. Colon 
cancer cells overexpressing periostin showed a strong increase 
in hepatic metastases in an experimental metastasis model. 
Yet, while an equal amount of micrometastases was detected in 
the first days after intraportal injection, the further outgrowth 
of these cells was dependent on tumor cell-derived periostin. 
Tumor cell survival was promoted as periostin binds to αvβ3-
integrin, enhancing the PKB/AKT pathway at secondary sites 
(Figure 5). Besides, the authors linked periostin to angiogenesis 
as the survival-promoting signaling pathway was also activated 
in endothelial cells (Figure  5) (7). This is in accordance with 
the increased occurrence of tumor blood vessel in metastases of 
periostin-overexpressing 293T cells (77).

Oskarsson et al. revealed an inverse time course of the role of 
tumor-endogenous and stromal tenascin C. While an induced 
knockdown of the protein diminished metastatic engraftment 
in the beginning, tumor cells induced myofibroblasts to produce 
tenascin C when the tumors reached a certain size, compensat-
ing the loss of the matricellular protein. This was consistent with 
immunohistochemical staining of human breast cancer samples, 
revealing tumor cell tenascin C expression in early malignant 
stages, and a strong reaction in stromal cells in advanced 
cirrhotic carcinomas (17). As a mechanism, Oskarsson et  al. 
suggested the augmentation of signaling pathways, ensuring 
tumor cell survival at the unpermissive site, namely WNT 
and NOTCH signaling (Figure  5). Although having its main 
function in creating a metastatic niche and inducing WNT and 
NOTCH signaling pathways, tenascin C depletion did not cor-
relate with a reduction of stem cell characteristics of the breast 
cancer cells in this study (23). These results are supported by 
another study in the 4T1 orthotopic model of breast cancer, 
where S100A4+ stromal cells were found to promote metastatic 
colonization to the lungs by producing high levels of tenascin 
C. In addition, tail vein-injected 4T1 cells showed a significantly 
lower efficiency of final engraftment in the lungs in tenascin C 
knockout mice (120).

RATiONALe OF TARGeTiNG THe eCM

As metastases rather than the primary tumor cause the poor 
prognosis of most cancer patients, it is clearly important to stop 
the dissemination of cancer to and growth at distant sites of the 
body. Targeting the ECM, often secreted by stromal cells, is hereby 
of particular interest as these targets are less prone to rapid muta-
tion as seen for signaling pathways in cancer cells. In addition, 
combinatorial therapies, integrating standard chemotherapy with 
ECM targeting, are an important strategy of cancer treatment in 
the adjuvant setting. Here, the hope is that the disruption of the 
dense tumor microenvironment will promote drug delivery and 
prevent chemoresistance. Although former studies concentrate 
on enzymes as LOXs or proteases like the MMPs responsible for 
remodeling ECM, here we focus on studies about targeting key 
ECM proteins.
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TARGeTiNG HA

HA Deposition and Synthesis
The HA-rich pericellular matrix around cancer cells can be an 
obstacle for monoclonal antibody therapy, as the NK cells medi-
ating the antibody-dependent cell-mediated cytolysis (ADCC) 
cannot come in close enough contact with the cancer cell to form 
the cytolytic synapse (98). Dissolving this protective halo in vitro 
through a PEGylated recombinant human hyaluronidase PH20 
(PEGPH20) increased ADCC, and in vivo the combined treat-
ment of HA-overexpressing SKOV3 ovarian cancer xenografts 
with PEGPH20, trastuzumab, and NK cells resulted in a drastic 
inhibition of tumor growth (98).

Besides sensitizing cancer cells to ADCC, hyaluronidase 
treatment of cancer also affects the biomechanics of HA-rich 
tumors. Accumulation of HA increases the colloid osmotic 

pressure leading to an increase in IFP within the tumor, causing 
multiple problems for treatment (121). An increase in IFP results 
in decreased transcapillary transport of solutes into the tumor, 
including systemic treatment. The increased IFP can also cause 
unstable tumor vessels to collapse, cutting off perfusion to areas 
of the tumor, creating hypoxia and further limiting tumor pen-
etration of any systemic treatment. Accordingly, treating tumors 
with hyaluronidase lowers the IFP and increases the perfusion of 
tumors and the penetration of therapeutics (27, 122–124).

Although hyaluronidase treatment of cancers produces 
LMW-HA fragments, which can increase angiogenesis and 
disrupt vessel integrity, PEGPH20 treatment of experimental 
pancreatic cancer in combination with chemotherapy increased 
overall survival (27, 124) and decreased the metastatic incidence 
(124). It is reassuring to see that the creation of more functional 
vessels did not lead to an increase in metastasis, as it might 
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have been feared to do. It is conceivable that by stripping cancer 
cells of their pericellular matrix, the hyaluronidase treatment is 
sensitizing any extravasating cancer cells to immune cell lysis, in 
this way counteracting the effect of restoring tumor vessel func-
tion. PEGPH20 is now in a randomized phase 2 clinical trial for 
metastatic pancreatic cancer and shows promising results (125). 
However, the clinical trial also revealed a serious side effect of the 
treatment, as the incidence of thromboemboli increased in the 
PEGPH20 treatment arm. Fortunately, this appears to be prevent-
able by giving the patients the prophylaxis enoxoparin, and now 
a large, randomized, double-blinded, placebo-controlled phase 3 
study is planned to start in the beginning of 2016 (125).

Instead of breaking down already produced HMW-HA, another 
option is to prevent its synthesis. 4-Methylumbelliferone (4-MU) is 
a cumarin derivative that inhibits the production of HA, most likely 
by depleting the cell of the UDP-glucuronic acid that is a precursor 
of HA (126). 4-MU is a naturally occurring compound, and it is has 
been approved in Europe since the 1960s to treat biliary spasms, 
thus repurposing it for cancer treatment is a very real possibility. 
Several in vivo studies have reported promising inhibition of tumor 
growth and metastasis formation upon treatment with 4-MU 
[reviewed in Ref. (127)]; however, so far no clinical trials or safety 
studies aimed at evaluating long-term safety have been initiated.

Using HA as a Tag to Target Drugs to Cells
Many malignancies express CD44, thus using HA as a homing 
missile for cancer therapeutics is a logical step. Coupling of nano-
particles loaded with the chemotherapeutic drug paclitaxel to 
ultrashort HA polymers leads to improved drug uptake in brain 
tumor lesions of breast cancer in a preclinical model of brain 
metastases, significantly improving the overall survival of the mice 
treated with the nanoconjugate (128). Another study found that 
liposomes coated with PEG and HMW-HA had increased cellular 
uptake and tumor penetration in subcutaneous MDA-MB-231 
tumors, even though the overall accumulation in the tumor was 
the same as PEG liposomes (129). Loading HA-coated liposomes 
with doxorubicin had an increased therapeutic effect in multiple 
tumor models, including experimental B16F10 melanoma metas-
tases in the lungs (130).

One caveat of using HA as a tag to target chemotherapy to 
CD44+ cancer cells is the abundant expression of the HA receptor 
HARE/Stab2 in the liver, thus special attention to liver toxicity is 
essential in such studies. One way of limiting potential liver toxic-
ity could be to try to exhaust the endocytic HARE/Stab2 presence 
on the hepatocytes by increasing the levels of HA in the blood 
before administering the HA–drug conjugate. Such an approach 
might even have the added benefit of preventing circulating 
tumor cells from attaching to endothelial cells and seeding new 
organs (104, 105), and elevated blood HA levels have shown no 
adverse effects in mice (105).

Small Oligo-HA as Direct Treatment
Small oligo-HA (sHA) has been tested in multiple pre-clinical 
studies following the rationale that it can prevent the normal sign-
aling from endogenous, often larger, HA molecules by occupying 
the HA binding partners/receptors. Indeed, inhibition of tumor 
growth in vivo in breast cancer, lung cancer, osteosarcoma, and 

melanoma has been reported. The addition of sHA prevents the 
formation of the versican–HA-rich pericellular matrix (36, 38) 
and inhibits the binding of ovarian cancer cells to the peritoneal 
wall in vivo (38). Most interestingly, the direct injections of sHA 
into tibial tumors of MDA-MB-231 breast cancer cells reduced 
the progression of already established osteolytic lesions (119). 
However, sHA fragments of a similar size correlate to increased 
lymphatic invasion and development of lymph node metastasis 
in colorectal cancer patients, suggesting that small sHA may 
promote tumor progression (131). The conflicting reports of 
the pro- and anti-tumorigenic effects of sHA are possibly due 
to a combination of differences in both size and concentration. 
Low concentrations of sHA stimulated the neovascularization of 
Matrigel plugs in vivo while very high concentrations inhibited 
angiogenesis (53). Thus, further studies with sHA should test a 
range of different sizes and concentrations to evaluate whether 
there is a large enough therapeutic window regarding bioavail-
ability in the tumor that could make the treatment translational.

TARGeTiNG PeRiOSTiN

One example is the monoclonal periostin-blocking antibody 
OC-20. Although Orecchia et al. only reported beneficial aspects 
of the antibody on the primary tumor in their mouse model of 
human melanomas (132), the monoclonal antibody could be 
utilized in further preclinical studies investigating its influence 
on metastatic spread. The combination of a periostin-blocking 
antibody and 5-fluorouracil enhanced the apoptotic effect of the 
pyrimidine analog in vitro (133).

A further approach to target periostin is the benzyl-d(U)
TP-modified nucleic acid aptamer PNDA-3. PNDA-3 specifically 
antagonized periostin-induced adhesion and invasion of breast 
cancer cells. In the 4T1 orthotopic mouse model, intratumoral 
PNDA-3 administration significantly reduced the size of the pri-
mary tumor and, more interestingly, of metastatic foci in the lung. 
The aptamer abrogated AKT/PKB pathway-mediated survival at 
the metastatic sites (134). PNDA-3 also reduced the metastatic 
burden of gastric cancer cells in the liver (135). Taken together, 
the DNA aptamer PNDA-3 is a promising drug for targeting 
periostin. New approaches combining nucleic acid aptamers with 
nanoparticle leading to a prolonged stability and specific binding 
to the tumor tissue could further strengthen the beneficial effect 
of the treatment qualifying the drug for clinical trials.

TARGeTiNG TeNASCiN C

The large splice variant of tenascin C is specifically expressed in 
tumors and expression levels increase with grade of malignancy 
in many cancer types including brain, lung, and squamous cell 
cancer (21, 136). Therefore, targeting tenascin C is of particular 
interest for diagnostic and therapeutic approaches. Several (pre-)
clinical studies using tenascin C-targeting agents were performed, 
in particular in advanced brain tumors such as glioblastoma 
multiforme and malignant astrocytomas.

First, a murine anti-tenascin monoclonal antibody named 
81C6 was shown to bind specifically to tumor tissue (137). 
Neuradiab, the (131)I-labeled 81C6, showed decent benefits in a 
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glioblastoma xenograft mouse models (138). Phase I and II studies 
where the antibody was injected directly into the resection cavity 
of glioblastoma patients revealed an improvement in the median 
survival of the patients (139–141); however, phase III trials were 
suspended owing to a delay in site initiation (clinicaltrials.gov).

To overcome the restriction of a non-recurrent and local 
administration of the murine IgG2, several human antibodies tar-
geting tenascin C were generated. Silacci et al. developed a tenascin 
C-targeting antibody, named G11. The human monoclonal anti-
body stained patient-derived tumor sections with high specificity 
confirming the restricted expression of tenascin C to cancerous tis-
sue. In addition, biodistribution studies in either mice bearing sub-
cutaneous human glioma cell tumors or rats with orthotopic brain 
tumors, showed a highly selective tumor uptake of the antibody 
(136). In addition, Brack et al. developed a 125I-labeled humanized 
antibody targeting tenascin C, called F16. In a xenograft model, 
this radiolabeled human IgE antibody showed a selective targeting 
to human glioblastoma tissue with a clearance from the blood and 
other organs within 24h after intravenous injection (142). Both 
antibodies are promising approaches for further clinical trials, 
allowing a repeated treatment of cancer patients.

In addition, Kim et al. developed a tenascin C-targeting peptide 
binding specifically to the large splice variant of the protein either 
in a xenograft model of glioblastoma or in human lung and colon 
cancer or squamous carcinoma samples. This peptide reduced 
the migration of a glioblastoma cell line in vitro (143). Coupling 
this peptide to chemotherapeutics or radioactive isotopes could 
improve the clinical outcome of many cancer types.

Another way to target tenascin C is RNAi. When ATN-RNA, a 
double-stranded RNA complementary to human tenascin C, was 
applied locally to patients with advance brain tumors, the drug 
showed a survival benefit of 18 weeks in grade III astrocytoma 
and 10 weeks in glioblastoma multiforme (144). Thus, targeting 
tenascin C particularly for brain cancers looks very promising.

TARGeTiNG COLLAGeN i

Collagen prolyl-4-hydroxylases (CP4H) are essential enzymes for 
the correct biosynthesis of collagens. CP4H catalyzes the conver-
sion of proline to hydroxyproline, facilitating the assembly of 
three procollagen proteins into a procollagen triple helix. Recent 
studies in preclinical breast cancer models have shown that 
inhibition of CP4H either completely prevents or dramatically 
decreases spontaneous metastasis to the lungs (65, 66).

Interfering with post-translational cross-linking of collagens 
by LOX-family members has been proposed as a promising 
therapeutic avenue due to successful inhibition of metastasis in 
pre-clinical models (43, 110). So far, a LOXL2-targeting antibody 
(145) is in clinical trials for the treatment of fibrosis and cancer, 
but recently phase II clinical trials combining this antibody with 
chemotherapy (gemcitabine) in pancreatic cancer did not yield 
positive results (Gilead, press release). However, recent preclini-
cal data have shown efficacy of targeting LOX in combination 
with gemcitabine in preclinical models of pancreatic cancer, 
provided treatment was administered early (146). Thus, LOXL2 
inhibition combined with gemcitabine could still be effective in 
early-stage patients.

CONCLUDiNG ReMARKS AND FUTURe 
APPROACHeS

The ECM has crucial impact on cancer progression. In this review, 
we highlighted how ECM proteins influence every step of the 
complex cascade of tumor spread with a focus on some of the 
key players (Figure 1). The ECM not only provides cues favoring 
migration, attachment, survival, or proliferation but also physi-
cally protects the cells from the shear stress in the blood, immune 
cell attack, and the impact of drugs. Targeting ECM proteins is 
therefore of great interest in the adjuvant therapeutic setting. In 
particular, combination treatment with gold-standard therapeutics 
seems to be a promising strategy, as targeting the macromolecules 
facilitates the delivery and efficacy of the standard treatment and 
inhibits protumorigenic signaling of the ECM itself.

Extracellular matrix proteins can be targeted in many differ-
ent ways. Beyond the direct targeting of the macromolecules, 
one can also prevent their synthesis, cross-linking, or correct 
post-translational processing, opening up many possible avenues 
of treatment. However, although targeting of ECM components 
holds much promise for improved cancer management, it is 
important to keep in mind that any treatment aimed at cancer 
ECM also may affect the same ECM component in healthy tissue. 
Indeed, one of the main reasons why the much anticipated MMP 
inhibitors had such a poor success rate in clinical trials was the 
unexpected toxicity in healthy tissue [this reason and others are 
reviewed in Ref. (147)]. It is thus crucial to develop and rigorously 
study preclinical models of ECM targeting in many cancer types, 
paying particular attention to any side effects in healthy tissue 
to overcome this translational hurdle and move from bench to 
bedside. Additionally, further research into the exact mechanisms 
of how the individual ECM macromolecules stimulate migra-
tion, adhesion, and cell survival, and how this may be different 
in cancerous contra normal settings, will help to tailor targeting 
strategies to suit cancer ECM better than healthy ECM. Another 
important lesson that can be learned from the initial failure of 
MMP inhibitors is about the timing of the treatment with regard 
to the cancer progression stage. The ECM components reviewed 
here often play a part in more than one of the steps of the meta-
static cascade, but the involvement in one step might turn out 
to be more targetable than others. This makes it paramount for 
preclinical studies to carefully dissect when a given target should 
be hit to have an effect and, in effect, making it very important to 
stratify clinical trials accordingly.

Nevertheless, targeting components of the ECM in order to 
block cancer-driving signaling pathways and to facilitate the pen-
etrance of standard chemotherapeutics is a promising approach 
to prevent the life-threatening spread of cancer.
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