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Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic 
progression and are frequently overexpressed in human cancers. Among the three 
members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are 
expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant 
Aurora-A kinase activity has been implicated in oncogenic transformation through the 
development of chromosomal instability and tumor cell heterogeneity. Recent studies 
also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression 
through activation of epithelial–mesenchymal transition reprograming resulting in the 
genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive 
target for cancer therapeutics, and the development of small molecule inhibitors of 
Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the 
present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in 
oncogenic transformation and tumor progression. We will also review the current clinical 
studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the 
management of cancer patients.
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iNTRODUCTiON

Cell division in normal cells is a tightly regulated process by which replicated DNA is equally dis-
tributed into two daughter cells (1). Key players that orchestrate cell division are the centrosomes 
and mitotic spindles that ensure correct chromosome alignment on the metaphase plate and equal 
chromosome segregation, resulting in the maintenance of a genomic stable diploid karyotype (2). 
Due to the complexity of the mitotic machinery, several checkpoint surveillance mechanisms have 
evolved to safeguard accurate temporal and spatial coordination of cell cycle events (3). Abrogation 
of cell cycle checkpoints impairs the fidelity of correct chromosome segregation and induces chro-
mosomal instability (CIN), a driving force of oncogenic transformation and tumor progression 
(4, 5). Aurora serine/threonine kinases are key mitotic regulators required for the maintenance of 
chromosomal stability (6). In mammalian cells, Aurora kinases consist of three members termed 
Aurora-A, -B, and -C that are expressed in a cell cycle-dependent fashion. These mitotic kinases 
are highly conserved through evolution and guarantee the precise coordination of cytoskeletal and 
chromosomal events through modulation of centrosome duplication, maturation, and separation, 
as well as proper mitotic spindle assembly resulting in equal chromosome distribution into daughter 
cells (7). While all three Aurora kinases are expressed in human cancer cells, Aurora-A and Aurora-B 
are best characterized because they are expressed at high levels in aneuploid tumors (8, 9). Aurora-A 
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FiGURe 1 | Aurora-A localization in human breast cancer cells: 
representative image of mitotic figures from MCF-7 breast cancer cell 
line engineered to express the Raf-1 oncoprotein (vMCF-7Raf-1). 
Centrosomes are labeled in green with 20H5 centrin mouse monoclonal 
antibody (Mayo Clinic), mitotic spindles are labeled in red with Aurora-A rabbit 
polyclonal antibody (Abcam, Cambridge, MA, USA) and nuclei are labeled in 
blue with DAPI (Thermo Fischer Scientific, Rockford, IL, USA). Centrosomal 
co-localization of Aurora-A is observed in the overlay image (yellow).
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and Aurora-B share about 70% homology in the carboxyl termi-
nus catalytic domain and three conserved Aurora box motifs in 
their varying amino terminal domain (10). However, they control 
cell cycle progression and mitosis by interacting with different 
proteins. Aurora-A is localized primarily on centrosomes, spindle 
poles, and transiently along the spindle microtubules as cells pro-
gress through mitosis (Figure 1) (11, 12). By contrast, Aurora-B 
interacts with the chromosomal passenger complex (CPC) that 
localizes to the inner centromere during prophase through meta-
phase and then moves to the spindle midzone and the midbody 
during late mitosis and cytokinesis (13). While some studies 
have shown that Aurora-B kinase is overexpressed in cancer 
cells (14, 15), it is not clear whether Aurora-B overexpression is 
merely associated with the high proliferative activity of cancer 
cells or if it plays a causative role in tumorigenesis. Due to the 
lack of definitive evidence that Aurora-B strictly functions as an 
oncogene, Aurora-A kinase represents a better candidate target 
for cancer therapeutics. In the last decade, several small molecule 
inhibitors of Aurora kinases have been developed, though only a 
few are selective for Aurora-A; they represent promising drugs to 
impair the progression of aggressive tumors (16).

AURORA-A eXPReSSiON iN CANCeR 
CeLLS

The mammalian Aurora-A protein contains 403 amino acids and 
has a molecular weight of 46  kDa. Aurora-A was first isolated 
as the product of gene BTAK (breast tumor amplified kinase, 
also named STK15) on chromosome 20q13, a region that is 
frequently amplified in breast, colorectal, and bladder tumors 
as well as ovarian, prostate, neuroblastoma, and cervical cancer 
cell lines (17–21). Although gene amplification represents a well-
established mechanism to induce Aurora-A overexpression in 
cancer cells, transcriptional and post-translational mechanisms 
also play an important role to enhance Aurora-A expression in 
the absence of BTAK gene amplification. In normal cells, the 
abundance of Aurora-A is down-regulated through APC/C–
Cdh1-dependent, proteasome-mediated proteolysis, leading to 
the organization of the anaphase spindle at the end of mitosis. 
APC/C–Cdh1-dependent degradation of human Aurora-A 
requires a destruction box (D-box) in the C-terminal region and 
a motif in the N-terminus (A-box) (22). Importantly, the phos-
phorylation state of a serine residue (Ser51) in the A-box inhibits 
degradation of Aurora-A, as mutants mimicking constitutive 
phosphorylation of this site cannot be degraded by the APC/C–
Cdh1 (23). Furthermore, we have showed that HER-2 oncogenic 
signaling induces Aurora-A phosphorylation, thereby increasing 
Aurora-A stability and expression in breast cancer cells (24). 
These findings indicate a functional link between deregulation 
of Aurora-A stability and tumorigenesis. Conversely, tumor sup-
pressors involved in the control of cell cycle progression promote 
Aurora-A degradation. The mitotic checkpoint protein Chfr 
physically interacts with Aurora-A and ubiquitinates Aurora-A 
both in vitro and in vivo, ensuring the proper control of mitotic 
events and maintenance of chromosomal stability (25). Loss 
of Chfr expression in cancer cells induces aberrant Aurora-A 

kinase activity, CIN, and promotes tumorigenesis (26). The 
tumor suppressor p53 modulates Aurora-A expression via both 
transcriptional and post-translational regulation. Specifically, 
p53 knockdown in cancer cells promotes the activation of E2F3 
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transcriptional factor that in turn induces Aurora-A gene expres-
sion. p53 deficiency also increases Aurora-A expression through 
the downregulation of Fbw7α, a key component of e3 ligase of 
Aurora-A involved in its degradation (27). A separate study dem-
onstrated that highly invasive primary tumors harboring mutant 
p53 also exhibited Aurora-A overexpression (28). Taken together, 
these findings strongly demonstrate that Chfr and p53 are key 
negative regulators of Aurora-A kinase signaling, and their loss 
of function promotes a growth advantage for cancer cells through 
increased expression of Aurora-A.

AURORA-A PROMOTeS CeNTROSOMe 
AMPLiFiCATiON, ANeUPLOiDY, AND CiN

Aurora-A is overexpressed in a variety of solid tumors, indicative 
of the critical role that aberrant Aurora-A kinase activity plays 
in tumorigenesis. Several studies demonstrate the causative 
function of Aurora-A overexpression in promoting cell transfor-
mation in vitro and tumor growth in vivo employing NIH 3T3 
cells and Rat1 fibroblasts (17, 29). The majority of research aims 
to identify the mechanisms responsible for Aurora-A-induced 
tumorigenesis has focused on the role of Aurora-A kinase in the 
control of centrosome duplication and mitosis. Accurate centro-
some duplication plays a central role in the maintenance of a 
normal diploid karyotype. In order to give rise to a bipolar mitotic 
spindle responsible for the equal segregation of chromosomes 
to dividing cells, the centrosome must be duplicated once, and 
only once during each cell cycle (30). Cell cycle checkpoints are 
essential surveillance mechanisms that guarantee the coordina-
tion between centrosome duplication, DNA replication, and 
mitosis during cell cycle progression (31). Abrogation of cell cycle 
checkpoints in cancer cells induces centrosome amplification, a 
pathological condition characterized by the presence of more 
than two centrosomes within a cell. Centrosome amplification 
may result from inactivation of the G1/S checkpoint leading to 
centrosome overduplication or from abrogation of the G2/M 
checkpoint leading to cytokinesis failure, endoreduplication, and 
consequent centrosome accumulation (2). Centrosome ampli-
fication due to cytokinesis failure is exacerbated in cancer cells 
lacking the “G1 phase post-mitotic checkpoint” that is dependent 
on the integrity of p53/Rb axis (32–34). One of the major conse-
quences of centrosome amplification is the formation of multipo-
lar or pseudo-bipolar mitotic spindles that will result in unequal 
chromosome segregation and aneuploidy (35–37). Aneuploidy is 
characterized by gains and/or losses of whole chromosomes dur-
ing cell division and occurs in early stages of tumor development, 
playing a critical role in both tumorigenesis and tumor progres-
sion (38). Significantly, while aneuploidy represents the state of an 
aberrant karyotype, the continuous generation of chromosome 
variations in cancer cells is defined as CIN that will ultimately 
drive genetic heterogeneity, tumor recurrence, and poor outcome 
(39). Several lines of evidence have established that centrosome 
amplification drives CIN and genetic heterogeneity in aneuploid 
tumors (40–42). Elegant studies have demonstrated that deregu-
lated expression of Aurora-A is functionally linked to centrosome 
amplification and CIN (43–45). The major mechanism by which 

aberrant Aurora-A kinase activity induces centrosome amplifica-
tion and CIN is through cytokinesis failure and consequent multi-
nucleation leading to centrosome accumulation (46). Aurora-A 
induces cytokinesis failure and centrosome amplification mainly 
through its interaction with key tumor suppressor gene products 
that control cell cycle checkpoints, centrosome duplication, and 
chromosomal stability. Aurora-A phosphorylates the tumor 
suppressor p53 on Ser215 residue, abrogating the DNA-binding 
and transactivation activity of p53 that results in the inhibition 
of the downstream target gene p21 involved in the control of 
centrosome duplication (47). Moreover, Aurora-A-mediated 
phosphorylation of p53 on Ser315 residue will increase the affinity 
of p53 with Mdm2 that in turn will promote p53 degradation 
(48). The tumor suppressors BRCA1 and BRCA2 play a central 
role in the maintenance of chromosomal stability and germline 
mutations in BRCA1 and BRCA2 genes have been detected in 
approximately 90% of hereditary breast/ovarian cancers (49). 
Specifically, BRCA1 monitors the physical integrity of DNA fol-
lowing genotoxic stress and coordinates DNA replication with 
centrosome duplication cycle (50). It has been demonstrated that 
Aurora-A directly binds to BRCA1 and phosphorylates it on Ser308 
residue. Deregulated Aurora-A-mediated BRCA1 phosphoryla-
tion on Ser308 residue induces abrogation of the G2/M checkpoint 
leading to centrosome amplification and CIN (51). Moreover, 
Aurora-A is required to activate polo-like kinase 1 (PLK1) that 
plays a key role in promoting centrosome duplication and mitotic 
entry (52, 53). These findings indicate that Aurora-A overexpres-
sion induces aberrant Plk1 activity that will drive centrosome 
amplification, improper segregation of chromosomes, CIN, and 
tumorigenesis. Leontovich et al. uncovered a novel mechanism 
by which Cyclin-A/Cdk2 oncogenic signaling favors Aurora-A 
centrosomal localization that in turn induces centrosome 
overduplication in breast cancer cells (54). Taken together, these 
studies strongly demonstrate that deregulated Aurora-A kinase 
activity induces centrosome amplification in cancer cells through 
different mechanisms and results in the development of CIN, a 
driving force for genetic heterogeneity and tumor progression.

NON-MiTOTiC FUNCTiON OF AURORA-A 
iN TUMORiGeNeSiS

Although Aurora-A-mediated centrosome amplification and 
CIN represents a well-recognized mechanism that promotes 
oncogenic transformation, the kinase activity of Aurora-A is 
essential to acquire a transformed phenotype regardless of the 
induction of centrosome amplification (55). These findings led to 
the discovery that Aurora-A kinase also phosphorylates proteins 
unrelated to centrosome function that play a central role in 
tumorigenesis. Taga et al. showed in U2OS human osteosarcoma 
cells that Aurora-A induces phosphorylation of Akt and mTOR 
oncoproteins that is required to increase U2OS tumorigenic-
ity (56). In agreement with these results, aberrant Aurora-A 
kinase activity promotes resistance to cisplatin, etoposide, and 
paclitaxel-induced apoptosis by phosphorylating Akt in wild-
type p53 ovarian cancer cells (57). Other studies have revealed 
the direct role of Aurora-A kinase activity in mediating cancer 
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cell motility and distant metastases. Aurora-A promotes breast 
cancer metastases by dephosphorylation of cofilin and activation 
of cofilin–F-actin pathway, which accelerates actin reorganization 
and polymerization (58). Furthermore, inhibition of phosphati-
dylinositol 3-kinase (PI3K) oncogenic signaling blocked Aurora-
A-mediated cofilin dephosphorylation, actin reorganization, and 
cell migration. These results uncover a novel crosstalk between 
PI3K signaling and Aurora-A in tumor progression. In esophageal 
squamous cell carcinoma cells, Aurora-A overexpression induces 
cell migration and invasion as well as secretion and expression 
of matrix metalloproteinase-2 (MMP-2). This mechanism is 
mediated by Aurora-A-induced phosphorylation of p38 MAPK 
and Akt protein kinases (59). Aberrant Aurora-A kinase activity 
also induces activation of Rap1, a member of the Ras family of 
small GTPases, leading to the development of distant metastases 
originating from oral cavity squamous cell carcinomas (60). Du 
and Hannon demonstrated that Aurora-A kinase activity inhibits 
the function of Nm23-H1 protein that is involved in the suppres-
sion of distant metastases, facilitating tumor progression (61).

Moreover, recent studies revealed a novel function of 
Aurora-A in the progression of solid tumors through activation of 
 epithelial–mesenchymal transition (EMT) and stemness repro-
graming. Cammareri et al. demonstrated that Aurora-A overex-
pression is restricted in colorectal cancer stem cells (CR-CSC), 
and Aurora-A inhibition restored chemosensitivity and com-
promised the tumor initiating ability of CR-CSC to form tumor 
xenografts in immunocompromised mice (62). The causative 
role of Aurora-A overexpression in promoting EMT and tumor 
progression through stabilization of Snail transcription factor has 
been shown in head and neck cancer cells (63). Significantly, we 
have defined for the first time the essential role of Aurora-A in 
promoting breast cancer progression through activation of EMT 
and the genesis of breast cancer stem cells responsible for the 
onset of distant metastases (24). Moreover, Aurora-A-induced 
EMT and onset of distant metastases was functionally linked to 
SMAD5 and SOX2 expression, two master transcription factors 
involved in the development of EMT, tumor self-renewal, and an 
invasive, basal-like phenotype. In the same study, we have uncov-
ered the causative role of Aurora-A overexpression in inducing 
expansion of cancer stem cells through impairment of asym-
metric divisions. These results are in agreement with a previous 
study showing that a phosphorylation cascade triggered by the 
activation of Aurora-A kinase is responsible for the asymmetric 
localization of Numb during mitosis (64). Taken together, these 
studies highlight an essential role of Aurora-A kinase in driving 
tumor progression by modulating the activity of key oncogenic 
pathways involved in cell migration, chemoresistance, tumor 
initiating ability, and onset of distant metastases.

AURORA-A AS A NOveL BiOMARKeR 
PROGNOSTiC OF POOR CLiNiCAL 
OUTCOMe

Several studies have shown that Aurora-A kinase is overexpressed 
in a variety of tumors, suggesting that Aurora-A may represent 
a promising prognostic biomarker. Reiter et  al. reported that 

increased expression of Aurora-A in head and neck squamous cell 
carcinomas was significantly associated with shorter disease-free 
and overall survival of patients (65). Likewise, Aurora-A overex-
pression is associated with centrosome amplification and shorter 
survival in an extensive proportion of ovarian tumors (66, 67). 
Gastrointestinal tumors also display deregulation of Aurora-A 
expression that is linked to high risk of recurrence and tumor 
progression. Employing tissue microarrays from a retrospective 
cohort of 343 patients with colorectal cancer liver metastases, 
Goos et al. showed that Aurora-A levels were increased in liver 
metastatic lesions compared to corresponding primary tumors 
and was associated with poor clinical outcome (68). Wang et al. 
showed that Aurora-A overexpression was an independent 
prognostic marker of poor survival in gastric cancer patients 
without lymph node metastases (69). Samaras et al. performed 
a comparative immunohistochemical analysis of Aurora-A and 
Aurora-B expression in 40 patients with primary glioblastomas 
to identify possible correlations with Ki-67 proliferation index 
and clinical outcomes (70). While Aurora-A was overexpressed 
in glioblastomas with high Ki-67 expression and was associated 
with poor survival, Aurora-B expression was not correlated with 
Ki-67 expression and patient survival. Aurora-A overexpression 
has also been established as a valuable biomarker prognostic of 
poor clinical outcome in breast carcinomas. Nadler et al. demon-
strated in a tissue microarray containing primary breast tumor 
tissue from 638 patients with 15-year follow-up that aberrant 
expression of Aurora-A, but not Aurora-B, was an independent 
prognostic marker strongly correlated with decreased survival 
(71). High Aurora-A expression was also associated with high 
nuclear grade and elevated HER-2/neu and progesterone recep-
tor expression. In 48 cases of operable triple-negative breast 
tumors, Yamamoto et al. established that basal-like subtype was 
significantly associated with high levels of Aurora-A and shorter 
disease-free and overall survival compare to non-basal-like breast 
tumors (72). Using microarray-based gene expression data from 
three independent cohorts of 766 node-negative breast cancer 
patients, Siggelkow et  al. demonstrated that patients harboring 
high Aurora-A expression had a shorter metastasis-free survival 
in the molecular subtype estrogen receptor-positive (ER+)/
HER2− carcinomas, but not in ER−/HER2− or HER2+ carci-
nomas (73). A recent study reported, in a cohort of 426 patients 
with primary breast cancer, that elevated expression of Aurora-A 
and SURVIVIN, together with BTAK gene amplification, is 
correlated with increased CIN and shorter survival (74). Taken 
together, these studies highlight Aurora-A as a novel, independ-
ent prognostic biomarker of poor clinical outcome that could 
identify patients at high risk of tumor recurrence or progression.

PHARMACOLOGiC TARGeTiNG OF 
AURORA-A KiNASe ACTiviTY iN CANCeR 
THeRAPY

In the last decade, at least 13 different inhibitors of the Aurora 
kinases have been evaluated in phase I clinical trials in patients 
with various hematologic and solid tumor malignancies. Nearly all 
of the initial agents studied were pan-inhibitors of Aurora-A, -B, 
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and -C, and several of them furthermore inhibited other kinases, 
such as bcr–abl (T135I), Flt3, VEGFR2, and JAK 2/3. Some of 
these trials were suspended and not completed or published. 
Some inhibitors have not continued beyond phase I evaluation 
due to significant toxicities at clinically effective doses or limited 
clinical antitumor activity. Only a limited number of these pan-
Aurora and multi-kinase inhibitors have been pursued in phase II 
clinical trials (AT-9283, MK-0457, ENMD-2076, PHA-739358). 
Three of the Aurora kinase inhibitors developed were selective for 
Aurora-A (MLN 8054, MLN 8237, TAS-119). Of all the inhibitors, 
only MLN 8237 (alisertib) has proceeded to phase III evaluation.

The first of the selective Aurora-A kinase inhibitors to enter 
into human studies was MLN 8054. In Phase I dose escalation 
studies in patients with advanced solid cancers, the observed dose 
limiting toxicity (DLT) was reversible somnolence, attributed to 
GABAA α-1 benzodiazepine off-target binding (75, 76). With the 
aim of improving the therapeutic window, the chemical structure 
of the molecule was modified, and of potential new agents, MLN 
8237 (alisertib) was selected for further development based on 
preclinical evidence demonstrating its increased potency in 
Aurora-A enzymatic inhibition, reduced degree of brain partition-
ing, and while GABAA binding potency was comparable to MLN 
8054, alisertib displayed a greater selectivity ratio of Aurora-A 
inhibition to GABAA α-1 benzodiazepine site binding affinity (77).

In 2007, the first clinical trial opened to evaluate alisertib, 
an orally administered, small molecule inhibitor that is selec-
tive for Aurora-A kinase. To date, well over 1000 patients with 

hematological or solid tumor malignancies have participated in 
clinical trials with the agent as monotherapy or in combination 
with chemotherapy or other targeted agents (78, 79). In the origi-
nal phase I trials, different formulations of the drug, doses, and 
schedules were evaluated (80, 81). Stomatitis and neutropenia were 
the most common DLTs consistent with its antiproliferative effect. 
Somnolence was evident in patients receiving once daily dosing 
of alisertib at the highest dose levels; however, the frequency and 
severity of these episodes were reduced with twice daily dosing 
of alisertib at lower individual doses, which reduced peak plasma 
levels while maintaining overall systemic exposures. Other com-
mon low-grade toxicities included alopecia, nausea, diarrhea, 
anemia, and fatigue. The recommended phase II dose was 50 mg 
twice daily on days 1–7 of a 21-day cycle, and the preferred formu-
lation was the enteric-coated tablet; both were confirmed in the 
industry-sponsored study of alisertib as monotherapy in patients 
with advanced solid tumor malignancies (82). Encouraging clini-
cal activity was demonstrated in this trial. In the cohort of heavily 
pre-treated women with hormone receptor-positive metastatic 
breast cancer (n = 26), 23% had an objective response (complete 
or partial response) and 31% achieved stable disease for at least 
6 months, resulting in a clinical benefit rate of 54%. Median PFS 
was 7.9 months. In the chemotherapy-refractory, relapsed small 
cell lung cancer (SCLC) cohort (n = 12), a response rate of 25% 
was observed with a median duration of response of 4.3 months. 
A phase II trial of alisertib alone or combined with paclitaxel for 
second-line therapy of SCLC is currently active (NCT02038647). 
Based on promising activity observed in relapsed/refractory 
peripheral T-cell lymphoma (83, 84), a phase III clinical trial of 
alisertib versus treatment of investigator’s choice (NCT01482962) 
was pursued but subsequently terminated enrollment at a pre-
specified interim analysis due to projections that the study was 
unlikely to meet the primary endpoint of superior PFS.

An alternative 28-day regimen with alisertib given days 1–3, 
8–10, and 15–17 was studied in combination with paclitaxel 
in breast and ovarian cancer models, and it is associated with 
equivalent drug levels, decreased incidence of dose limiting neu-
tropenia with negligible compromise to efficacy (85). The safety 
and tolerability of this schedule in combination with fulvestrant 

FiGURe 2 | MAPK-induced activation of Aurora-A kinase promotes 
eMT, stemness, and tumor progression: constitutive activation of 
MAPK oncogenic signaling during tumor growth leads to stabilization 
and accumulation of Aurora-A kinase. Aberrant Aurora-A kinase activity 
induces activation of SMAD5 and SOX2 transcription factors that in turn will 
orchestrate EMT and stemness reprograming leading to drug resistance and 
tumor progression (24). Pharmacologic targeting of Aurora-A kinase activity 
can be effective for eliminating highly invasive cancer stem cells and defeat 
tumor progression.

TABLe 1 | Aurora kinase inhibitors in clinical trials.

inhibitor commercial name Clinical trials

Pan-Aurora 
inhibitors

VX-680/MK-0457 (Vertex/Merck) 
Tozasertib

Phase II (terminated 
due to toxicity)

PHA-739358 (Pfizer/Nerviano) 
Danusertib

Phase II

PHA-680632 (Pfizer/Nerviano) Phase I
CYC-116 (Cyclacel) Phase I
SNS-314 (Sunesis) Phase I
R763 (Rigel) Phase I
AMG-900 (Amgen) Phase I
AT-9283 (Astex) Phase II
PF-03814375 (Pfizer) Phase I
GSK1070916 (GlaxoSmithKline) Phase I

Aurora-A 
inhibitors

MLN8237 (Millennium) Phase II
ENMD-2076 (EntreMed) Phase II
MK-0457 (Vertex) Phase II
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