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Pre-operative imaging techniques are essential for tumor detection and diagnosis, but 
offer limited help during surgery. Recently, the applicability of imaging during oncologic 
surgery has been recognized, using near-infrared fluorescent dyes conjugated to tar-
geting antibodies, peptides, or other vehicles. Image-guided oncologic surgery (IGOS) 
assists the surgeFon to distinguish tumor from normal tissue during operation, and 
can aid in recognizing vital structures. IGOS relies on an optimized combination of a 
dedicated fluorescent camera system and specific probes for targeting. IGOS probes 
for clinical use are not widely available yet, but numerous pre-clinical studies have been 
published and clinical trials are being established or prepared. Most of the investigated 
probes are based on antibodies or peptides against proteins on the membranes of 
malignant cells, whereas others are directed against stromal cells. Targeting stroma cells 
for IGOS has several advantages. Besides the high stromal content in more aggressive 
tumor types, the stroma is often primarily located at the periphery/invasive front of the 
tumor, which makes stromal targets particularly suited for imaging purposes. Moreover, 
because stroma up-regulation is a physiological reaction, most proteins to be targeted 
on these cells are “universal” and not derived from a specific genetic variation, as is the 
case with many upregulated proteins on malignant cancer cells.
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BACKGROUnD

Diagnosis, staging, and surgical planning of cancer patients increasingly rely on non-invasive pre-
operative imaging techniques that provide information about tumor biology and anatomical struc-
tures (1–3). Presently, single-photon emission computed tomography (SPECT) and positron emission 
tomography (PET) are widely implemented imaging modalities used to provide insights into tumor 
location, tumor biology, and the surrounding micro-environment (1, 4). Both techniques depend 

Abbreviations: CAFs, cancer-associated fibroblasts; CAIX, carbonic anhydrase IX; EGFR, epidermal growth factor receptor; 
EpCAM, epithelial cell adhesion molecule; FAP, fibroblast activation protein; FDA, Food and Drug Administration; GMP, 
good manufacturing practices; IGOS, image-guided oncologic surgery; MMP, matrix metalloproteinases; NIR(F), near infrared 
(fluorescence); OSCC, oral squamous cell carcinomas; PDGFR, platelet-derived growth factor receptors; PET, positron emis-
sion tomography; PMSA, prostate-specific membrane antigen; RGD, arginine–glycine–aspartic acid; scFv, single-chain variable 
fragment (of an antibody); SMA, smooth muscle actin; SPECT, single-photon emission computed tomography; VEGF(R), 
vascular endothelial growth factor (receptor); uPAR, urokinase-type plasminogen activator receptor.
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on the pre-operative recognition of tumors using radioactive 
ligands. Various peptides and monoclonal antibodies, the latter 
often originally developed as therapeutic agents (e.g., cetuximab, 
bevacizumab, labetuzumab, rituximab, and trastuzumab), are 
labeled with radioactive isotopes and evaluated for pre-operative 
imaging purposes (4–9). However, translating information from 
these images to the operating theater is difficult due to alteration 
in body positioning, tissue manipulation by the surgeon, and the 
lack of sensitivity for sub-centimeter lesions. Therefore, during 
the actual operation, the surgeons still rely mostly on their eyes 
and hands to distinguish healthy from malignant tissues. In com-
bination with the ongoing paradigm shift to more neo-adjuvant 
therapies like for rectal, esophageal, and breast cancer, the urge 
of recognition of free resection margins will become even more 
pronounced. An intraoperative imaging technique that can 
monitor tumor development in real-time will clearly contribute 
to the clinical establishment of “wait-and watch”-based cancer 
therapies (10).

In contrast to SPECT and PET, near-infrared fluorescence-
guided oncologic surgery (NIRF-IGOS) is a real-time intraopera-
tive imaging technique. NIRF-IGOS is introduced and validated 
in the clinic for sentinel lymph node mapping and biliary imaging 
and has the potential to significantly revolutionize image-guided 
surgery due to its key principles (11–16): first, photon absorption 
in living tissue is minimal between 650 and 900 nm and photon 
scatter is much lower in the NIRF range than in the visible spec-
trum. Both properties permit visualization of tumors/structures 
up to 5–10  mm below the surface of the tissue. Furthermore, 
tissue auto-fluorescence is low in the NIRF spectrum – minimiz-
ing background – and NIR light is invisible for the human eye 
and, therefore, does not change the surgical field, guaranteeing 
normal clinical workflow (17). After injection of a NIRF probe 
into the patient, a bright spot on a black background is detected 
by a camera system, which can be superimposed on the color 
image of the surgical field on a display (18). Combining a NIR-
dye to a specific tumor-targeting ligand, like an antibody or a 
peptide, dramatically enhances the specificity of this technique, 
providing a solid real-time identification and demarcation system 
for the detection of tumors or nearby vital structures. This was 
recently shown by Rosenthal et  al. who conjugated cetuximab 
to the NIRF dye IRDye800CW and used it to recognize surgical 
resection margins with sub-millimeter resolution in patients 
with head-and-neck cancer (19). Tumor-specific image-guided 
oncologic surgery (IGOS) could be considered as an extension of 
SPECT/PET imaging, using the same strategy regarding tumor-
recognizing ligands, but applying NIR fluorophores instead of 
radioactivity. Compared to SPECT/PET, IGOS provides higher 
spatial resolution and enables direct anatomical feedback, advan-
tageous for real-time clinical applications (2).

CLiniCAL APPLiCABiLiTY

Like other novel techniques, the development and use of clini-
cally applicable imaging systems is depending on the availability 
of specific anti-cancer fluorescent probes, and vice versa. Due to 
the increasing opportunities and indications explored, clinical 
fluorescence imaging systems are rapidly becoming available and 

the total market for image-guided surgery devices is expected 
to reach USD 4.8 billion in the year 2022 (www.transparen-
cymarketresearch.com). The first open NIRF camera systems 
mentioned in the literature are the SPY (2003) (20), the FLARE™ 
imaging systems (2010) (21), Photodynamic Eye (2010) (22), 
and Fluobeam (2010) (23); all with their own characteristics like 
different wavelengths, fields of view, light sources, and working 
distance as extensively reviewed by Gioux et al. (24). The prices of 
the updated versions of these NIR fluorescence imaging systems, 
between $40,000 and $250,000, are relatively inexpensive when 
compared to clinical PET/SPECT systems. We recently validated 
and clinically introduced the novel ARTEMIS camera system that 
can be adjusted to visualize 500, 700, and 800 nm fluorophores, 
showing clinical feasibility for sentinel lymph node mapping and 
imaging of colorectal liver metastasis (25). Besides those indica-
tions, NIRF-IGOS has shown to be of advantage in breast (26), 
head-and-neck (19), brain, and colorectal cancer surgery (27). 
Moreover, there are surgical indications/approaches for which 
IGOS seems almost indispensable. For instance, during minimal 
invasive operations (laparoscopic/endoscopic), where palpation 
of the tissue is impossible making it difficult to recognize resection 
margins and small tumor nodules, and after chemo- or radiation 
therapies, where most of the tissue is scarred or destructed, or in 
cancers with prevalent inflammation, complicating the recogni-
tion of healthy and malignant tissue. Another obvious application 
would be in cancer types for which high numbers of positive 
resection margins are experienced such as with oropharyngeal or 
oral squamous cell carcinomas (OSCC). Of these head-and-neck 
cancer patients, minimal 16% have incomplete resection margins 
after surgery (28, 29), deteriorating patient prognosis, whereas 
applying broader surgical margins will result in functional 
impairment (30–32). Also in pancreatic cancer, surgery resec-
tions are incomplete in more than 50% of the patients, resulting in 
high morbidity (40–50%) and extremely low 5-year survival rates 
(<5%) (33).NIRF-IGOS is able to evaluate resection margins with 
high resolution and may result in enhanced patient survival in 
the near future, as incomplete resections are a strong predictor of 
the development of distant metastasis and subsequent decreased 
survival.

TARGeTinG OF TUMOR STROMA

Some tumor types over-express specific membranous proteins, 
like Her2/Neu for Her2 positive breast cancers and PMSA recep-
tor or folate receptor-α as present in the majority of prostate and 
ovarian cancers, respectively. These targets are particularly suited 
for selective targeting (34–36). Unfortunately, these proteins are 
only present in (subsets of) those particular tumor types. This 
is reflected in the quest for potent targets for a broader range 
of tumor(s) types, resulting in an excess of pre-clinical studies 
published in the last years. The majority of these studies focus 
on “general” tumor-associated receptors, adhesion molecules, 
or enzymes that are located in the membrane of the majority 
of malignant cancer cells, such as EGFR, EpCAM, and CAIX. 
Examples are studies with radioactive or NIRF-labeled versions 
of (FDA approved) antibodies like cetuximab against EGFR and 
WX-G250 versus CAIX (37, 38). Because of the heterogeneity 
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found within single tumors and between various tumor types, 
these studies did not generate one single omnipotent target yet. 
Recent alternative strategies have put effort on protein targets on 
non-epithelial cells, present within the tumor microenvironment.

Our survival studies in which breast, colon, and esophageal 
tumors were stratified as stroma-poor (≤50%) and stroma-rich 
(>50%), not only indicated a strong impact of the stromal con-
tribution to tumor behavior, but also revealed that many tumor 
(types) consist for a substantial part of stroma (39–42). Within 
these studies, the number of patients with no stroma was neg-
ligible. Further immunohistochemical analyses showed that the 
stroma of breast carcinomas consisted of comparable numbers 
of fibroblasts (including SMA-positive fibroblasts), immune 
cells (including type I and II macrophages) and endothelial cells 
(including CD105 positive endothelial cells), see Figure 1. Another 
tumor type eligible for stroma targeting would be pancreas 
cancer. The most prominent histological hallmark of pancreatic 
cancers is the pronounced desmoplastic reaction, consisting of 
fibroblasts/stellate cells, lymphatic and vascular endothelial cells, 
immune cells, and extracellular matrix, which could account for 
more than 90% of the total tumor volume (43–46).

Historically, endothelial cells have been the first tumor stromal 
cells to be exploited for imaging, in various types of cancer. Because 
of their function, mature endothelial cells are stable, inactive cells 
with a long lifespan. Neo-angiogenic endothelial cells, however, 
being tumor-induced outgrowths of existing endothelium, are 
activated cells with specific characteristics and protein expression 
and are mainly present in the periphery of the tumor (Figure 2) 
(47, 48). Neo-angiogenic endothelial cell associated proteins used 
for imaging are VEGF/VEGFR-2, αvβ3 integrin and matrix met-
alloproteinase MMP-2 and MMP-9. The αvβ3 integrin has been 
successfully targeted in many pre-clinical and clinical imaging 
studies using the peptide sequence arginine–glycine–aspartic 

acid (RGD), conjugated with nuclear as well as (NIR) fluorescent 
labels (49–54). First-in-human clinical trials are being prepared 
using analogs of this peptide conjugated with NIR labels. VEGF 
and its receptor(s) are targeted primarily via monoclonal antibod-
ies (55). Clinical studies with anti-VEGF monoclonal antibody 
bevacizumab, conjugated with near-infrared IRDye800CW, are 
presently being performed in patients with esophageal, familial 
adenomatous polyposis and rectum in University Medical Center 
Groningen, the Netherlands (ClinicalTrials.gov). Another prom-
ising candidate target against tumor endothelium is endoglin or 
CD105. Pre-clinical studies in mice models have shown positive 
results with antibodies conjugated with PET and NIRF labels (56, 
57). Dose-finding studies for therapeutic application of human-
ized anti-CD105 antibodies in various tumor settings have been 
performed, which should pave the way for the clinical usage of 
this target/antibody combination for tumor imaging.

Next to endothelial cells, the tumor microenvironment 
consists mainly of immune cells and fibroblasts, both with 
their own intra-tumoral distribution as schematically shown 
in Figure  2. Immune cells are therapeutically being targeted 
by CD20-directed antibodies like rituximab, ofatumumab, and 
obinutuzumab, especially for B cell lymphomas and leukemias. 
Recently, obinutuzumab has been evaluated for NIRF-based 
imaging of non-Hodgkin’s lymphomas (58). However, for most 
tumor types, CD20-based imaging is not applicable. A more 
suitable cell type in many tumors would be macrophages, espe-
cially tumor-associated macrophages of the M2 phenotype. M2 
macrophages are not a uniform population, but several more or 
less common cell surface markers for this phenotype are being 
used for identification, i.e., CD163, CD206, and CD209. Some of 
these markers are being evaluated for PET and SPECT imaging, 
not only for oncologic purposes (59, 60). An interesting recent 
approach is the development of macrophage-specific NIRF dyes 

FiGURe 1 | Histological representation of targetable stromal cells. Immunohistochemical analyses of a ductal breast carcinoma. (I, SMA) Cancer-associated 
fibroblasts (CAF) are disperse located through the whole tumor. The endothelial cells captured in (II, CD31) are mainly neo-angiogenic as seen in (III, CD105). (IV, 
DC68) Most of the macrophages present in this tumor consist of the M2 type (V, CD163). Picture (VI, CD45) shows lymphocytes that are located in conglomerates 
on the tumor border. AT, adipose tissue.
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FiGURe 2 | Schematic representation of stromal cells in a ductal adenocarcinoma. Overview of the location of the various stromal cells that can be targeted 
for imaging. Infiltrating immune cells are mainly located in the periphery, creating a rim around the tumor, and in necrotic areas. Neo-angiogenic endothelial cells are 
primarily present at the invasive front. Cancer-associated fibroblasts are mainly recognized in proximity and between malignant cells, whereas normal (myo)
fibroblasts are dispersed throughout the extracellular matrix, providing rigidity and strength. Necrotic areas are mostly recognized in the tumor core.
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independent from targeting determinants (61). With respect to 
macrophage targeting also uPAR, the receptor for urokinase-type 
plasminogen activator, might be an attractive alternative. As 
component of the proteolytic plasminogen activation cascade, 
uPAR is involved in degradation/remodeling of the extracellular 
matrix, important for migrating cells. Therefore, uPAR is not only 
upregulated on invading cancer cells but also on tumor stromal 
cells like tumor-associated macrophages and neo-angiogenic cells 
(62–65). The simultaneous targeting of (invading) tumor cells as 
well as tumor stromal cells by a uPAR-specific probe increases the 
percentage of tumor mass that will be targeted and would make 
uPAR a pluripotent tumor target, applicable for a broad range of 
tumor types (66–68).

Fibroblasts, in particular, the cancer-associated fibroblasts or 
CAFs, are the most abundant non-immune cell type in the tumor 
microenvironment. CAFs are believed to develop from various 
origin cells and have similar characteristics as myofibroblasts (69, 
70). The majority of CAFs express alpha-smooth muscle actin  
(α-SMA) and FSP-1, but also membrane-associated proteins 
are used for identification, characterization, and isolation, e.g., 
FAP-alpha, CXCR4/CXCL12, HGF, and PDGFR. Imaging probes 
based on FAP and PDGFR have shown promising results in 
pre-clinical studies but have not led to clinical trials yet (71–75). 
Considering that a number of pathways, including Hedgehog, 

Notch, and transforming growth factor-beta, are involved in 
mediating cross-talk between the malignant epithelium and its 
associated stroma, the list of possible stroma-derived candidate 
proteins for tumor imaging will expand considerably (76).

One of the major obstacles for the development and evalu-
ation of probes for tumor stromal targets is the availability of 
pre-clinical validation procedures. The in vitro validation of the 
affinity/efficiency of anti-stroma cell NIRF probes can very well 
be established using cultures of human stromal cells. But the use 
of relatively simple xenograft models of human tumor cells in 
immunocompromised mice, as the ultimate in vivo proof before 
clinical studies, is not easily applicable for stromal cells (77). The 
murine stromal component formed around xenografted human 
cancer cells cannot be used with probes designed to target human 
proteins due to species specificity. On the other hand, human 
stromal cells are generally not suited for xenografting in mice 
because of the lack of human growth factors. Tumor patient-
derived xenografts could provide a source of tumor stroma but 
are heterogeneous and black boxes with respect to which cell 
types are actually transplanted efficiently (78). Transplantation 
of human skin on mice, followed by inoculation of tumor breast 
cancer cells within the dermis of the transplanted skin resulted 
in the formation of xenografts expressing stroma and vessel 
elements of human origin (79). The suitability and versatility of 
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this model was shown by imaging FAP-expressing fibroblasts 
using radio-labeled antibodies. Both models are physiologically 
acceptable, but laborious and time consuming, and probably 
not always necessary for imaging of specific stromal cells. These 
models could be simplified, however, by implanting pre-grown 
spheroids of human cancer cells co-cultured with tumor stromal 
cells in various combinations (80, 81).

TRACeR(S)/TARGeTinG veHiCLeS

To design/obtain a fluorescent probe for tumor imaging, one has 
to make two principal decisions: which (tumor)protein will be 
targeted and what kind of targeting vehicle will be used to target 
with. As indicated above, the selection of the target seems of key 
importance, but also for the format of the targeting vehicle and 
the conjugated NIRF dye are many options available, each with 
their own (dis)advantages. Various types of vehicles can be used, 
ranging from relatively large monoclonal antibodies and antibody 
fragments to small peptides or RNA/DNA aptamers. Next to con-
ventional monoclonal antibodies, a whole range of recombinant 
antibodies and antibody fragments are available due to advanced 
recombinant protein technologies. In fact, because there is no 
need for the Fc part of antibodies for the purpose of imaging, 
the antibody format has become completely dispensable, leading 
to a range of over 20 different non-IgG-based scaffolds such as 
Affimers, DARPins, and Centyrins (82, 83). These non-IgG scaf-
folds consist of a protein backbone with a targeting determinant 
that is generally selected from a library using phage, ribosome, 
or yeast display. Like for peptides and antibody(fragments), these 
scaffolds can be conjugated with fluorescent dyes, preferably from 
within the NIR range, for better tissue penetration and less back-
ground as discussed earlier (13). In principle, all these targeting 
vehicles could also be attached to nanoparticles like liposomes, 
dendrimers or to nano/microbubles to improve the stability and 
efficacy or to target more than one protein (84). The selection of a 
good vehicle/dye combination is complex and depends on many 
factors. Important characteristics are efficient tumor penetration 
in combination with low affinity for surrounding normal tissue 
and, depending on the application, a reasonable (hours) half-life 
in the circulation (85). The most straight forward approach, 
using natural ligands (or derivates), for receptors and adhesion 
molecules that are overexpressed in tumor cells has shown good 
results for, respectively, the folate receptor-α, cMet and alphavbeta3 
integrin (27, 50, 86). Several therapeutic monoclonal antibodies 
have been investigated and show specific and sensitive tumor-
binding characteristics. Because of their large size (150  kDa), 
antibodies possess relatively long elimination times (up to 72 h) 
and subsequently provide large imaging windows (24–96  h). 
When shorter elimination times are desired, smaller vehicles 
such as F(ab)s (50 kDa), scFv (27 kDa), nanobodies (27 kDa), 
and/or small peptides (1–2 kDa) can be addressed. In general, the 
use of smaller ligands increases the tumor penetration, decrease 
liver uptake, reduce background signals, and shorten the time 
between injection and imaging (87, 88). But next to size, these 
ligands vary considerably in physical characteristics like affinity 
and charge, which also have major impact on the applicabil-
ity of the probe. Another important feature to consider is the 

possibility to conjugate the selected vehicle to fluorescent dyes. 
Various clinical grade (NIR) fluorophores exist that have been 
equipped with functional groups to enable conjugation, such as 
NHS-ester and maleimide reactive groups, or more recently with 
azide or DBCO for copper-free click chemistry. IRDye800CW is 
an example of a GMP-produced functionalized NIR-fluorescent 
fluorophore designed to have optimal in  vivo characteristics 
regarding low background fluorescence, low light scattering and 
high signal-to-noise ratios. Alternative fluorophores, like the 
GMP-produced ZW800-1, show similar optical in vivo proper-
ties, but with different characteristics with respect to charge and 
polarity (89, 90).

An interesting development is the engineering of targeting 
vehicles that can be equipped with multiple labels. A powerful 
synergy can be achieved when nuclear and fluorescent imaging 
methods are combined, extending the pre-operative nuclear 
diagnostic images with real-time intraoperative imaging, leading 
to improved diagnosis and patient management. A number of 
pre-clinical studies have indicated the versatility of this concept 
(67, 91). Clinically, the advantages of multimodal agents have 
been shown in patients with melanoma and prostate cancer, but 
those studies used non-specific agents, following the natural 
lymph drainage pattern of colloidal tracers after peri-tumoral 
injection (92, 93).

COnCLUSiOn

Within the next years, NIRF-based imaging will develop into one 
of the most valuable tools for oncologic surgeons. The evolution 
of the technique relies on the development of camera systems and 
specific targeting probes and several hurdles still have to be taken. 
The rapid technical developments considering LED-technology, 
optics, and camera systems, combined with the latest advances 
in image processing, warrants a prosperous contribution of the 
hardware. The quest for the best target(s), however, is only just 
begun, and also the most optimal targeting vehicle still has to be 
determined. The development of proper in vivo animal models to 
evaluate newly developed targeting probes seems to become the 
most crucial step.
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